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Abstract 

Background:  Disease detection is an important aspect of biotherapy. With the 
development of biotechnology and computer technology, there are many methods to 
detect disease based on single biomarker. However, biomarker does not influence dis‑
ease alone in some cases. It’s the interaction between biomarkers that determines dis‑
ease status. The existing influence measure I-score is used to evaluate the importance 
of interaction in determining disease status, but there is a deviation about the number 
of variables in interaction when applying I-score. To solve the problem, we propose 
a new influence measure Multivariate Gain Ratio (MGR) based on Gain Ratio (GR) of 
single-variate, which provides us with multivariate combination called interaction.

Results:  We propose a preprocessing verification algorithm based on partial predictor 
variables to select an appropriate preprocessing method. In this paper, an algorithm 
for selecting key interactions of biomarkers and applying key interactions to construct 
a disease detection model is provided. MGR is more credible than I-score in the case 
of interaction containing small number of variables. Our method behaves better with 
average accuracy 93.13% than I-score of 91.73% in Breast Cancer Wisconsin (Diagnostic) 
Dataset. Compared to the classification results 89.80% based on all predictor variables, 
MGR identifies the true main biomarkers and realizes the dimension reduction. In Leu‑
kemia Dataset, the experiment results show the effectiveness of MGR with the accu‑
racy of 97.32% compared to I-score with accuracy 89.11% . The results can be explained 
by the nature of MGR and I-score mentioned above because every key interaction 
contains a small number of variables in Leukemia Dataset.

Conclusions:  MGR is effective for selecting important biomarkers and biomarker 
interactions even in high-dimension feature space in which the interaction could con‑
tain more than two biomarkers. The prediction ability of interactions selected by MGR 
is better than I-score in the case of interaction containing small number of variables. 
MGR is generally applicable to various types of biomarker datasets including cell nuclei, 
gene, SNPs and protein datasets.
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Background
Disease detection via biomarkers (e.g. genes) is an indispensable part of medical 
research. In the last couple of years, remarkable progress has been made in the field via 
connecting the biomarkers and outcome variable. Most such studies have used a single-
biomarker analysis strategy for selecting every important predictor variable individually. 
Nowadays, a growing body of evidence shows that the interaction between biomarkers 
is the cause of disease [1–5]. If a biomarker plays an important role in disease detection 
when combined with other biomarkers, it will be missed by using the single-biomarker 
selection method. There are reviews of using the interaction between biomarkers to 
detect disease [6–9].

Discovering important biomarkers and their interactions that account for disease sta-
tus has continued to be a key challenge in biotherapy expression analysis [10]. The data-
set is often with tens or hundreds of samples and thousands or even more biomarkers. 
We take biomarker interactions into consideration in reality, which makes the problem 
of selecting biomarker interactions more serious [11]. The traditional statistical tests are 
less useful and it is particularly crucial to select key biomarkers and their interactions for 
effective data analysis.

In order to select the interaction of biomarkers, an effective influence measure I-score 
was proposed by Shaw-Hwa Lo [12]. There are several advantages of I-score in bio-
marker interactions’ detection. But there still exists a shortcoming because I-score is a 
biased measure about the number of variables in interaction. The deviation of I-score 
can’t satisfy the premise of backward dropping algorithm (BDA).

To solve the problem of I-score, we propose a new influence measure Multivariate 
Gain Ratio (MGR) based on single-variate Gain Ratio (GR) in information theory. There 
are many studies about using information theory to detect interactions between bio-
markers [13–17]. However, these methods can’t deal with the problem of high-dimen-
sion interactions among biomarkers. MGR overcomes the problem of high-dimension 
interactions. It can select the important biomarker interactions based on the informa-
tion they provide for the determination of outcome variable. In addition, MGR main-
tains the advantage of I-score: it does not require one to specify a model for the joint 
effect of biomarkers on outcome variable.

We carry out some experiments to analyze characteristics of the two influence meas-
ures I-score and MGR. MGR behaves better in the case of interactions with small num-
ber of variables. In addition to detecting important interactions, another objective of 
this paper is to predict the patients’ disease status based on the selected biomarkers and 
their interactions. We choose Ridge Regression method with cross-validation to make 
it. The classification results show the effectiveness of biomarkers and their interactions 
found by MGR in determining disease. Finally, we get the conclusion that MGR is better 
than I-score when there is small number of biomarkers in key interaction.

As we all know, preprocessing is an important aspect of machine learning. We need to 
choose an appropriate preprocessing method before finding interactions in biotherapy. 
Therefore, we propose a preprocessing verification algorithm based on partial predic-
tor variables to select an appropriate preprocessing method. An integrated structure for 
selecting important biomarker interactions in biotherapy and applying interactions to 
detect disease is provided in this paper.
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The rest of the paper is organized as follows. In the methods section, we introduce the 
influence measures I-score and MGR. In order to explore the nature of the two meas-
ures, we perform some random experiments. In addition, we show the algorithm of 
selecting important biomarker interactions and constructing classifiers for outcome var-
iable thoroughly. As a result, we show the effectiveness of MGR by carrying out experi-
ments on two real datasets. Finally, the conclusion and discussion of the paper including 
future research directions will be stated.

Dataset
The first dataset to be considered is Breast Cancer Wisconsin (Diagnostic) Dataset, 
which is available at UCI Machine Learning Repository [18]. The problem is to distin-
guish malignant (cancerous) from benign (non-cancerous) examples. The data has 569 
examples, 357 benign and 212 malignant. There are 30 features for every sample. Fea-
tures are computed from a digitized image of a fine needle aspirate (FNA) of a breast 
mass. The features describe the characteristics of the cell nuclei present in the image 
[19].

The second dataset is Leukemia Dataset [20]. This dataset comes from a study of 
gene expression in two types of acute leukemias including acute lymphoblastic leuke-
mia (ALL) and acute myeloid leukemia (AML). There are 72 samples totally including 47 
cases of ALL and 25 cases of AML. Gene expression levels were measured using Affym-
etrix high-density oligonucleotide arrays. Every sample contains p = 7129 human gene 
expression value. The dataset is available at [21]. After three preprocessing procedures 
applied to the normalized matrix of intensity values [22], the number of genes is reduced 
to 3571 The preprocessing details could also be seen in section results.

Methods
Comparison and analysis of I‑score and MGR

Suppose that there is a design matrix X with dimension of n× p , where n is the num-
ber of samples and p is the number of predictor variables 

{

X1,X2, . . . ,Xp

}

 . In addition, 
every sample has an outcome variable Y. So it is of interest to identify main predictor 
variables as well as their interactions based on the design matrix and outcome vari-
able. Here we make use of two influence measures including the existing I-score and 
our proposed MGR separately to assess the importance of predictor variables and 
their interactions. Without losing generality, we assume that the outcome variable Y is 
binary with value 0 and 1. At the same time, all predictor variables are discrete. Con-
sider the partition Pk generated by a subset of k predictor variables Sb =

{

Xb1 , . . . ,Xbk

}

 , 
1 ≤ b1 ≤ b2 ≤ · · · ≤ bk · · · ≤ p . If all predictor variables in the subset are binary then 
there are 2k partition elements in partition Pk . Let n1(j) be the number of observations 
with Y = 1 in partition element j where j ∈ Pk . Let n̄1(j) = nj × π1 be the expected num-
ber of Y = 1 in element j under the null hypothesis that the subset of predictor variables 
has no association with Y, where nj is the total number of observations in element j and 
π1 is the proportion of Y = 1 observations in the sample. The I-score of 

{

Xb1 , . . . ,Xbk

}

 is 
defined as [23]
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Gain Ratio with one-dimension predictor variable X is as follows [24]:

where Gain(X) is the information gain provided by the predictor variable X in determin-
ing the outcome variable Y, SplitInfo(X) is the self-information of predictor variable X. 
Because the predictor variables’ classification number affects the results, Quinlan uses 
the self-information of predictor variable to divide information gain to correct the devia-
tion of variables’ classification number [24]. Combined with the above hypothetical sce-
narios, we extend the one-dimension Gain Ratio to the multi-dimension case, which is 
Multivariate Gain Ratio:

where Info(Y ) = −π1log(π1)− (1− π1)log(1− π1),
InfoSb(Y ) = −

∑

j∈Pk
(
n1(j)
n log(

n1(j)
nj

)+
nj−n1(j)

n log(
nj−n1(j)

nj
)),

SplitInfo(Sb) = −
∑

j∈Pk

nj
n log(

nj
n ).

Info(Y) measures the average amount of information needed to identify the outcome vari-
able of a case. InfoSb(Y ) is the needed average information to identify the outcome vari-
able of a case when the outcome variable Y is partitioned in accordance with the subset 
Sb . Then Gain(Sb) measures the information gained by partitioning outcome variable Y in 
accordance with subset Sb . SplitInfo(Sb) is the self-information of predictor variables Sb , 
which represents the potential information generated by dividing the samples into 2k sub-
sets. Because Gain(Sb) has a strong bias in favor of Sb with many classification numbers, 
we need to use SplitInfo(Sb) as a kind of normalization to rectify Gain(Sb) . Then, MGR(Sb) 
expresses the proportion of information generated by the split and useful for classification. 
GR is an influence measure which could be used to detect important single biomarker vari-
able. However, if a biomarker plays an important role in disease detection when combined 
with other biomarkers, it will be missed by using GR method. The following simulated 
example could illustrate the advantages of MGR in determining biomarker interactions. We 
generate a predictor variable matrix X200×10 by randomly uniformly sampling from {0, 1} , 
where 200 is the number of samples and 10 is the number of predictor variables. The out-
come variable Y is related to X200×10 via the model

Table 1 is the GR value of ten predictor variables from high to low. GR couldn’t select 
important single variable such as X2 . However, from the simulated setting, X2 is an 
important variable in determining Y when combined with X3 . The MGR of interaction 
{X2,X3} is 84.4 × 10−3 , which illustrates that {X2,X3} could be detected by MGR. MGR 

(1)I(Sb) =
∑

j∈Pk

[n1(j)− n̄1(j)]
2.

(2)GR(X) =
Gain(X)

SplitInfo(X)
=

Info(Y )− InfoX (Y )

SplitInfo(X)
,

(3)
MGR(Sb) =

Gain(Sb)

SplitInfo(Sb)

=
Info(Y )− InfoSb(Y )

SplitInfo(Sb)
,

Y =

{

X1(module2) with probability 0.5

X2 + X3(module2) with probability 0.5 .
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does not require one to specify a model for the joint effect of 
{

Xb1 , . . . ,Xbk

}

 on Y. It 
is designed to capture the information provided by 

{

Xb1 , . . . ,Xbk

}

 for determining Y. 
The property makes MGR a useful measure. We carry out two experiments in order to 
explore the nature of I-score and MGR. In the first experiment, we use Leukemia Data-
set [20] to explore if there are something in common between I-score and MGR without 
loss of generality. We repeat sampling p variable(s) from 3571 predictor variables 500 
times ( p = 1, 2, . . . , 9 ). For example, when p = 1 , we sample one variable as an interac-
tion from 3571 predictor variables 500 times. We document I-score and MGR of the 
interaction as a numerical pair. Then we get the scatter plot Values of Cluster with 1 
variable as Fig. 1a.

Table 1  GR value of ten predictor variables

Predictor variable X1 X6 X3 X10 X8 X7 X2 X9 X4 X5

GR ( ×10
−3) 250.4 16.3 8.8 7.2 7.2 6.1 5.9 1.2 0.7 0.7

I-
sc
or
e

I-
sc
or
e

I-
sc
or
e

Fig. 1  Scatter plots of correlation between I-score and MGR. For example, when p = 1 , we sample one 
variable as an interaction from 3571 predictor variables 500 times. We document I-score and MGR of the 
interaction as a numerical pair. Then we get the scatter plot Values of Cluster with 1 variable in a. I-score and 
MGR are consistent in the nature of growth
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Due to the experiment results, I-score and MGR are consistent in the nature of 
growth. Next, we are ready to explore the difference between the two influence meas-
ures. According to Fig. 1a–i, the correlation of I-score and MGR varies with the num-
ber of variables in interaction. If we want to compare the importance of interactions 
with different number of variables, the influence measure must meet the demand that 
it’s unbiased for interactions with different number of variables. Then the value of influ-
ence measure stands for the importance of interactions completely rather than the 
interference of the number of variables. We continue to find out the law that I-score 
and MGR separately vary with the number of variables in interaction. Every time we 
randomly generate interaction containing p predictor variable(s) and outcome variable 
Y, p = 1, 2, . . . , 9 . Under this setting, outcome variable is independent of every predic-
tor variable interaction. For fixed variable number p, we generate a predictor variable 
matrix X10,000×p with dimension 10,000× p by randomly uniformly sampling from {0, 1} 
and outcome variable with dimension 10,000× 1 by randomly uniformly sampling from 
{0, 1} . Then record the corresponding value I-score and MGR of the interaction. Finally, 
we repeat the whole process 20,000 times. We draw the boxplot among the 20,000 inter-
actions for every fixed p. Finally we get the results that the two influence measures vary 
with number of variables separately shown as Fig. 2.

We could explore the trend of I-score and MGR varying with the number of vari-
ables in interaction by the boxplot Fig. 2. Because every predictor variable and out-
come variable are generated randomly and independently, the interaction with 
different predictor variables should be independent of outcome variable. Therefore, 
the two influence measures should not significantly vary with the number of predic-
tor variables in interaction, which is the basis of using the two influence measures to 
evaluate the importance of interaction with different number of variables. However, 
Fig.  2 shows that the two influence measures both increase along with the number 
of variables. But the specific growth situation of them is different. When the number 
of variables is between 1 and 9, Fig. 2a shows that I-score varies with the number of 
variables in logarithmic function form, while MGR is in the form of the exponential 
function as shown in Fig. 2b. With the increase of variables, I-score increases rapidly, 
then the rate of increase slows down, and finally the values tend to be stable. While 

Fig. 2  Variation of I-score and MGR with variable number in range 1 and 9. a I-score varies with the number 
of variables in logarithmic function form, while MGR is in the form of the exponential function as shown in b 
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the increasing performance of MGR is opposite to that of I-score. When there is key 
interaction with a relatively small number of predictor variables in the datasets, the 
selected key interaction based on I-score contains other unimportant variables while 
carrying out BDA. Therefore we can come to a conclusion that MGR performs better 
in the case of interaction with a relatively small number of variables, and I-score is 
more suitable for interaction with more variables. Based on the diagram, the results 
of MGR are more credible than I-score when the number of predictor variables in 
interaction is less than five.

Algorithms

In the first part of this section, we introduce BDA which is a repeated sampling algo-
rithm used to find out the interactions. BDA is a greedy algorithm aiming at iterating 
over all the variables. Every time an initial predictor variable subset is selected, then 
delete variables one by one and finally find out the subset with maximum influence 
measure. The details are as follows. 

(1)	 Training set: Consider a training set (y1, x1), . . . , (yn, xn) , where xi = (x1i, . . . , xpi) 
with the dimension of p and the number of samples n. Typically p is very large. 
Outcome variable and all predictor variables are discrete.

(2)	 Sampling for initial subset: Select k predictor variables Sb =
{

Xb1 , . . . ,Xbk

}

 , 
b = 1, . . . ,B as initial subset. B is the number of repetitions which will be intro-
duced in step 3.

(3)	 Compute the influence measure of the initial subset.
(4)	 Drop variables: Tentatively drop each variable in Sb in turn and recalculate the 

influence measure of the subset with one variable less. Then drop the one that gives 
the highest influence measure. Keep this retained pending combination as S′b.

(5)	 Return set: Continue the next round of dropping on S′b , until only one variable is 
left. Now we have k retained pending combinations with variable numbers ranging 
from k to one. Keep the subset that yields the highest influence measure among the 
retained pending combinations. Refer to this subset as the return set Rb . Keep it for 
future use.

For ease of understanding, we construct an example as shown in Fig.  3 to illustrate 
how BDA is conducted in detail. In this example, we tentatively drop one biomarker 
from {1, 2, 3, 4, 5} in turn, and document the influence measure of the interaction with 
four remaining biomarkers. The interaction with the largest influence measure is put 
into the retained pending combination pool. Then drop every biomarker of it. Repeat 
the above process until only one biomarker is left. Finally we choose the retained pend-
ing combination with the largest influence measure as the return set. When the number 
of predictor variables is small enough, we can obviously use the BDA directly with the 
influence measure such as I-score or MGR to find interactions. If the predictor variables 
we meet are in tens of thousands, we must do some preparation before using BDA. We 
propose an algorithm to select important interactions in detail and construct the classi-
fier of disease detection. The algorithm consists of five steps as shown in Fig. 4.
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Step 1: Preprocessing

With the increase of the amount of biological data, searching for more effective com-
puting algorithms will become an indispensable goal. Therefore, we need to apply pre-
processing algorithm to help us preliminarily select valuable predictor variables. And we 
propose a preprocessing method in this paper, which could save the time of finding the 
appropriate preprocessing method. Preprocessing mainly includes four sub-steps: data 
cleaning; preliminary dimension reduction; data discretization; judgement of candidate 
method. 

(1)	 Data cleaning: The original dataset is transformed to n× p dimension, in which n 
stands for the number of samples, and p is the number of predictor variables. The 
sample status also needs to be prepared, which is represented by variable Y.

(2)	 Preliminary dimension reduction: In this sub-step, we need to make sure if every 
predictor variable is meaningful in determination of variable Y. There are many 
methods such as t-test and Fold-change [25] aiming at selecting variables prelimi-
narily. We choose the appropriate method to make it under different situations. We 
filter the biomarkers preliminarily, which is beneficial for our program later.

(3)	 Data discretization: There are many discretization methods such as equal width 
method, equal frequency method, clustering method [26]. The most appropriate 
discretization method varies through different backgrounds.

(4)	 Judgement of candidate method: We consult literature based on the background 
of the dataset to identify candidate methods about preliminary dimension reduc-
tion and data discretization. Then do some pre-experiments to determine the best 
candidate. For example, after dimension reduction and discretization, we carry out 

1 2 3 4 5

2 3 4 5

1 3 4 5

1 2 4 5

1 2 3 5

1 2 3 4

Every time
drop one
biomarker

Retained
pending

combination
1 3 4 5

3 4 5

1 4 5

1 3 5

1 3 4

1 3 5

3 5

1 5

1 3

1 3

3

1

3

An initial subset with
five biomarkers

Retained
pending

combination

Fig. 3  Illustration of BDA. In this example, we randomly select five biomarkers 
{

xb1 , xb2 , xb3 , xb4 , xb5

}

 as 
the initial subset. For ease of display, the biomarkers 

{

xb1 , xb2 , xb3 , xb4 , xb5

}

 is represented by the subscript 
interaction {1, 2, 3, 4, 5}
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important interaction extraction experiments by BDA based on randomly chosen 
one hundred predictor variables with discrete values. If the accuracy of the classi-
fier constructed by step 4 and step 5 based on these selected important interactions 
is reasonable, we carry out experiments on the whole dataset with the candidate 
preprocessing method.

Our proposed preprocessing method saves computation time and improves efficiency 
which is benefit for step 2 and step 3. If the number of predictor variables in the dataset 
is small enough, then step 2 can be omitted to get the important interactions directly 
with BDA.

Step 2: Dimension reduction by interacted triples

When the number of predictor variables is in the thousands or even larger after preproc-
essing, we must screen the predictor variables before applying BDA. We take interaction 
effect into consideration in the process of screening. We realize the dimension reduction 

Preliminary dimension
reduction

Is the data
prepared?

Determination of top 3-way
interactions

Determination of top
variables

Generation of interactions
based on BDA

Yes

Yes

No

No Preprocessing

Dimension
reduction by
interacted triples

Data cleaning

Number of
pre-vars<N?

Construction of the sub-classifier

Construction of the final
classifier based on Boosting

Data discretization

Fig. 4  Flowchart of proposed interaction selection and classifier construction. There are five main steps in 
the algorithm including preprocessing, dimension reduction by interacted triples, generation of interactions 
based on BDA, construction of the sub-classifier, construction of the final classifier based on Boosting
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by 3-way interactions (triples) [23]. This step consists of two sub-steps including obtain-
ing top 3-way interactions and top variables. 

(1)	 Determination of top 3-way interactions: Firstly, sort the triples from high to low 
according to their respective influence measure. Then pick a triple out every 1000 
triples from the beginning of the ordered sequence. Typically, the second difference 
of sequence consisting of every thousandth triple’s scores declines sharply in the 
beginning and stabilizes around zero later. We will choose top 3-way interactions 
according to the second difference scores of thousandth near to zero for the first 
time. And the top thousands of triples are retained for further analysis.

(2)	 Determination of top variables: After the above sub-step, each variable in the high-
scored triples may occur in multiple triples. Because high-frequency predictor vari-
ables are more likely to form influential predictor variable interactions, we select 
the important predictor variables by their retention frequency in top triples. We 
order the retention frequency of every predictor variables in the high-scored tri-
ples from high to low. And the first difference of retention frequency sequence usu-
ally shows big drops in the beginning and stabilizes around zero later. We choose 
the cut-off value when the first difference of retention frequency sequence is stable 
around zero.

Then we get key predictor variables that have high potential to construct important 
interactions when combined with each other. And the dimension of predictor variables 
decreases significantly from thousands to hundreds or dozens, which is beneficial for 
next step.

Step 3: Generation of interactions based on BDA

In this step, we realize BDA based on the selected variables in step 2. There are two 
quantities including the size of the initial subset and the number of repetitions to be 
determined before applying BDA. The size of the initial subset can be calculated by 
Poisson approximation [23]. Then the minimum requirement is met if the initial size k 
satisfies

where n is the number of training samples, and mk−1 is the number of partition elements 
induced by a subset with k − 1 variables.

The approximation is adequate if the averaged number of observations per partition 
element is at least 4 [27]. So we can get the lower bound of the initial size. In practice, 
any initial size between the upper and lower bounds can be used. The number of repeti-
tions in BDA is the number of variable subsets subjected to backward dropping. Assum-
ing p is the number of predictor variables, and k is the initial size. If we want to cover all 
interactions with z variables ( z ≤ k ), it is shown that we are expected to have

(4)
n2

2mk−1

≥ 1,

(5)B̂ ≈

[(

p
z

)/(

k
z

)]

log

(

p
z

)

.



Page 11 of 16Chu et al. BMC Bioinformatics          (2022) 23:176 	

Finally 2B̂ can be used as an upper bound which covers all key predictor variables [23]. 
Then we get return sets by applying BDA combined with two influence measures sepa-
rately. And the return sets will undergo two filtering procedures. The first procedure is 
to filter out return sets with overlapping variables. And we shall keep only one of those 
return sets containing common variables. This can be done by sorting the return sets in 
decreasing order according to the influence measure and then removing those having 
variables in common with a higher-scored one. The return sets after removing overlap 
ones are subjected to a forward adding algorithm to remove false positives [23]. In order 
to use interactions selected from the above steps to determine the status of Y, we apply 
the following steps to construct the final classifier.

Step 4: Construction of the sub‑classifier

We choose Ridge Regression method with cross-validation to construct sub-classifier 
based on interactions generated above. We include all product terms between vari-
ables from one interaction as the joint action of the variables to construct each Ridge 
Regression sub-classifier. Ridge Regression is appropriate because it alleviates the impact 
caused by colinearity between predictor variables in one interaction.

Step 5: Construction of the final classifier based on Boosting

The sub-classifiers are combined together to construct the final classifier by Boosting 
algorithm [23], which could greatly improve the performance of the final classifier.

Results
Exhibition of experiment results

We state that there are many preprocessing methods for a certain biological dataset, and 
we choose the best one as far as we know based on step 1. We adopt 5 cross-validation 
(CV) Experiments in order to evaluate the predictive performance of the model more 
comprehensively. For every dataset, we divide the samples into five parts. Every time one 
of five parts is chosen as the test set and the four remaining parts are training set. Then 
we carry out the whole experiments based on every pair of training and test set. The 
accuracy is the probability that the predicted category matches the actual category of 
outcome variable Y. The first dataset to be considered is Breast Cancer Wisconsin (Diag-
nostic) Dataset. Because the dimension of this dataset is small enough, we only need to 
discretize the data in preprocessing step. After several pre-experiments, we preprocess it 
by discretizing every predictor variable through all the samples with two-means method. 
We directly use BDA to find interactions among the predictor variables with B = 14,000 
repetitions, the size of initial subset k = 6 and z = 4 variables.

Table 2 shows that the average accuracy of MGR method is 93.13% which is bet-
ter than I-score 91.73% on this dataset. Because the number of predictor variables is 
30, so we construct Ridge Regression model using all biomarkers without biomarker 
selection. After selecting key interactions based on MGR, the number of key inter-
actions among 5-CV Experiments is 8, 7, 7, 9, 9 separately. What’s more, every key 
interaction contains one variable in this example. And the average accuracy by con-
structing Ridge Regression model based on the corresponding biomarkers is 93.13% , 
which is better than average accuracy 89.80% based on all biomarkers. The results of 
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sensitivity and specificity also explain the advantages of our proposed MGR method. 
Therefore, we realize dimension reduction after the process of MGR method with 
improving the accuracy. The second dataset is Leukemia Dataset [20]. The dimen-
sion of the dataset is 72× 3571 after three procedures applied to the normalized 
matrix of intensity values (after pooling the 38 mRNA samples from the training 
set and the 34 mRNA samples from the test set) [22]. Finally, we get the discretized 
dataset with dimension 72× 3571 . Details are as follows: 

(1)	 Floor of 100 and ceiling of 16,000: the datas are converted to values between 100 
and 16,000 after this procedure.

(2)	 Filtering: exclude genes with max/min ≤ 5 or (max −min) ≤ 500 , where max and 
min refer to the maximum and minimum intensities for a particular gene across the 
72 mRNA samples.

(3)	 Base 10 logarithmic transformation.
(4)	 Discretization: we use two-means clustering method for every sample across all 

genes.

After the preprocessing, the number of genes decreases from 7129 to 3571. It saves 
eight times of hours with the 3571 genes for step 2 dimension reduction by inter-
acted triples compared with 7129 genes. We conduct 5-CV Experiments on the dis-
cretized Leukemia Dataset with dimension 72× 3571 based on I-score and MGR 
separately. We choose the parameter B = 1,200,000 as the repetition times, k = 8 as 
the size of initial subset and z = 4 variables.

As shown in Table 3, MGR with average accuracy of 97.32% is better than I-score 
with average accuracy of 89.11% . The results of sensitivity and specificity also explain 
the advantages of our proposed MGR method.

Table 2  5-CV results of Breast Cancer Wisconsin (Diagnostic) Dataset

There are two main experiment methods including via biomarker selection and without biomarker selection, where 
the method via biomarker selection includes I-score method and MGR method. For certain method, we conduct 5-CV 
Experiments. Exp_One is the first experiment in 5-CV Experiments and so on. Bold data is the best result for every 
Experiment

Method Exp_
One (%)

Exp_
Two (%)

Exp_Three (%) Exp_Four (%) Exp_Five (%) Average (%)

5-CV results of accuracy

 All biomarkers 84.96 88.50 94.69 90.27 90.60 89.80

 I-score 84.07 91.15 93.81 95.58 94.02 91.73

 MGR 84.07 91.15 96.46 98.23 95.73 93.13

5-CV results of sensitivity

 All biomarkers 97.78 96.88 100.0 96.39 93.41 96.89

 I-score 93.33 98.44 94.59 96.39 94.51 95.45

 MGR 93.33 96.88 98.65 100.0 96.70 97.11

5-CV results of specificity

 All biomarkers 76.47 77.55 84.62 73.33 80.77 78.55

 I-score 77.94 81.63 92.31 93.33 92.31 87.50

 MGR 77.94 83.67 92.31 93.33 92.31 87.91
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Analysis of experiment results

In order to figure out the reason MGR behaves better than I-score, we need to 
explore the nature of interactions selected by MGR and I-score separately. So we 
draw diagrams of interactions with different number of variables as shown in Figs. 5 
and 6.

Figure 5 displays the distributions of interactions selected from Breast Cancer Wis-
consin (Diagnostic) Dataset with different number of variables based on I-score and 
MGR separately. While Fig. 6 displays the distributions of interactions selected from 
Leukemia Dataset with different number of variables based on I-score and MGR 
separately. From the two diagrams, we can see that I-score tends to choose inter-
actions with a large number of variables based on the two datasets. While MGR’s 
behavior is opposite to it. According to the nature of I-score and MGR shown in 
section methods, MGR is more stable under the circumstance where there are inter-
actions with less variables, which explains why MGR behaves better than I-score on 
the two datasets.

Table 3  5-CV results of Leukemia Dataset

We conduct 5-CV Experiments by using I-score method and MGR method on Leukemia Dataset. Exp_One is the first 
experiment in 5-CV Experiments and so on. Bold data is the best result for every Experiment

Method Exp_One  
(%)

Exp_Two  
(%)

Exp_Three  
(%)

Exp_Four  
(%)

Exp_Five  
(%)

Average  
(%)

5-CV results of accuracy

I-score 92.86 85.71 85.71 100.0 81.25 89.11

MGR 100.0 100.0 92.86 100.0 93.75 97.32

5-CV results of sensitivity

I-score 92.86 92.31 100.0 100.0 100.0 97.03

MGR 100.0 100.0 100.0 100.0 100.0 100.0

5-CV results of specificity

I-score 100.0 0 80.0 100.0 66.67 69.33

MGR 100.0 100.0 90.0 100.0 88.89 95.78

Fig. 5  Distributions of interactions selected from Breast Cancer Wisconsin (Diagnostic) Dataset with different 
number of variables. a We get 40 key interactions totally after 5-CV Experiments based on I-score, where 
there are 8 interactions with one predictor variable and 32 interactions with two predictor variables. b We 
get 40 key interactions totally after 5-CV Experiments based on MGR, where every one of the 40 interactions 
contains one predictor variable
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Discussion
Our proposed influence measure MGR performs better than I-score when there are 
interactions with less number of predictor variables. And the two influence measures 
can complement each other in real applications. When we get interactions after step 3 
based on I-score and MGR separately, we can filter these interactions according to the 
number of predictor variables in them with the properties of I-score and MGR. In this 
paper, we select important interactions by MGR method efficiently. But the internal 
structure of every interaction is still unknown. A method to explore internal relation-
ship between predictor variables in every interaction is being developed. If the prob-
lem is solved, the mechanisms of how biomarkers affect disease will be clearer. Another 
challenge is that if there are tens of thousands of variables or even larger, computing 
power will limit the use of the proposed algorithm. Because the number of variables in 
key interaction is generally not very large in reality, the problem can be solved by finding 
the method of preliminarily screening possible variables for constituting an interaction 
together. In other words, we group predictor variables in advance according to their cor-
relation with each other. We will continue to explore and solve these problems.

Conclusion
It has been a long-lasting interest in the bioinformatics field for detecting biomarker 
interactions. In this paper, we propose MGR which is proved to be an effective influ-
ence measure for selecting interaction between biomarkers. Compared to existing meas-
ure I-score, we illustrate that MGR behaves better on the circumstance where there are 
interactions with less variables. By carrying out experiments on two real datasets, the 
MGR results are better than I-score which proves the effectiveness of MGR method. Our 
proposed MGR is a flexible indicator that can be used when combined with other algo-
rithm structure. In addition to the two kinds of datasets in the paper, MGR method can 
be applied to other kinds of real biomarker datasets for selecting interactions such as 
SNPs datasets and protein datasets. We believe that the proposed MGR method can be a 
useful tool in the area of biotherapies.

Fig. 6  Distributions of interactions selected from Leukemia Dataset with different number of variables. a 
We get 159 key interactions totally after 5-CV Experiments based on I-score, where there are 4 interactions 
with two predictor variables and 15 interactions with three predictor variables until 4 interactions with seven 
predictor variables. b We get 119 key interactions totally after 5-CV Experiments based on MGR and the 
distribution of the interactions is shown in the plot
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