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Abstract 

Background:  Drug discovery is time-consuming and costly. Machine learning, espe-
cially deep learning, shows great potential in quantitative structure–activity relation-
ship (QSAR) modeling to accelerate drug discovery process and reduce its cost. A big 
challenge in developing robust and generalizable deep learning models for QSAR is 
the lack of a large amount of data with high-quality and balanced labels. To address 
this challenge, we developed a self-training method, Partially LAbeled Noisy Student 
(PLANS), and a novel self-supervised graph embedding, Graph-Isomorphism-Network 
Fingerprint (GINFP), for chemical compounds representations with substructure 
information using unlabeled data. The representations can be used for predicting 
chemical properties such as binding affinity, toxicity, and others. PLANS-GINFP allows 
us to exploit millions of unlabeled chemical compounds as well as labeled and par-
tially labeled pharmacological data to improve the generalizability of neural network 
models.

Results:  We evaluated the performance of PLANS-GINFP for predicting Cytochrome 
P450 (CYP450) binding activity in a CYP450 dataset and chemical toxicity in the Tox21 
dataset. The extensive benchmark studies demonstrated that PLANS-GINFP could sig-
nificantly improve the performance in both cases by a large margin. Both PLANS-based 
self-training and GINFP-based self-supervised learning contribute to the performance 
improvement.

Conclusion:  To better exploit chemical structures as an input for machine learning 
algorithms, we proposed a self-supervised graph neural network-based embedding 
method that can encode substructure information. Furthermore, we developed a 
model agnostic self-training method, PLANS, that can be applied to any deep learning 
architectures to improve prediction accuracies. PLANS provided a way to better utilize 
partially labeled and unlabeled data. Comprehensive benchmark studies demonstrated 
their potentials in predicting drug metabolism and toxicity profiles using sparse, noisy, 
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and imbalanced data. PLANS-GINFP could serve as a general solution to improve the 
predictive modeling for QSAR modeling.

Keywords:  Drug-target interaction, Drug discovery, Drug toxicity, Drug metabolism, 
Deep neural network, Graph neural network, Semi-supervised learning, Self-supervised 
learning, Chemical embedding, Artificial intelligence

Background
Recent advances in deep learning have shown promises in quantitative structure–activ-
ity relationship (QSAR) modeling for accelerating drug discovery [1]. However, several 
challenges remain in the successful application of deep learning to QSAR. A general 
problem for almost all supervised deep learning is that the amount of high-quality 
labeled data is usually limited. To train an accurate, robust, and generalizable model 
using deep learning, it is not surprising to use millions of labeled training data. Even the 
most advanced high throughput experimental methods today cannot meet the huge data 
demand. Thus, methods are needed to sufficiently exploit the labeled pharmacological 
data and unlabeled chemical space to improve the performance of deep learning models. 
Autoencoder [2, 3] and variant autoencoder [4, 5] are widely used models, which can be 
pre-trained with unlabeled data in order to better represent input data features by map-
ping the sparse sample space to a continuous latent space. Multi-task models try to find 
a better latent space by combining datasets with labels for different tasks [6, 7]. Recently, 
self-supervised learning, which has achieved tremendous success in Natural Language 
Processing (NLP) [8], is extended to graph-structured data [9]. The self-training method 
is another method to explore unlabeled data space. It uses the “teacher” model trained 
with a small amount of data to label the unlabeled data and recursively train “student” 
models that perform better than the “teacher” model [10]. Recently, Google developed 
a “Noisy Student” self-training method, in which they used a simple teacher model to 
train a series of student models with gradually increasing complexity [11]. In their exper-
iments, the Noisy Student-trained models showed not only better performance but also 
more robust than standard convolutional neural network (CNN) model. Despite their 
successes in imaging processing and NLP, few works have applied the concept of self-
training to QSAR modeling given that billions of chemical compounds are not associ-
ated with any labels. In addition to the huge amount of unlabeled data, bioassay data 
is often highly imbalanced. Conventional over-sampling or over-sampling techniques 
such as SMOTE [12], which rely on the similarity between samples, maybe not sufficient 
in addressing this problem. On one hand, a small modification in a chemical structure 
could result in a dramatic change in bioactivity [13]. On the other hand, highly dissimilar 
chemical compounds could have similar bioactivity [14]. Therefore, new techniques are 
needed to address sparse, biased, and imbalanced sample problem.

In this work, for the first time, we design a combined self-training and self-supervised 
learning strategy to explore unlabeled chemical space for improving predictive modeling in 
QSAR. We develop a new self-training method: Partially LAbeled Noisy Student (PLANS). 
Furthermore, we propose a novel self-supervised graph embedding approach GINFP for 
chemical representations using unlabeled data. The GINFPs were constructed by learn-
ing chemical molecule graphs with GIN [15], a Graph Neural Network model. GIN rep-
resents the state-of-the-art GNN model in GNN [9, 16]. In Hu’s work, it shows that GIN 
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outperforms other popular GNNs like GCN, GraphSAGE, and GAT in the chemical struc-
ture representation [9]. Furthermore, GNN could be more powerful than chemical finger-
prints such as ECFP [17]. To reconstruct a molecule without labels, we can use a graph 
autoencoder. However, a conventional graph autoencoder cannot represent substructure 
information that is critical for molecular properties. Our proposed GINFP constructs 
corresponding ECFPs that encode substructure information for a molecule. The hidden 
embeddings of the graphs were used as input for classification tasks. A similar method was 
leveraged for GNN model pretraining and demonstrated that it is more effective than the 
graph autoencoder in improving prediction performance [18]. We also use the PLANS-
GINFP to address the problem of sample imbalance.

To demonstrate the value of PLANS-GINFP, we applied our method to the prediction of 
Cytochrome P450 (CYP450) chemical binding profile and chemical toxicities. CYP450 is a 
protein enzyme family that catalyzes hydroxyl group incorporation with heme as a cofactor. 
In humans, CYP450s, as terminal oxidase in the electron transferring chain, participate in 
a wide range of metabolism processes including hormone synthesis, fatty acids synthesis, 
steroids oxidization, etc. [19]. CYP450s play key roles in drug metabolism. The activation 
or deactivation of approximately 75% of drugs is mediated by CYP450s [20]. The human 
genome has 57 CYP450 genes expressing proteins that share similar folding [21]. There-
fore, CYP450s are one of the major reasons for adverse drug interactions. Furthermore, the 
polymorphism of CYP450s accounts for the individual difference in drug responses. Thus, 
studies in the binding profile of drugs to CYP450s are also a fruitful source for pharma-
cogenomics. The binding profile of a large number of chemical molecules with CYP450 
remains unknown. However, few machine learning algorithms can reliably predict CYP450-
drug interactions. Five CYP450 isoforms, 1A2, 2C9, 2C19, 2D6, and 3A4 are chosen to be 
the targets for chemical compounds in this work, which play the most important roles in 
drug metabolism [22]. Comprehensive benchmark studies demonstrated that the PLANS-
GINFP significantly improved the performance of the CYP450 binding profile prediction.

Drug toxicity is a challenge for new drug development. It is time and labor costly to test 
the toxicity of the drug candidates in clinical trials and could be potentially harmful to the 
patients who participated in the trials. With PLANS, we predicted toxicities of drugs in 
the Tox21 dataset, which contains the information of 7,831 chemical molecules against 12 
toxicity-related pathways [23]. In our experiments, we observed the performance improve-
ment with PLANS comparing to MLP baselines is dramatic. It demonstrated the power of 
the PLANS model on imbalanced datasets such as Tox21. Our experiment results demon-
strate the potential of our model in facilitating drug design by predicting CYP450 binding 
profiles and toxicity of chemical compounds. Furthermore, as an agnostic model, PLANS 
could be applied to other deep learning tasks for drug design using any neural network 
architectures and with a limited amount of noisy data.

Results
To assess the feasibility of the Noisy Student method in QSAR modeling for drug 
design, we created a CYP450s benchmark dataset, which includes CYP1A2, CYP2C9, 
CYP2C19, CYP2D6, and CYP3A4 as targets based on the experiment published in [24]. 
First, we tested the prediction performance of four conventional ML algorithms and 
compared them to the Noisy Student trained multilayer perceptron (MLP) model. Then 
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we introduced PLANS to improve the performance. At last, to further boost the perfor-
mance, we developed two strategies: (1) balance the training set with PLANS, and (2) 
use a continuous fingerprint generated by a pre-trained GNN model.

Self‑training with noisy students improves the performance of QSAR modeling

Besides neural network models, we tested three types of most widely used machine 
learning methods, Support Vector Machine (SVM), Random Forest (RF), and gradient 
boosting. For gradient boosting, we chose AdaBoost and XGBoost. The configurations 
of the models can be found in the baseline models in “Methods” section The top rows of 
Table 1 shows the classification results using above four models.

SVM achieved the best accuracy while XGBoost got the best precision and F1 scores. 
It was worth noting that while the AdaBoost model got the highest recall value, its pre-
cision and F1 scores were much lower than the other three models. It suggested that 
the AdaBoost model was affected the most by the data imbalance, which was a known 
disadvantage of AdaBoost. XGBoost, on the other hand, got well-balanced precision and 
recall. Thus, its F1 score was the highest among the baseline models.

To evaluate the feasibility of the Noisy Student (NS) method, we trained an MLP 
model with and without NS. When using NS, the Small, Medium, and Large models, 
as described in “Self-training with noisy student” section in “Methods” were trained 

Table 1  Classification results of the baseline models, MLP with NS, and MLP with PLANS using ECFP 
for the representation of chemical structures

The best performance is highlight in bold. The upper part shows the results for the CYP450 datasets and the lower part 
shows the results for Tox21 dataset. Note that underlined AdaBoost achieves the best recall performance. However, it is 
heavily affected by data imbalance. The recision and F1 scores of AdaBoost were much lower than other models

Accuracy Precision Recall F1

Cyp450 SVM 56.37 ± 0.93 0.53 ± 0.01 0.81 ± 0.01 0.64 ± 0.01

RF 54.44 ± 0.98 0.42 ± 0.01 0.81 ± 0.02 0.55 ± 0.01

AdaBoost 52.40 ± 1.01 0.25 ± 0.02 0.89 ± 0.01 0.39 ± 0.02

XGBoost 55.13 ± 1.21 0.57 ± 0.01 0.75 ± 0.01 0.65 ± 0.01

MLP 51.97 ± 1.12 0.64 ± 0.03 0.72 ± 0.02 0.68 ± 0.02

MLP + mixup 54.28 ± 0.79 0.60 ± 0.02 0.73 ± 0.01 0.66 ± 0.01

MLP + NS 56.11 ± 1.63 0.64 ± 0.01 0.76 ± 0.02 0.69 ± 0.01

MLP + mixup + NS 56.48 ± 1.45 0.60 ± 0.04 0.76 ± 0.02 0.67 ± 0.02

MLP + PLANS 58.94 ± 0.96 0.72 ± 0.02 0.78 ± 0.01 0.75 ± 0.01
MLP + PLANS + mixup 58.04 ± 0.70 0.69 ± 0.02 0.76 ± 0.01 0.72 ± 0.01

MLP + PLANS + balancing 59.02 ± 1.12 0.73 ± 0.03 0.76 ± 0.02 0.75 ± 0.01
MLP + PLANS + balancing + mixup 59.25 ± 1.04 0.68 ± 0.03 0.78 ± 0.01 0.73 ± 0.01

AP F1

Tox21 MLP 0.03 ± 0.01 –

MLP + mixup 0.12 ± 0.01 0.02 ± 0.01

MLP + NS 0.03 ± 0.004 –

MLP + mixup + NS 0.13 ± 0.01 0.08 ± 0.03

MLP + PLANS 0.14 ± 0.01 0.04 ± 0.01

MLP + PLANS + mixup 0.20 ± 0.03 0.25 ± 0.02
MLP + PLANS + balancing 0.16 ± 0.02 0.09 ± 0.04

MLP + PLANS + balancing + mixup 0.20 ± 0.02 0.20 ± 0.02
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iteratively with the fully labeled data and evaluation was done with the Large model. 
When not using NS, the Large model was trained and evaluated directly with the same 
training and testing sets as the model trained with NS. As shown in the second part of 
the CYP450 section in Table 1, all of the MLP models showed more balanced behaviors. 
Even the MLP without NS achieved higher precision and F1 scores than the XGBoost 
model. After introducing the mixup method, the MLP model without NS was already 
able to get an almost equivalent accuracy to XGBoost while keeping a balanced perfor-
mance on precision and recall. After introducing NS, the MLP models surpassed the 
XGBoost model with a margin of 1.35% on accuracy and up to 4.0% on the F1 score.

To further evaluate the contribution of NS, we applied the model to another widely 
used baseline dataset, Tox21. Since Tox21 was a 12-class multi-label classification task, 
and the labels were highly imbalanced, we used average precision (AP) instead of pre-
cision and recall to evaluate the prediction. For the same reason, we only tested MLP 
models on the dataset. The results showed that NS itself failed to improve the predic-
tion performance. Instead, the mixup played an important role in Tox21 predictions. 
Without the mixup, the model failed to converge and gave no positive predictions. With 
the mixup, the model successfully recalled some positive samples, while the AP score 
increased by a large margin (Table  1, Tox21 section). The mixup was critical for the 
Tox21 dataset because the labels were highly imbalanced that only approximately one-
tenth of the samples were positive. Thus, data augmentation with the mixup made the 
model predict positive more likely and give higher F1 and AP scores.

PLANS exploits partial labels and improves the performance of self‑training with NS

Our CYP450s dataset and the Tox21 baseline dataset contain many partially labeled 
samples. This is also the case for many pharmacological datasets [25]. Several methods 
have been developed to exploit partially labeled data [26, 27]. Generally speaking, these 
studies were trying to maximize the margin between candidate labels and the negative 
labels. NS provides a more efficient way to dig out the information in partially labeled 
samples. Especially when the dataset contains both fully labeled samples and partially 
labeled samples as our CYP450s and Tox21 datasets. As described in the methods sec-
tion, we developed PLANS that utilized the teacher model trained with fully labeled data 
to generate semi-solid labels for the partially labeled data. Then the partially labeled data 
were combined with the fully labeled data to train the student model. The results were 
shown in the third part of the CYP450 section and the second part of the Tox21 section 
in Table 1.

Compared with the original NS-trained model, Table  1 shows that the prediction 
accuracy for CYP450s with the PLANS-trained model improved about 5.0% (p = 0.005) 
and 2.8% (p = 0.031) without the mixup and with the mixup, respectively. Precision, 
recall, and F1 score also significantly increased. Specifically, the precision increased 
15.0% (without the mixup) and 12.5% (with the mixup), respectively. The performance 
improvement in Tox21 was more significant. The AP increased from 0.03 to 0.14 with-
out the mixup and from 0.13 to 0.20 with the mixup, respectively.

Surprisingly, the mixup augmentation approach made the model perform worse for 
CYP450s. A possible explanation is both partial labeling and mixup introduce noises 
into the training set. When a partially labeled sample was added to another sample, 
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the noise is so large that it confuses the model. In contrast, the mixup augmentation 
significantly improved the performance of the Tox21 dataset. The AP score improved 
from 0.14 to 0.20 with the partially labeled data. The reduced imbalance in the dataset 
could offset the noisiness introduced by the mixup augmentation.

Improve performance with the GINFP

The PLANS method already showed a strong ability to improve the performance of 
the neural network model. However, a downside of the previous experiments is the 
input is a highly sparse fingerprint vector with high dimensions, which could result 
in a large and hard to train neural network model. Thus, to test if a denser and lower 
dimension fingerprint can further improve the performance, we used a pre-trained 
Graph Isomorphism Network (GIN) to generate 300-dimension fingerprints with 
continuous values. We named these fingerprints as GINFP. The details about how to 
train the GIN model and how to generate GINFPs can be found in the methods GIN 
fingerprints section.

We first evaluate if GIN can reconstruct ECFP. As shown in Fig. 1, the weights of 
the GIN model that we used to reconstruct ECFP converged at epoch 22. Training 
and evaluation loss stay stable in the whole training process. After pretraining the 
model, we tested it with several testing cases. The results show our model was able 
to precisely reconstruct both sparse ECFP (Fig. 1, middle panel) and relatively denser 
ECFP (Fig. 1, right panel).

We conducted the same experiments as above with all the conventional models and 
MLPs to evaluate if GINFP can improve the performance. One important difference is 
that the MLP has fewer parameters since the input has a lower dimension. As expected, 
GINFPs improved the performance of most of the models with a margin of ~ 2% for 
CYP450s (Table  2). The improvement by GINFP is more significant for the Tox21 
dataset. The AP increased from 0.03 to 0.08 and from 0.14 to 0.23 for NS and PLANS, 
respectively. This result confirmed that the continuous fingerprint GINFPs that derived 
directly from molecule graphs were indeed more informative for computational models. 
The only model that showed a performance drop is AdaBoost. In the case of GINFP, the 
mixup resulted in a mild performance drop for CPY450s. This further confirmed that 
mixup may introduce many noises in some cases. A better data augmentation method 
for orientation invariant vectors may further improve the performance of PLANS.

Fig. 1  GINFP training loss and ECFP constructions. Every bit of ECFP and the predicted ECFP constructed 
from GINFP are shown as bars below and above the x-axis, respectively. The values of predicted ECFP are after 
sigmoid activation
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Balance the training dataset with augmented data

Out training dataset is highly imbalanced. As shown in Fig. 2A, the fully labeled data-
set has much more all-negative data than other classes. To solve this problem, we intro-
duced an augmented labeled dataset to balance our training set using unlabeled data. 
The unlabeled data were labeled with a trained teacher model and added to the training 
set except for the samples that were labeled as all-negative. The maximum number of 
samples in each class was capped with the number of samples in the all-negative class. 
Details of data balancing can be found in the training data balancing in “Methods” sec-
tion After balancing, the labels were more evenly distributed (Fig.  2B). However, the 
classes that had too few samples still could not be balanced to the same level as other 
classes. A possible solution is to introduce more noises when training the teacher mod-
els. That will be left to our future work.

The performance of the model trained with a balanced training set was shown in 
the last two rows of the CYP450 part and the Tox21 part of Tables  1 and 2. For the 
CYP450 dataset, the accuracy and recall improved 2.1% (p value = 0.031) and 2.6% (p 
value = 0.007), respectively, compared with the model trained with unbalanced data-
set (Table  2). There are no significant changes in precision and F1. The insignificant 
improvement by the data balancing strategy here may be due to the ignorance of label 
dependency. Due to the evolutionary relationships between CYP450s, the labels gen-
erated from the one-hot encoding are not evenly distributed in nature. It is subject to 

Table 2  Classification results of the baseline models, MLP with NS, and MLP with PLANS using 
GINFP for the representation of chemical structures

 The evaluation metric of the best performed model is highlighted in bold. The upper part shows the results for the CYP450 
dataset and the lower part shows the results for the Tox21 dataset

Accuracy Precision Recall F1

Cyp450 SVM 58.19 ± 0.81 0.68 ± 0.01 0.77 ± 0.01 0.72 ± 0.01

RF 54.38 ± 0.78 0.46 ± 0.01 0.79 ± 0.02 0.58 ± 0.01

AdaBoost 48.13 ± 3.86 0.23 ± 0.09 0.83 ± 0.14 0.35 ± 0.07

XGBoost 54.93 ± 0.78 0.59 ± 0.02 0.76 ± 0.01 0.66 ± 0.01

MLP 57.31 ± 1.47 0.74 ± 0.02 0.75 ± 0.02 0.74 ± 0.01

MLP + mixup 57.42 ± 0.46 0.65 ± 0.03 0.78 ± 0.02 0.71 ± 0.01

MLP + NS 59.83 ± 0.41 0.70 ± 0.02 0.79 ± 0.01 0.74 ± 0.01

MLP + mixup + NS 58.50 ± 0.48 0.65 ± 0.00 0.78 ± 0.01 0.71 ± 0.01

MLP + PLANS 60.61 ± 1.00 0.77 ± 0.01 0.79 ± 0.01 0.78 ± 0.01
MLP + PLANS + mixup 59.95 ± 1.41 0.72 ± 0.02 0.79 ± 0.01 0.75 ± 0.01

MLP + PLANS + balancing 61.58 ± 0.87 0.75 ± 0.02 0.80 ± 0.02 0.78 ± 0.01
MLP + PLANS + balancing + mixup 60.58 ± 1.38 0.73 ± 0.02 0.78 ± 0.02 0.76 ± 0.01

AP F1

Tox21 MLP 0.04 ± 0.01 –

MLP + mixup 0.15 ± 0.07 0.01 ± 0.005

MLP + NS 0.08 ± 0.01 –

MLP + mixup + NS 0.14 ± 0.006 0.07 ± 0.03

MLP + PLANS 0.23 ± 0.02 0.24 ± 0.03

MLP + PLANS + mixup 0.16 ± 0.01 0.25 ± 0.01
MLP + PLANS + balancing 0.23 ± 0.02 0.23 ± 0.05

MLP + PLANS + balancing + mixup 0.16 ± 0.01 0.25 ± 0.02
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future studies to take the label relationship into account. For the Tox21 dataset, the bal-
ancing method did not show a significant improvement. The reason for it could be the 
multi-label profile of the Tox21 dataset. A more suitable algorithm would be developed 
for the multi-labeled datasets in our future work.

In Fig. 3 we analyzed the prediction results of the model trained with or without bal-
anced data. The upper two panels showed the model trained with balanced data missed 
more samples that belong to the all-negative class while missing fewer samples in other 
classes. In contrast, the lower two panels showed that the model made fewer mistakes in 
classifying samples into the all-negative class while making more mistakes in classifying 
samples into other classes. The summation of these two effects made the model perform 
better than the model trained with unbalanced raw data.

Discussion
Lacking labeled data and an imbalanced dataset are two general difficulties in super-
vised learning with chemical and biological data. The difficulties are hard to overcome 
from the experimental side because of the immense cost of efforts and time for large-
scale experiments. It makes developing robust models that can learn useful information 
from small and imbalanced datasets a meaningful and important direction. In this work, 
we developed a self-training algorithm, Partial LAbeled Noisy Student (PLANS), and 
applied it to an enzyme-affinity-prediction task. Our experiments proved the algorithm 
not only outperforms the conventional machine learning algorithms, more importantly, 
it also improves the performance of MLP by a large margin. Moreover, PLANS provides 
a way of exploiting partially labeled data as well as using unlabeled data to augment and 
balance labeled data.

Despite the promising results of PLANS, there is one critical problem that remains 
unsolved. The two most important operations of the NS method are introducing noises 
and utilizing abundant unlabeled data when training the student models [11]. How-
ever, other than random dropout, the most widely used data augmentation methods 
for images, like rotation and scaling, do not apply to chemical compounds. Thus, in our 
work, we used mixup to perform data augmentation, and the method worked well in 
most cases. Nevertheless, we noticed mixup conflicts with the usage of a large amount 

Fig. 2  Sample distribution before and after data balancing. Blue bars represent the original samples. Orange 
bars represent the samples added from the ChEMBL24 dataset
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of unlabeled data. When we used the whole ChEMBL24 dataset without capping it with 
the largest class in our training set together with mixup to train the model, the perfor-
mance is worse than using only the mixup. The reason could be mixing model-generated 
labels introduces more noise than useful information. We partially overcome it by only 
using a small portion of the unlabeled data to balance our training set. In the future, if 
a better solution other than mixup can be found to accomplish data augmentation task 
for chemical data, utilize a large amount of unlabeled data should be more informative 
and further improve the performance of PLANS trained model. The NS model repre-
sents one of the state-of-the-art semi-supervised learning methods but has not been 
fully explored in chemoinformatics. The proposed PLANS significantly outperformed 
NS in our benchmark studies and could shed light on the application of semi-supervised 
learning to drug discovery. It will be interesting to compare PLANS with other semi-
supervised models such as FixMatch [28], Meta Pseudo Labels [29], and LaplaceNet [30] 
in our future work.

To make the MLP model easier to train and to incorporate substructure informa-
tion into the chemical embedding, we condense the sparse ECFP by pre-training a GIN 
model with ECFP as labels and take the intermedium 300-dimension continuous-valued 
hidden layer output to use as input of the MLP model. With the smaller input, the num-
ber of parameters of the MLP model also reduced, thus, easier to converge. Moreover, 
the GIN model takes graph-structured chemical compounds as input, which is more 
informative than ECFP. It is different from autoencoders that are learned from recon-
structed ECFPs or molecular graphs. In our recently published work [18], we demon-
strated that the embeddings derived directly from molecule graphs would outperform 

Fig. 3  Analyzing the training results with or without the data balancing. Blue bars represent the samples 
that were correctly predicted. Orange bars represent the samples that the model failed to recall. Red bars 
represent samples that were incorrectly classified into the class by the model. The subpanels are the zoom-in 
of the classes without the all-negative class
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conventional GNN based autoencoders. Another advantage of the fingerprint generated 
with GIN is that the fix sized fingerprints are suitable for the mixup, which, in our exper-
iment, makes the training converge steadier and boosts model performance. In contrast, 
the mixup method is hard to use on graph structure data. The GINFP provides a novel 
way to describe a chemical compound with fixed length and dense, thus smaller vectors 
with the substructure information.

Conclusion
To better exploit chemical molecules as input for machine learning algorithms, we 
developed a graph neural network-based embedding method GINFP that can convert 
chemical molecules to continuous-valued vectors with substructure information. In 
our experiments, not only deep learning methods but also conventional machine learn-
ing methods such as random forest, SVM, and XGBoost benefitted from GINFP. Fur-
thermore, we developed a model agnostic self-training method PLANS that could be 
applied to any deep learning architectures to exploit partially labeled and unlabeled data. 
PLANS can predict the missing labels with a teacher model and iteratively improve the 
predictions with a series of student models. Since label sparsity is a common issue for 
drug-related datasets, PLANS-GINFP could serve as a general solution to improve the 
predictive modeling for drug discovery.

Methods
Overview of PLANS

As shown in Fig.  4, the workflow of PLANS includes teacher initialization, iterative 
training, and final testing. In the initialization stage, we train the first teacher model 
with only the fully labeled data. Then, in the iterative training stage, we use the trained 
teacher model to generate labels for partially labeled and unlabeled datasets, i.e., pseudo-
labels. Data balancing can be introduced at this stage if needed. The fully labeled data 
and data with pseudo-labels are combined to train a noisy student model. Then the noisy 
student model is used as a new teacher model to generate labels for the partially labeled 
and unlabeled data. This step can be repeated until the performance of the noisy stu-
dent model does not further improve. In the testing stage, we simply use the last student 
model to predict labels for the testing data. In the whole process, the noises are intro-
duced by label mixup (see below) and dropout, and used only when training the student 
models. They are disabled when using the model as a teacher to generate pseudo-labels.

Extended connectivity fingerprint (ECFP)

Extended connectivity fingerprint (ECFP) is a popular method for chemical structure 
information embedding [31]. It converts chemical structures with different lengths to 
a fixed-length binary vector, which reserves most bonds and atom types information. 
Thus, ECFP is widely used as an input feature for machine learning, especially deep 
learning models. To minimize the frequency of bit collision, we chose a vector length of 
2048, which will result in a relatively sparse vector so that the identifiers are less likely 
to overlap. We used RDKit to convert the simplified molecular-input line-entry system 
(SMILES) strings to 2048 bits vectors with the radius parameter set to 4 [32].
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GIN fingerprints (GINFP)

GIN fingerprints are 300-dimension continuous embeddings generated by a pre-
trained Graph Isomorphism Network (GIN). The architecture of the GIN layers used 
in our work is the same as in [15] with 1024 and 512 hidden units MLPs for node 
embeddings at each layer (Fig. 5). Node information update following the rule:

where ǫ is a trainable coefficient variable, h is the node feature, N (v) is the set of 
neighbors of node v . It is worth noting that the properties of the neighbor node are 
added together in the aggregation step. That makes GIN a powerful architecture that 
can distinguish nodes with a different number of neighbors. It is especially impor-
tant for graphs like chemical molecules which have many similar nodes. GIN is still 
the state-of-the-art model in chemical molecule classification tasks [9]. Node embed-
dings from all graph convolutional layers are added together followed by a mean 
pooling function to get the graph level embedding. In the pretraining phase, the 
graph embedding is fed into a two-layer MLP to output a 2048-dimension vector. The 
ChEMBL24 dataset is used to train the GIN model. The chemical compounds were 
converted to graphs with atom type, atom degree, atom formal charges, chirality, aro-
matic type, and hybridization type as node features and chemical bonds as graphs 
edges. ECFPs with radius 4 and length 2048 were created for the whole ChEMBL24 

f (k , hv , hu) =
(

1− ǫ(k)
)

h(k−1)
v +

∑

u∈N (v)
h(k−1)
u

Fig. 4  Overview of the workflow
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dataset to be used as labels in pretraining. We use binary cross-entropy loss as the 
criterion to calculate the gradients. The pretraining was terminated when the vali-
dation loss converged, and the pre-trained GIN model was used to generate embed-
dings/GINFPs for the CYP450 dataset.

Self‑training with noisy student

Knowledge distillation with self-training was used to reduce the size of models when 
the method was proposed [10]. Typical self-training uses a large teacher model trained 
with a true/sparse labeled dataset to generate soft/continuous labels for the same data-
set. One or plural smaller student models are trained with the soft labeled dataset. The 
major reason why this model works is the continuous labels are more informative than 
the sparse label. They tell the student model which samples are “easier” to classify with 
labels that are closer to 0 or 1 and which samples are harder to classify with labels closer 
to 0.5. Thus, though the student models have fewer parameters than the teacher model, 
they can “memorize” a similar amount of information as the teacher model and reach a 
comparable accuracy rate. Xie et al. utilized the self-training method in an opposite way 
[11]. In their work, they used a small teacher model to train larger student models and 

Fig. 5  GIN model architecture and GINFP. Sum is used for node-level pooling and mean is used for 
graph-level pooling
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make the student models perform not comparable but better than the teacher model. To 
make the method work, they introduced a large number of unlabeled images other than 
the labeled training images. They labeled these unlabeled outside images with the pre-
trained teacher model and used these images to train the student models combined with 
the labeled images. In addition, another key method used in the work was introducing 
“noise” when training the student models by applying data augmentation to the inputs 
and dropout to the model parameters. In this report, we used a similar strategy to recur-
rently train teacher and noisy student models. However, unlike images, we could not use 
random rotation, scaling, etc. to introduce noises into the training samples, which are 
chemical compounds. Thus, we used partial labeling and label mixup instead.

Neural network model

To prove the feasibility of Noisy Student in the pharmacology field, we used the most 
basic MLPs to attenuate the influence from the model architectures. The Small, and also 
the initial teacher model that we used have seven hidden layers with 2x, 4x, 4x, 2x, 1x, 
0.5x, and 0.25x  input length hidden units, respectively. The Medium model adds two 
layers with 3x input length hidden units on top of the Small model after layer 1 and layer 
3. The Large model, in addition to the Medium model, inserts two layers with 6x input 
length hidden units after layer 2 of the Small model. A dropout layer with a drop rate 
equals to 0.3 is added before the final output layer in all three models during the train-
ing. The rate of the dropout was kept at 0.7 in all the experiments. All the models are 
implemented with Tensorflow [33]. Detailed architectures of the models can be found in 
Fig. 6.

Partial labeling

To fully exploit the information in the partially labeled dataset, we use the following 
approach to generate pseudo-labels for the partially labeled data. First, we infer the pos-
sible class of the sample based on the partial label. For example. if the label is [0, 1, _, 0, 
0] where “_” represents the missing label, the possible class of the sample will only be 8 
(corresponding to label [0, 1, 0, 0, 0]) or 12 (corresponding to label [0, 1, 1, 0, 0]) of the 
one-hot encoding. The rest digits of the one-hot label for this sample are 0. Then we 
predict the 32 digits one-hot label using the teacher model. Only the value at positions 
8 and 12 are taken from the predicted label and normalized, making the summation of 
the labels to 1. The normalized values are filled into the missing positions to generate the 
integral label for the partially labeled sample.

Label mixup

“Noise” is a key factor to make the Noisy Student method work. Without noises, the 
classification accuracy drops around 0.7 percent in the ImageNet task [11]. However, in 
our case, introducing noises is not a trivial task. ECFP fingerprint [31] and GINFP (see 
GIN fingerprints in “Methods”section for details) that are used to represent chemical 
molecules are invariant to stereo transformations, so random rotation is not applicable. 
Chemical molecules have fixed sizes, so scaling is not applicable neither. To overcome 
the difficulty, we utilized an augmentation technique named mixup [34]. What it does is 
randomly pick two inputs, add both the inputs and the labels together with a coefficient 
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sampled from a beta distribution. Concretely, the mixup method can be represented by 
the following equations:

where x̃ and ỹ are mixed input and label. � is a coefficient sampled from beta distribu-
tion Beta(α,α) , α ∈ (0,+∞) . xi and xj are the fingerprint vectors of two randomly sam-
pled chemical molecules. yi and yj are the labels of the molecules. We tested α = 0.2 and 
α = 0.4 but did not find significant performance differences. For all the experiments in 
this report, the value of α is 0.4 if not specifically indicated.

Training strategy with partial labeled noisy student PLANS

We split the fully labeled CYP450s dataset into training and testing sets with a ratio of 
7: 3. With the training set, we first train a small model as the initial teacher model. Then 
we use the teacher model to generate pseudo labels for the partially labeled CYP450 data 
and unlabeled ChEMBL24 data. Followed by that, we combine fully labeled data, par-
tially labeled data, and outside unlabeled data to train the Medium model. The trained 
Medium model is used to generate the labels for the partially labeled and unlabeled sam-
ples the same as described above. These regenerated samples and the fully labeled data 
are finally used to train the large model. The loss function used in our training is cross-
entropy as below:

∼
x= �xi + (1− �)xj ,

ỹ = �yi + (1− �)yj ,

Fig. 6  Architectures of the MLP models
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where N  is the number of classes, yi is the label of the ith class, pi is the predicted pos-
sibility that the sample belongs to the ith class. All the training is done on a single Nvidia 
Tesla V100 GPU. Every experiment was repeated 5 times by randomly splitting the fully 
labeled dataset. The training is terminated when the validating loss is stable. Partially 
labeled data and unlabeled data were only used for training.

Baseline models

In addition to comparing the Large model to the Small model, we also compared the 
MLP model to some conventional machine learning methods, including support vec-
tor machine (SVM), random forest (RF), AdaBoost, and XGBoost. SVM, RF, and Ada-
Boost models were implemented with scikit-learning [35] while the XGBoost model was 
implemented with the xgboost package [36]. We did hyperparameter tuning with grid 
search for all the models. The value ranges we screened and the best values of hyperpa-
rameters for each model can be found in Table 3.

Specifically, for SVM, we used the C-Support Vector Classification (SVC) model. 
Hyperparameter C is a regularization parameter. γ is the coefficient for kernel functions. 
“scale” means the coefficient was decided by the number of features and variance of the 
input data, while, in the case of “auto”, the coefficient was only decided by the number of 
features. The degree is the degree of the polynomial kernel function. Since the RBF func-
tion performs the best, the degree is not applicable for the baseline model we used.

In the case of RF max depth, max features and minimum samples per leaf are 
parameters for decision trees. The number of estimators refers to the number of 

−
∑N

i=0
yilog(pi)

Table 3  Hyper parameter screening for conventional models

SVM

Hyper parameters C Kernel function γ Degree

Screened range [0.5, 1.0] RBF, Sigmoid, Polynomial Scale, auto [2,6]

Best 1.0 RBF Scale N/A

RF

Hyper parameters # estimators Max depth Max features Min 
samples 
per leaf

Screened range [100, 2000] [5, 60] [11, 2048] [1, 20]

Best 2000 20 200 1

AdaBoost

Hyper parameters # estimators Max depth Max features Learning rate

Screened range [500, 2000] [15, 35] [512, 2048] [0.1, 0.5]

Best 500 25 1024 0.5

XGBoost

Hyper parameters � γ Max depth # rounds Learning rate ( ε)

Screened range [0, 3] [0, 16] [5, 25] [10, 25] [0.1, 0.5]

Best 1 1 20 21 0.2
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decision trees used for the forest model. For max features, scikit-learning has two 
default options, which are “log2”, “sqrt”, referring to log2 and the square root of the 
number of input features, respectively. In our case, since the input has 2048 features, 
log2 of 2048 is 11, the max features parameter starts from 11, and also includes 45 
(square root of 2048) in our grid search.

For AdaBoost, we used binary decision trees as estimators. Maximum depth and 
maximum features are parameters for the decision trees. The learning rate shrinks the 
contribution of each estimator. Because of the low efficiency and bad performance of 
AdaBoost, we did not do a wide range hyperparameter search for it.

In the case of XGBoost, we follow the denotation in the original paper. � is a reg-
ulation parameter. γ controls the tree pruning strength. Maximum depth and num-
ber of rounds control the maximum level of trees and the number of trees to grow. 
The learning rate shrinks the contribution of the newly grown tree to the previous 
predictions.

Evaluation metrics

For our multi-class classification task, since the labels were highly unbalanced, to bet-
ter evaluate our model, in addition to accuracy, we also introduced micro precision, 
recall, F1, and average precision (AP) scores, which were the metrics better fit uneven 
dataset. To calculate these scores, the predicted one-hot labels were converted back 
to 5-class multi-label labels in our CYP450 task case.

CYP450s dataset

We chose five CYP450s described above as protein targets to create our benchmark 
dataset [24]. The Uniprot Knowledgebase ID of these CYP450s were P08684 (CYP450 
3A4), P05177 (CYP450 1A2), P10635 (CYP450 2D6), P33261 (CYP450 2C19) and 
P11712 (CYP450 2C9). The chemical molecules from the dataset were labeled with 
active or inactive based on their binding affinity to each CYP450 target. However, 
not all of the molecules in the dataset had an explicit binding affinity label to all five 
CYP450s. Some labels were missing because the experiments were not conducted. In 
this report, we denoted the chemical molecules in the CYP450s dataset with at least 
one missing label as partially labeled data and the rest chemical molecules as fully 
labeled data. The CYP450s dataset has 17,121 chemical molecules, among which 5162 
molecules are fully labeled while 11,959 molecules were partially labeled. 11,647 com-
pounds bind to at least one of CYP450s, and 4110 compounds specifically bind to 
only one CYP450. The full labels were converted to 32-class labels in which each class 
represents a unique combination of the five affinity labels. For instance, [0, 0, 0, 0, 0], 
labels of a chemical that was inactive against all five CYP450s, was converted to class 
0. In another example, [0, 1, 1, 0, 1] was converted to class 13. To exploit the partially 
labeled data, we took advantage of the self-training strategy and generated partially 
confident labels, which will be described later. In the results section, we will show the 
partially labeled data improve the performance of the trained model with a big mar-
gin comparing to the model trained only with the fully labeled and the unlabeled data.
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Tox21 dataset

The Tox21 dataset from MoleculeNet is another baseline to test our model [37]. It 
contains the activities of 7,831 compounds against 12 biological targets or pathways, 
which are nuclear receptor(NR)-androgen receptor (AR)-ligand-binding domain 
(LBD), NR-AR, NR-aryl hydrocarbon receptor (AhR), NR-Aromatase, NR-estrogen 
receptor (ER)-LBD, NR-peroxisome proliferator-activated receptor (PPAR)-gamma, 
SR-antioxidant response element (ARE), stress response (SR)-ATPase Family AAA 
Domain Containing 5 (ATAD5), SR-heat shock factor response element (HSE), SR-
mitochondrial membrane potential (MMP), and SR-p53 [38]. Similar to the CYP450 
dataset, Tox21 includes many missing labels. We formulate the chemical toxicity 
prediction using the Tox21 dataset as a multi-label classification problem. The label 
for the target is positive if the chemical compound has toxicity by interacting with 
the target. The multi-label means one chemical compound can have more than one 
targets.

ChEMBL24 dataset

The ChEMBL “is a manually curated database of bioactive molecules with drug-like 
properties” [39]. In our work, as the outside dataset for the Noisy Student method, 
we used the ChEMBL24, which was released in 2018 and has over 1.7 million drug-
like chemical molecules. We used the SMILES of the chemical in the ChEMBL24 
dataset to generate fingerprints. Chemical molecules that are not loadable by RDKit 
are dropped from the dataset. The final dataset has 1,737,165 drug-like chemical 
molecules.

Construction of input graphs

The graphs used to generate GINFPs were constructed from chemical molecules with 
atoms as nodes and chemical bonds as edges. Each node contains the chemical prop-
erty of the atom. Specifically, atom type, degree, formal charge, hybridization type, 
aromatic, and chirality were used as node features. The number of nodes, edges, and 
degrees of the nodes of each dataset used in our experiments are plotted in Fig. 7.

Training data balancing

The labels in the CYP450s dataset were unbalanced. The number of chemical mol-
ecules that did not bind to any of the five CYP450s is much larger than the number 
of chemical molecules that bound to at least one CYP450. In our experiment, we also 
tried to solve this problem by taking the advantage of self-training method. When 
introducing the data balancing in the experiment, the unlabeled data were not simply 
combined with fully labeled and partially labeled data. Instead, the procedure of add-
ing unlabeled data to the training set was closely monitored. The sample was added 
to the training set only when the predicted pseudo label was not all negative and the 
class had fewer samples than the all-negative class. We remove all the unlabeled sam-
ples from the training set and repeated this balancing whenever a new teacher model 
was trained. In this study, the unlabeled data were from the ChEMBL dataset.
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