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Background
High-throughput technologies such as microarray and next-generation sequencing have 
been widely applied in biomedical research to monitor genome-wide DNA, RNA and 
epigenetic molecular activities and to detect disease-associated events or biomarkers. 
With decrease in experimental costs over the years, tremendous amounts of data have 
been generated and accumulated in public data depositories in the past two decades (e.g. 
Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA) from NCBI, Array-
Express from EBI, and the NIH Metabolomics Workbench data repository). Perhaps due 
to limitation of clinical tissue access, individual labs usually generate omics datasets with 
small to moderate sample sizes (e.g. n = 40− 1000 ). Statistical power and reproduc-
ibility of studies using such large-p-small-n data has long been a concern. Dimension 
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reduction (feature extraction) and variable selection (feature selection) play a crucial 
role for down-stream pattern recognition, classification and clustering, with such high-
dimensional data. In this article, we propose dimension reduction and variable selection 
for semi-parametric models in the high-dimensional setting.

Let Y denote the response variable and X denote the p-dimensional predictor vector. 
Consider the semi-parametric multi-index model

where v1, . . . , vd are unknown p-dimensional linearly independent column vectors, 
d ≪ p , g is an unknown link function, ε is a random error term with an arbitrary and 
unknown distribution, and ε ⊥⊥ X , where ⊥⊥ denotes statistical independence. Under 
model (1), the response Y depends on the p-dimensional predictor vector X only 
through the d linear combinations v⊤1 X, . . . , v

⊤
d X . Consequently, (1) is often expressed 

as Y ⊥⊥ X|(v⊤1 X, . . . , v⊤d X) . If we knew v1, . . . , vd , since d ≪ p , estimation of the 
unknown link function g can be facilitated with the aid of any flexible nonparametric 
method. Therefore, the focus of dimension reduction methods via (1) is on estimating 
the vectors v1, . . . , vd without any prior knowledge or assumption on g. The subspace 
span(v1, . . . , vd) is called the central subspace and denoted by SY |X , where d is the small-
est dimension such that (1) holds.

In the past two decades, a number of sufficient dimension reduction methods have 
been proposed to estimate v1, . . . , vd under (1). The most widely used methods are per-
haps the sliced inverse regression (SIR) by [1], and the sliced average variance estimation 
(SAVE) by [2]. Let � = cov(X) , and denote V = (v1, . . . , vd) ∈ R

p×d . In a pioneering 
paper, [1] established that the centered inverse regression, E(X|Y )− E(X) , is contained 
in the linear subspace of Rp spanned by the vectors �v1, . . . ,�vd , under model (1) and 
the linear conditional mean assumption 

(
 i.e. E

(
X|V⊤

X
)
 is a linear function of V⊤X 

)
 . 

A direct consequence of this result is that the kernel matrix M = cov[E(X|Y )− E(X)] 
is degenerate in any direction �-orthogonal to the vj’s. Therefore, the eigenvectors 
corresponding to the d nonzero eigenvalues of �−1M can be used as the estimators 
of v1, . . . , vd . A drawback of the sliced inverse regression is, since it only exploits the 
inverse first moment, E(X|Y ) , it yields degenerate directions if the model is symmetric 
about zero. To this end, [2] proposed the sliced average variance estimation that incor-
porates information in the inverse second moment. Since then, there have been a num-
ber of other proposals that exploit the moments of X|Y  . The recurring theme of these 
inverse regression methods is to construct a method-specific kernel matrix M degenerate 
in any direction �-orthogonal to the vj ’s that span SY |X.

The aforementioned inverse regression methods for sufficient dimension reduc-
tion (SDR) yield the d-dimensional sufficient predictors, v⊤1 X, . . . , v

⊤
d X , that are linear 

combinations of all the original predictors. As a consequence, no variable selection 
is achieved. Hence, the results can be hard to interpret and the important variables 
may be difficult to identify. In addition, the estimation and prediction efficiency 
gain may be less than that possible with variable selection. To this end, methods 
that perform simultaneous dimension reduction and variable selection to construct 
a few sufficient predictors that are linear combinations of only the important origi-
nal predictors have been proposed. An incomplete list of such methods include: the 

(1)Y = g(v⊤1 X, . . . , v
⊤
d X, ε),
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shrinkage sliced inverse regression introduced by [3]; the sparse sufficient dimension 
reduction method due to [4]; and the general shrinkage strategy for sparse inverse 
regression estimation proposed by [5]. A common limitation of these methods is that 
the variable selection procedure used is coordinate-dependent, in the sense that they 
introduce element-wise (coordinate-wise) sparsity as opposed to row-wise (predictor) 
sparsity on V. The element-wise sparsity approach is not desirable because we would 
like to deem a predictor unimportant based on its contribution across all dimension 
reduction vectors simultaneously. To address this problem, [6] proposed a coordi-
nate-independent sparse estimation (CISE) method to obtain row-wise sparse esti-
mates using the inverse regression methods. Due to the row-sparsity, CISE solutions 
are also orthogonal transformation invariant. That is, the estimated zero rows on V 
will also be estimated as zero even if the dimension reduction subspace was repre-
sented by VO, where O is any d × d orthogonal matrix. This is an attractive prop-
erty since v1, . . . , vd are often not unique, but the subspace spanned by these vectors 
is unique. However, although these methods perform variable selection, they are not 
applicable to the high-dimensional setting.

To this end, a number of recent papers have proposed sparse sufficient dimension 
reduction methods for the high-dimensional setting. These methods can be categorized 
into three approaches. The first category employs different types of regularizations to 
develop shrinkage based methods for simultaneous dimension reduction and variable 
selection. For instance, [7] proposed sparse ridge sliced inverse regression by introduc-
ing ℓ1 and ℓ2-regularization to the least squares formulation of sliced inverse regression 
[8] to achieve dimension reduction and variable selection simultaneously. Yu et al.  [9] 
showed estimation consistency by adopting the Dantzig selector to solve the generalized 
eigenvalue problem formulation of SIR under sparse covariance assumptions. But their 
estimation follows the sequential estimation approach which yields coordinate-depend-
ent sparse estimates. Wang et al.  [10] re-cast SIR into a “pseudo” sparse reduced-rank 
regression problem and showed consistency in central subspace estimation. By con-
structing artificial response variables made up from top eigenvectors of the estimated 
conditional covariance matrix, [11] introduced the Lasso-SIR method to obtain sparse 
estimates of the SIR dimension reduction directions. More recently, [12] proposed a 
convex formulation for sparse SIR, and [13] proposed the sparse minimum discrepancy 
approach for simultaneous dimension reduction and variable selection that incorporates 
SIR, with extension to SAVE and the principal fitted components (PFC; [14, 15]). The 
second approach for high-dimensional SDR is the sequential SDR framework proposed 
by [16] and [17]. This framework yields simulataneous dimension reduction and variable 
selection via a sequential process that allows for p > n . It incorporates well-established 
SDR methods and has shown successful applications in high-dimensional data analysis. 
The third approach includes the thresholding-type procedures. The thresholding tech-
niques have shown important applications for variable screening purposes in, for exam-
ple, [18]. A promising diagonal thresholding screening SIR algorithm [19] was developed 
for sparse predictor covariance scenarios and the estimation consistency was established 
under high-dimensional setting. However, it does not yield sparse central subspace for 
variable selection. A concise review of the sparse sufficient dimension reduction litera-
ture can be found in [20].
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Our work in this paper contributes to this body of literature by studying a convex for-
mulation that produces simultaneous dimension reduction and variable selection. Our 
formulation can be interpreted as a version of a group Dantzig selector and falls under 
the first category of regularization based methods for high-dimensional sparse SDR. We 
minimize the sum of the block-ℓ1-norm of the row vectors that span the central sub-
space. Due to the row-sparse nature of the resulting estimator, our formulation leads to 
coordinate-independent sparse estimates - in the sense that the predictors selected by 
our method are independent of the basis matrix used to represent the central subspace. 
This is attractive as, often times, the central subspace is unique but the basis vectors that 
span it are not. Our proposed formulation is convex, and thus can be implemented using 
well established solvers such as the CVX toolbox in MATLAB. We provide readily avail-
able MATLAB codes for practitioners to use the proposed method.

Our work closely relates to the Lasso-SIR of [11] in the way it constructs artificial 
response matrix, but unlike our method, the estimated directions obtained by the Lasso-
SIR [11] are not coordinate independent as the directions are estimated separately. Our 
work also relates to the convex formulation for sparse SIR of [12], in that both methods 
are based on convex optimization. However, the objective function in [12] is optimized 
over the p× p projection matrix, VV⊤ , while our objective function is optimized over 
the p× d direction matrix V, d ≪ p . If the number of predictors, p, is large, the method 
proposed in [12] is likely to be computationally more expensive than our method.

As is the case with most SDR methods, the sparse estimation method we propose in 
this paper can be used for regression (i.e. quantitative response) setting and classifica-
tion problems (i.e. categorical response). Under model (1), [21] pointed out that linear 
discriminant analysis (LDA) is equivalent to SIR in the population. Cook and Yin  [22] 
also further established the relationship between LDA and SIR, as well as quadratic dis-
criminant analysis (QDA) and SAVE, and presented applications of (1) in discriminant 
analysis. These close connections also motivated us to explore the competitiveness of 
empirical results using our method with existing state-of-the-art generalizations of LDA 
for high-dimensional and multi-class classification problems.

Organization. The rest of the article is organized as follows. In “Method” section 
we describe the proposed method, and discuss its implementation. In “Continuous 
response” section we conduct extensive simulation studies to assess the performance 
of the proposed estimator and compare to other estimators in the literature. We apply 
our method to three omics datasets and demonstrate its use in practice in “Categorical 
response” section. We offer brief discussion in “Summary and conclusion” section.

Notations. For a vector v ∈ R
p , we define �v�∞ = maxi=1,...,p |vi| , �v�1 =

∑p
i=1 |vi| , and 

�v�2 =
√∑p

i=1 v
2
i  . For a matrix M ∈ R

n×p we define mi to be its ith row, mj to be its jth 
column, �M�∞ = maxi=1,...,n �mi�1 , �M�∞,2 = maxi=1,...,n �mi�2 , and 
�M�F =

√∑n
i=1

∑p
j=1m

2
ij .

Method
As stated in the background section, let SY |X denote the central subspace, and let 
� = cov(X) . Define a population seed as any matrix � such that span(�) ⊆ �SY |X and 
possibly span(�) = �SY |X . Here, we assume the coverage condition, span(�) = �SY |X , 
to hold. The coverage condition is commonly made in sufficient dimension reduction 
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literature, and may be reasonable in many applications, see Cook and Ni [23] for discus-
sion. Thus, if � is invertible, a seed matrix can be used to obtain a matrix V whose columns 
span the central subspace by setting V = �−1� . For example, for the ordinary least squares 
method, the p× 1 covariance vector � = cov(X,Y ) is the seed vector, and the central sub-
space can be obtained as the span of the least squares vector V = �−1� , if d = 1.

Let V ∈ R
p×d be a matrix such that span(V) = SY |X . In his pioneering sliced inverse 

regression estimation paper, under the linear conditional mean assumption (i.e. E(X|V⊤X) 
is a linear function of the d-dimensional random vector V⊤X ), [1] showed that

for all y. The conditioning in (2) cannot be performed in practice unless Y is discrete, 
and standard practice with a continuous response is first to partition Y into H slices, 
indexed by h = 1, . . . ,H , and then average (2) over the values of Y in a slice [1]. This 
yields, ψh ≡ E{X|Jh(Y ) = 1} − E(X) ∈ �SY |X, h = 1, . . . ,H , where Jh(Y ) = 1 if Y 
is in slice h and Jh(Y ) = 0 otherwise. When the response is categorical, H is set to be 
the number of categories by construction, and when the response is continuous, H 
must satisfy H ≥ d . Let � to be the p×H matrix � = (ψ1, . . . ,ψH ) . Then, it follows 
that � qualifies as a seed matrix. Furthermore, it follows that the SIR kernel matrix 
M = cov[E(X|Y )− E(X)] = ��⊤ qualifies as a seed matrix. Consequently, the sliced 
inverse regression estimation can be formulated as a generalized eigenvalue problem,

where �j ’s are the eigenvalues of �−1M , and vj ’s are the corresponding eigenvectors. The 
d eigenvectors, corresponding to the d nonzero eigenvalues span the central subspace.

Let 
{
x⊤i , yi

}n
i=1

 denote an available n iid samples, M̂ and �̂ be the sample estimates of M 
and � , respectively. That is, with

we compute the estimates as

For simultaneous coordinate-independent sparse sliced inverse regression estimation, 
we propose the following optimization problem

where vi , i = 1, . . . , p , are the rows of V, �̃ is a diagonal matrix with the d nonzero eigen-
values of �̂

−1/2
M̂�̂

−1/2 , Ṽ is a p× d matrix of the corresponding non-sparse eigenvec-
tors, and τ > 0 is a tuning parameter that controls the row-sparsity of V̂ . As τ increases, 
it leads to solutions V̂(τ ) with more row-sparsity. Note again that the target basis matrix 
V is p× d , and the ‖vi‖2 ’s in the objective function are defined row-wise, aggregated 

(2)E(X|Y = y)− E(X) ∈ �SY |X

(3)Mvj = �j�vj , (j = 1, . . . , p)

x̄ = n−1
n∑

i=1

xi, and x̄h = n−1
h

n∑

{i:Jh(yi)=1}
xi

�̂ = n−1
n∑

i=1

(xi − x̄)(xi − x̄)⊤, M̂ =
H∑

h=1

nh

n
(x̄h − x)(x̄h − x)⊤.

(4)V̂ = min
V

p∑

i=1

�vi�2 subject to ��̂−1/2
M̂�̂

−1/2
Ṽ − V�̃�∞ ≤ τ ,
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over the p rows corresponding to the p predictors. We could think of (4) as a group 
dantzig type formulation [24], where the group refers to a predictor’s contribution to the 
d dimension reduction vectors, and that the objective function is defined as a block-ℓ1-
norm of the row vectors. The solution to (4) will not necessarily yield an orthogonal basis 
matrix V̂ . Nevertheless, we can obtain a sparse basis matrix via a Gram-Schmidt orthog-
onalization of the final estimate. The objective function is independent of the basis used 
to represent the span of V , since for any orthogonal matrix O , ψ(V) = ψ(VO) , where 
ψ(V) =

∑p
i=1 �vi�2 , and the non-zero rows in V and VO are the same.

In the classical p < n regime, we can obtain Ṽ by doing a singular value decomposition 
on �̂

−1/2
M̂�̂

−1/2 . However, in the high dimensional setting, p > n , it is important for the 
performance of our proposed method via (4) that the estimate Ṽ be reasonable. If M is a 
p× p nonnegative definite matrix with rank(M) = d ≤ p , and � is a p× p positive defi-
nite matrix, the true V satisfies MV = �V� . In the high dimensional setting, we assume 
V is s-sparse for some fixed s, and denote supp(V) = F = {i : �vi�2 �= 0, i = 1, . . . , p} , 
where |F | = s represent the number of relevant predictors. Let M̂ and �̂ be sample esti-
mates of M and � that preserve the same definiteness as their population counterparts. 
Since M̂Ṽ = �̂Ṽ�̃ , we can write the constraint in (4) as 

∥∥�̂Ṽ − �̂V
∥∥
∞ ≤ τ . In the 

high dimensional setting, we assume that τ = O
(
s
√
log p/n

)
 , and thus Ṽ should satisfy ∥∥�̂Ṽ − �̂V

∥∥
∞ ≤

(
s
√

log p/n
)
. In the next paragraph, we discuss an approach for obtain-

ing �−1 that yields Ṽ.
Estimation of �−1 : When p is greater than n, �̂ is no longer invertible even when � is 

nonsingular, and it is not possible to get a reasonable estimate Ṽ . Therefore, we need a good 
estimate of �−1 for n < p . Estimation of �−1 has been extensively studied in the literature. 
In this work, we will simply adopt the constrained ℓ1 minimization for inverse covariance 
matrix estimation (CLIME) method proposed by [25]. Denote � := �−1 . Given a tuning 
parameter �1n , the CLIME based estimate �̂ is a solution to the following optimization 
problem:

The above solution �̂ is not symmetric in general. To obtain a symmetric estimate, the 
CLIME estimator �̂s is defined as �̂ := (�̂s,k ,l) where

In other words, we take the one with smaller magnitude between �̂k ,l and �̂l,k . The 
resulting estimate �̂s is symmetric and, more importantly, positive definite with 
high probability. By assuming that the covariates have exponential type tails and 
�1n = C1

√
log p/n for some generic constant C1 , [25] show that

holds uniformly for

min
�

���1 subject to ��̂�− I�∞ ≤ �1n.

�̂s,k ,l = �̂s,l,k = �̂k ,l I(|�̂k ,l | ≤ |�̂l,k |)+ �̂l,k I(|�̂k ,l | > |�̂l,k |).

��̂−��∞ = Op(M
2s1

√
log p/n),

� ∈
{
� : � > 0, ���1 ≤ M and max

1≤k≤p

p∑

l=1

|�k ,l |q ≤ s1

}
.
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for 0 ≤ q < 1 . Note that the special case of q = 0 is a class of s1-sparse matrices.
Given an estimate �̂

−1 , we implement the optimization problem in (4) using the CVX, 
an efficient MATLAB package for specifying and solving convex optimization problems 
[26, 27].

Selection of the tuning parameter

The tuning parameter τ in (4) controls the level of sparsity and needs to be selected. Note 
that when τ > ��̂−1/2

M̂�̂
−1/2

Ṽ�∞ , the optimization problem (4) yields a trivial solu-
tion, giving us an upper bound for τ . We choose the optimal τ from the range (
0, ��̂−1/2

M̂�̂
−1/2

Ṽ�∞
)
 using K-fold cross validation (CV). More specifically, for the 

categorical response case, we randomly group the observations of X into K roughly 
equal-sized groups, denoted as X1, . . . ,XK  . For each k = 1, . . . ,K  , let X−k be the input 
data matrix leaving out Xk . Let yk and y−k be the corresponding response vectors. We 
apply the proposed methods on X−k to derive basis matrices V̂−k

d (τ ), d = rank(M̂) , and 
the data Xk are then projected onto V̂−k

d (τ ) to obtain discriminant scores 
Ud(τn) = Xk V̂−k

d (τ ) , and classification of Xk is performed using the nearest centroid 
method to obtain predicted response ykpred(τ ) . We calculate the K-fold CV misclassifica-
tion rate as

where nk is the number of observations in Xk . We do this for each τ and select the opti-
mal tuning parameter as τopt = minτn{CV (τ )}.

For the continuous response case, we adopted the following information criteria 
method suggested in [9]. Define the average squared residuals as

where V̂(τ ) is the estimate of V obtained from (4) with a given τ . Denote the number of 
nonzero rows of V̂(τ ) by s(τ ) . We select optimal tuning parameter as

Results
Simulation studies

In this section, we conduct extensive simulations to assess the performance of the pro-
posed method and compare it with other competing methods in the literature. We con-
sider both continuous and categorical response cases.

Continuous response

Here we simulate models with continuous response variable. We assess estima-
tion accuracy and variable selection selection accuracy. To assess variable selection 

(5)CV (τ ) =
1

K

K∑

k=1

#
(
ykpred(τ ) �= yk

)

nk

G(τ ) =
tr{V̂⊤(τ )�̂V̂(τ )− V̂⊤(τ )M̂V̂(τ )}

tr{V̂⊤(τ )M̂V̂(τ )}

(6)τopt = min
τ

BIC(τ ) = min
τ

{n log(G(τ ))+ log(n)s(τ )}.
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performance, we report the true positive rate (TPR) and false positive rate (FPR). TPR 
is the proportion of truly important variables with estimated nonzero correspond-
ing rows, and FPR is the proportion of unimportant variables with estimated nonzero 
corresponding rows. A method that does well in variable selection will have a TPR 
close to one, and an FPR close to zero. For estimation and prediction performance, 
we report the correlation coefficient between the true sufficient predictor ( v⊤X) and 
estimated sufficient predictor ( ̂v⊤X) . For the two-dimensional Model (9), we report 
the average of these two correlation coefficients.

We simulate data using the three regression models below, adopted from [12]. We 
adopt the following simulation settings from [12]. We generate the predictor vector 
X from N (0,�) , where �ij = 0.5|i−j| and ε ∼ N (0, 1) . We compare the performance of 
our proposed method with the performance of [10, 12, 16] and [7]. A linear regres-
sion model with three active predictors:

where the central subspace is spanned by the direction v1 = (1, 1, 1, 0p−3)
⊤ , and d = 1.

A single-index nonlinear regression model with three active predictors:

where the central subspace is spanned by the direction v1 = (1, 1, 1, 0p−3)
⊤ , and d = 1 . 

This model was also studied in [16].
A multi-index nonlinear regression model with five active predictors:

where the central subspace is spanned by the directions v1 = (1, 1, 1, 0p−3)
⊤ , and 

v2 = (0, 0, 0, 1, 1, 0p−5)
⊤ , and d = 2 . This model form has been used extensively in the 

sufficient dimension reduction literature, see for instance [1].

Summary of Simulation Results

Table 1 presents the results for Models (7)–(9). The results show that our proposed 
method performs very competitively against recent proposals for sparse sliced inverse 
regression for high-dimensional data [7, 10, 12, 16]. More specifically, we make the 
following observations. In the classical setting ( n = 200 , p = 150 ), while all the meth-
ods yield very good results, our method yields the best results, followed by [12]. In 
the high-dimensional setting ( n = 100 , p = 150 ), for the single-index models (Models 
(7) and (8)), our method yields the best results in terms of TPR and correlation. In 
terms of FPR, [10] yields the best results. However, our method also yields reason-
able FPR values, comparable with the rest of the methods. Model (9) is multi-index 
model and the performances of all the methods are inferior to their performance in 
the single-index case. Nevertheless, our method still yields competitive results with 
the other methods, with the exception of the [16] methods that performs very well in 
terms of variable selection, but struggles overall in terms of the correlation. However, 
the reported results for [16] are the best results after considering multiple tuning 

(7)y = (x1 + x2 + x3)/
√
3+ 2ε,

(8)y = 1+ exp{(x1 + x2 + x3)/
√
3} + ε,

(9)y =
x1 + x2 + x3

0.5+ (x4 + x5 + 1.5)2
+ 0.1ε,
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parameters, unlike the other methods use data adaptive tuning parameter selection 
approach. In summary, our proposed method yields the best overall performance 
across the three Models and two settings (classical and high-dimensional setting).

Categorical response

Here we conduct simulations for categorical response. We assess estimation accuracy of 
the central (discriminant) subspace, prediction accuracy after dimension reduction, and 
variable selection accuracy. We assess estimation accuracy using the Frobenius norm of 
the difference between the projection matrices of the true and estimated discriminant 
subspaces. More specifically, let V̂ denote the estimate of V . We measure closeness of V̂ 
to V by

where ‖.‖F denotes the Frobenius norm. Smaller values of this distance metric indicate 
a better estimate. We report TPR and FPR values for variable selection performance 
assessment. To assess the prediction performance, we report the generalization (test) 
misclassification rate (MSR).

We compare the performances of our method with three competing methods. The first 
competing method is the MGSDA by [28]. Like our proposed methods, MGSDA yields 
row-sparse linear discriminant analysis vectors for a multi-class classification problem. 
We implement MGSDA using the MGSDA package in R. The second competing method 
is the multi-class sparse discriminant analysis (MSDA) method by [29]. This method 
also imposes row-sparsity. For the binary classification case, MSDA reduces to the linear 
programming discriminant analysis (LPD) method by [30]. We implement MSDA using 
the MSDA package in R. The third competing method is the penalized linear discriminant 

(10)�(V̂,V) = �V̂(V̂⊤V̂)−1V̂⊤ − V(V⊤V)−1V⊤�F,

Table 1  Simulation results for Models (7)–(9)

Corr is the correlation coefficient between the true and estimated sufficient predictors; TPR is the true positive rate; FPR is 
the false positive rate. The mean (standard error), averaged over 200 independent replications, are reported. All entries are 
multiplied by 100

n = 100, p = 150 n = 200, p = 150

Model (7) Model (8) Model (9) Model (7) Model (8) Model (9)

Proposed 
method

TPR 100 (2.3) 99 (0.1) 84 (1.8) 100 (0.0) 100 (0.0) 91 (1.4)

FPR 6.8 (0.5) 11 (0.1) 7.5 (8.0) 0.0 (0.0) 0.0 (0.0) 1.0 (0.1)

Corr 98 (2.3) 94 (0.1) 72 (0.2) 99 (0.0) 99 (1.0) 97 (2.0)

[12] TPR 96 (1.0) 94 (1.2) 91 (1.1) 98(0.5) 99 (0.5) 99 (2.5)

FPR 6.0 (0.9) 3.6 (0.7) 7.4 (0.1) 3.4 (0.4) 1.1 (0.2) 2.5 (0.3)

Corr 88 (0.9) 86 (1.1) 74 (1.1) 91 (0.5) 92 (0.5) 79 (0.6)

[16] TPR 95 (0.9) 100 (0.0) 100 (0.6) 100 (0.0) 100 (0.0) 100 (0.0)

FPR 4.9 (0.1) 4.8 (0.1) 3.5 (0.1) 5.9 (0.2) 6.7 (0.3) 4.5 (0.2)

Corr 59 (1.1) 88 (0.5) 79 (0.6) 79 (0.6) 94 (0.2) 87(0.5)

[7] TPR 98 (0.1) 98 (0.1) 98 (0.1) 99 (0.1) 99 (0.1) 98 (0.1)

FPR 8.3 (1.2) 3.8 (0.8) 23 (1.1) 1.2 (0.4) 0.3 (0.2) 20 (1.1)

Corr 84 (0.9) 89 (0.6) 63 (0.7) 94 (0.4) 96 (0.3) 70 (0.5)

[10] TPR 89 (1.5) 94 (1.2) 80 (1.2) 98(1.0) 99 (0.7) 96 (0.6)

FPR 0.6 (0.1) 0.6 (0.1) 0.2 (0.1) 0.3 (0.1) 0.3 (0.1) 0.1 (0.1)

Corr 82 (1.4) 85 (1.3) 70 (1.1) 91 (1.1) 93 (1.0) 84 (0.7)
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analysis (PLDA) of [31]. Unlike the other methods mentioned above, for the multi-class 
setting, PLDA estimates the discriminant vectors in a sequential fashion starting with 
the first discriminant vector v1 , with subsequent vj found subject to orthogonality con-
straints. Sparsity is achieved by imposing the ℓ1-norm penalty to each of the vectors. 
Therefore, PLDA yields sparse estimates that are not necessarily coordinate-independ-
ent, and generally this method selects more predictors. We implement PLDA using the 
penalizedLDA package in R. The corresponding optimal tuning parameters for all the 
methods are chosen via fivefold cross-validation to minimize test misclassification rate. 
In the sequel, CISESIR, and CISELDA represent our proposed method with the SIR and 
LDA matrices, respectively. We simulate three models as follows.

Model 1
We simulate a three class classification problem. The input matrix 

X ∈ R
p×n = [X1,X2,X3] with the true covariance matrix is

where �̃ is the covariance structure for signal variables, which we take to be 
�̃ = ρJ+ (1− ρ)I , I is the identity matrix and J is a matrix with all entries equal to one. 
We set nk = 30 , for a total of 90 observations, and generate Xk from N(µk ,�) , where 
we take µ1 = 0 , µ2 = (1, . . . , 1, 0, . . . , 0) with only the first ten entries nonzero, and 
µ3 = (0, . . . , 0,−2, . . . ,−2, 0, . . . , 0) with entries 11–20 nonzero. The true discrimi-
nant vectors v1 and v2 are the eigenvectors of �−1M corresponding to its two nonzero 
eigenvalues, where M is the true between-class covariance matrix. We report results for 
p = 50, 500, 1000 . The number of signal variables in this model is s = 20 , which is the 
number of nonzero rows in the discriminant space: V = (v1, v2).

Model 2
In model 1 we simulated a case where the within class covariances are the same across 

the three classes. In this model, we consider the scenario where the classes differ not 
only through their means, but also their covariances. The covariance matrices for the 
three classes are given as follows: for class 1, the covariance matrix has the same form as 
in model 1 with ρ = 0.9 ; for class 2, the covariance matrix has entries �ij = 0.5|i−j| ; for 
class 3, the covariance matrix is the identity matrix, Ip.

Model 3
In models 1 and 2, we simulated data from the inverse regression setup, X|Y  . In this 

model, we simulate data from forward regression Y |X . More specifically, we simulate 
X ∼ N (0,�) and generate y using the logistic regression model:

We keep the covariance matrix structure to be the same as in model 1, and we generate 
the nonzero coefficients of v from U(0.8, 1). The number of nonzero coefficients are set 
to 10 in this example. In both models 1 and 2, the discriminant subspace of interest was 
two dimensional. However, in this model, it is one dimensional, the space spanned by v . 

� =
(
�̃ 0
0 Ip−s

)
,

(11)Y ∼ Bernoulli(p) where p =
ev

⊤X

1+ ev
⊤X

.
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Note also that while models 1 and 2 are a three-group problem, model 3 is a binary clas-
sification problem.

Summary of Simulation Results:The results for model 1 are reported in Table  2. 
For this model, we observe that the classification performances of all the methods 
are comparable. In terms of variable selection, we see that PLDA has the highest TPR 
across all settings, with MGSDA and MSDA yielding the lowest TPRs. Both our meth-
ods, CISESIR and CISELDA, yield comparable variable selection performance, with 
CISELDA performing slightly better in TPR and CISESIR performing slightly better in 
FPR. Both our methods also perform better than the competing methods when the cor-
relation structure among the predictors is stronger (ρ = 0.9) . More specifically, when 
ρ = 0.9 , MGSDA and MSDA suffer and yield poor results, and PLDA generally selects 
more variables and yields higher FPR. Notice also that the performances of our meth-
ods improve with increase in p. Overall, we observe that our methods yield competitive 
estimation, classification, and variable selection performances, and generally yield lower 
FPRs. The results for model 2 are reported in Table  3. For this model, CISELDA and 
PLDA are the best performers in terms of classification accuracy, while MSDA, CISESIR 
and CISELDA are the best performers in terms of variable selection. Again, MGSDA 

Table 2  Simulation results for model 1

� is as defined in (10); TPR is the true positive rate; FPR is the false positive rate; MSR is the misclassification rate over a test 
set of 900 observations. Note again, TPR and FPR are with respect to variable selection. The reported numbers are averages 
over 50 repetitions

Model 1

(ρ , p) CISESIR CISELDA MGSDA PLDA MSDA

(0.5, 50) � 0.761 0.821 1.346 0.251 1.328

MSR 0.128 0.127 0.137 0.125 0.137

TPR 0.949 0.760 0.775 1.000 0.860

FPR 0.100 0.227 0.101 0.225 0.264

(0.5, 500) � 0.797 0.888 1.374 0.455 1.315

MSR 0.132 0.128 0.139 0.125 0.138

TPR 0.897 0.985 0.733 1.000 0.810

FPR 0.052 0.076 0.010 0.011 0.011

(0.5, 1000) � 0.632 0.604 1.384 0.406 1.307

MSR 0.129 0.125 0.139 0.129 0.135

TPR 0.932 0.999 0.739 1.000 0.794

FPR 0.026 0.066 0.007 0.176 0.005

(0.9, 50) � 1.070 1.031 1.714 0.140 1.672

MSR 0.209 0.207 0.213 0.206 0.215

TPR 0.835 0.925 0.368 1.000 0.481

FPR 0.140 0.214 0.037 0.254 0.164

(0.9, 500) � 0.925 1.086 1.730 0.409 1.703

MSR 0.216 0.215 0.217 0.209 0.213

TPR 0.828 0.998 0.376 1.000 0.399

FPR 0.067 0.160 0.015 0.401 0.007

(0.9, 1000) � 0.588 0.663 1.047 0.289 1.680

MSR 0.210 0.209 0.214 0.206 0.213

TPR 0.942 1.000 0.393 1.000 0.427

FPR 0.056 0.072 0.004 0.153 0.005
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performs the worst among all the methods. Notice that the setting for this model is such 
that the class-level predictor covariance matrices are different. These results show that 
our methods are also robust to the LDA assumption of constant within-group covari-
ance matrix. Table 4 reports the results for model 3. The results for this model are simi-
lar to the results for model 1, confirming that the performance of our methods in binary 
classification problem resembles their performances in the three class problem (Table 2).

In summary, our simulation results show that our methods (CISESIR and CISELDA) 
yield competitive estimation, classification and variable selection performance. Our 
methods are among the best performing in terms of FPR in all settings. PLSD gener-
ally yields the highest TPR and FPR values because it selects more variables. This is not 
surprising since PLSD induces penalties to each of the dimension reduction (discrimi-
nant) vectors separately. Moreover, CISESIR and CISELDA yield the best overall variable 
selection performance in model 2 where the within group predictor covariance struc-
tures differ.

Applications

Depression study

Metabolomics data on major depressive disorder (MDD) were obtained from the 
Metabolomics Workbench (see Data Availability Statement). In the original study, 
human cerebrospinal fluid and plasma samples were collected from patients diag-
nosed with MDD and control subjects matched on age and gender, and an untargeted 
metabolomics profiling was conducted on these samples. There were 158 metabolites 
on n = 48 control patients and n = 46 patients diagnosed with depression. Our goal 
in this study is to apply the proposed and existing competing methods to identify 
metabolites that optimally discriminate patients with MDD from patients without 
MDD.

Table 3  Simulation results for model 2

� is as defined in (10); TPR is the true positive rate; FPR is the false positive rate; MSR is the misclassification rate over a test 
set of 900 observations. Note again, TPR and FPR are with respect to variable selection. The reported numbers are averages 
over 50 repetitions

Model 2

p CISESIR CISELDA MGSDA PLDA MSDA

50 � 0.632 1.032 1.701 0.142 1.108

MSR 0.101 0.048 0.122 0.037 0.104

TPR 0.972 0.625 0.252 0.692 0.956

FPR 0.075 0.200 0.072 0.231 0.248

500 � 0.869 1.114 1.726 0.396 1.112

MSR 0.111 0.053 0.123 0.040 0.104

TPR 0.844 0.675 0.240 0.7612 0.916

FPR 0.020 0.195 0.009 0.3824 0.021

1000 � 0.786 0.711 1.708 0.366 1.100

MSR 0.114 0.040 0.121 0.037 0.102

TPR 0.851 0.644 0.241 0.694 0.922

FPR 0.017 0.089 0.004 0.227 0.010
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We pre-process the data by eliminating metabolites with coefficient of variation 
greater than 50%—which leaves us with 103 metabolites. As is commonly done in 
metabolomics data analysis, we log2 transform each feature, and normalize each fea-
ture to have mean 0 and variance 1. Then, we randomly split the dataset into two-
third training set and one-third test set. A stratified sampling scheme is applied to 
preserve the original proportions of samples in each group. We select the optimal 
tuning parameter that minimizes the average misclassification rate using fivefold 
cross-validation on the training set. We then apply the methods with the selected 
optimal tuning parameters to the test set to obtain an estimate of the generalization 
misclassification rate. We repeat the foregoing analysis scheme 50 times and obtain 
average misclassification rates and number of variables selected.

The average test misclassification rates, sensitivities, and specificities, along with 
their standard errors, obtained from the 50 splits are reported in Table 5. We see that 
the average test error for the proposed methods are comparable to that of MGSDA 
and MSDA, but are better than that of PLDA. MGSDA identifies fewer predictors, 
which agrees with the simulation results where it had high specificities and low sensi-
tivities. For differentiating MDD patients from healthy controls, the proposed meth-
ods showed high sensitivity (CISELDA: 80.37, CISESIR: 84.62) and moderate to high 

Table 4  Simulation results for model 3

� is as defined in (10); TPR is the true positive rate; FPR is the false positive rate; MSR is the misclassification rate over a test 
set of 900 observations. Note again, TPR and FPR are with respect to variable selection. The reported numbers are averages 
over 50 repetitions

Model 3

(ρ , p) CISESIR CISELDA MGSDA PLDA MSDA

(0.5, 50) � 0.590 0.489 0.690 0.215 0.677

MSR 0.208 0.086 0.111 0.080 0.100

TPR 0.960 0.994 0.956 0.998 0.950

FPR 0.357 0.102 0.090 0.204 0.118

(0.5, 500) � 0.438 0.536 0.746 0.241 0.683

MSR 0.091 0.092 0.122 0.085 0.100

TPR 0.978 0.990 0.924 1.000 0.942

FPR 0.030 0.017 0.013 0.076 0.011

(0.5, 1000) � 0.322 0.302 0.751 0.218 0.749

MSR 0.080 0.081 0.119 0.076 0.096

TPR 0.994 1.000 0.922 1.000 0.900

FPR 0.019 0.014 0.010 0.023 0.008

(0.9, 50) � 0.514 0.602 1.050 0.126 0.833

MSR 0.070 0.069 0.097 0.067 0.077

TPR 0.920 0.970 0.660 1.000 0.874

FPR 0.292 0.082 0.077 0.335 0.059

(0.9, 500) � 0.273 0.390 1.048 0.229 0.814

MSR 0.064 0.069 0.095 0.067 0.073

TPR 0.988 1.000 0.638 1.000 0.868

FPR 0.021 0.033 0.009 0.291 0.004

(0.9, 1000) � 0.492 0.228 1.047 0.185 0.772

MSR 0.068 0.065 0.096 0.064 0.066

TPR 1.000 1.000 0.652 1.000 0.850

FPR 0.033 0.017 0.003 0.131 0.006
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specificities (CISELDA: 83.20, CISESIR: 72.27). Of the competing methods, PLDA 
had low specificity. Of note, these sensitivies and specificities were obtained compar-
ing the observed class from the test data with the predicted class obtained using near-
est centroid, and averaging over 50 data splits.

We also investigate the metabolites identified by the proposed methods and how they 
may relate to depression. Here, we consider only metabolites that are selected all 50 
times, a potential indication of the ability of these metabolites to contribute most to the 
differentiation of subjects with and without depression symptoms. When this was used, 
14 metabolites (2-hydroxyglutaric acid, 2-hydroxyvaleric acid, asparagine, creatinine, 
dodecanol, gluconic acid, glutamine, hydroxylamine, itaconic acid, lactamide, lysine, 
malic acid, palmitic acid, and p-cresol) were selected by CISELDA for the separation 
between MDD and healthy controls, 12 metabolites (2-hydroxyglutaric acid, 2-hydroxy-
valeric acid, asparagine, creatinine, dodecanol, glutamine, hydroxylamine, itaconic acid, 
lactamide, malic acid, palmitic acid, and p-cresol) where selected by CISESIR, 8 metab-
olites (asparagine creatinine, dodecanol, glutamine, lactamide, malic acid, palmitic 
acid, and p-cresol ) were selected by MGSDA, 10 metabolites (asparagine, creatinine, 
dodecanol, fructose, glutamine, hydroxylamine, lactamide, oxoproline, palmitic acid, 
and p-cresol) were selected by MSDA, and 90 meatabolites were selected by PLDA, of 
which CISELDA is a subset. Note that the 8 metabolites identified by MGSDA are sub-
sets of CISESIR and CISESLDA. We report the log2 transformed intensity data for the 
metabolites identified by CISELDA for patients with depression symptoms compared to 
patients with no depression symptoms (right panel of Fig. 1).

Some of the metabolite biomarker candidates identified by our methods have been 
suggested to be depression-related compounds. For example, glutamine, which was 
significantly reduced for patients in our data - confirming other studies reporting that 
depressed patients had reduced levels of glutamine/glutamate [32], is suggested to be 
implicated in the pathophysiologic mechanisms of MDD [33, 34].

We also conduct pathway enrichment analaysis using MetaboAnalyst 3.3 for possi-
ble connections between these metabolites (http://​www.​metab​oanal​yst.​ca/​faces/​Modul​
eView.​xhtml). With a false discovery rate of 0.05, CISELDA, CISESIR, and MSDA iden-
tified the nitrogen metabolic pathway to be significantly enriched with three metabo-
lites (Hydroxylamine, Glutamine, and Asparagine) in our list belonging to this pathway. 
Meanwhile, no pathway reached the FDR threshold for MGSDA. On the other hand, 

Table 5  Average misclassification rates and number of variables selected for the depression study

Averages are over 50 repetitions of randomly splitting the data into training (63 observations) and testing (31 observations). 
Reported average error rates are obtained from the test sets

Method Mean test error Mean Mean Selected 
metabolites 
(SE)

Sensitivity (%) Specificity (%) β̂

CISESIR 0.1955 (0.0150) 84.62 (2.63) 72.27 (3.71) 40.540 (2.634)

CISELDA 0.1659 (0.0095) 80.37 (2.32) 83.20 (2.32) 26.280 (1.828)

MGSDA 0.1639 (0.0093) 84.62 (1.36) 81.47 (2.02) 16.129 (0.772)

PLDA 0.2484 (0.0093) 89.62 (0.97) 59.73 (2.36) 78.200 (2.797)

MSDA 0.1458 (0.0068) 84.75 (1.20) 86.13 (1.50) 58.480 (3.770)

http://www.metaboanalyst.ca/faces/ModuleView.xhtml
http://www.metaboanalyst.ca/faces/ModuleView.xhtml
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8 pathways including the nitrogen pathway reached FDR threshold for the candidate 
metabolites identified by PLDA; this is not surprising since PLDA identified more 
metabolites. The nitrogen pathway plays an important role in the metabolism of nitro-
gen into other compounds that are essential for human survival.

RNA‑seq data

In this example, we demonstrate the ability of the methods to identify features for dis-
criminative purposes when there are more than two groups and when the number of 
variables is high. Advances and improvements in technology and decreasing cost of next-
generation sequencing have made RNA sequencing (RNA-seq) a widely used method 
for gene expression studies. We used RNA-seq data on Drosophila Melanogaster (Fly) 
[35] downloaded from ReCount database [36]. Features with more than half their values 
being zero were filtered out. The remaining features with zero values were truncated at 
0.5 and the data were then log-transformed. We filtered out features with low variances, 
resulting in p = 12, 046 dimensions. Finally, the data were normalized to have equal 
medians for each sample, and mean zero and unit variance for each feature. There were 
four fly classes: Class 1 consisted of all embryos; Class 2 consisted of all larvae; Class 3 
consisted of all white prepupae; and Class 4 consisted of all adult flies. The data set con-
sists of a total of n = 147 samples. We split the data to 99 training set and 48 test set pro-
portionately. The rest of the analysis was carried out similarly to the depression example.

In Table 6 we report the classification performance in terms of average test misclas-
sification rates. The proposed methods are competitive achieving similar or better clas-
sification accuracy when compared to the competing methods. In terms of variable 
selection, it is noticeable that MGSDA is most sparse, with PLDA being least sparse. 
This result is consistent with the simulation results where MGSDA had high specificities 
and low sensitivities. Figure 2 is a visual representation of one random split of the testing 
data projected onto the estimated sparse discriminant subspaces. It can be observed that 

Fig. 1  Left panel: ROC curve for the depression study data. Average AUC for CISELDA, CISESIR, MGSDA, 
MSDA, and PLDA are respectively 0.89, 0.94,0.91, 0.93, and 0.92. Right panel: Bar graphs of the log2 intensities 
for metabolites identified by CISELDA
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the classes are well separated. MSDA took too long to run for this data. Therefore, the 
results for this method are not reported.

Riboflavin production data

Here, we apply the proposed method on data with continuous response variable. The 
data concerns riboflavin (vitamin B2) production with B. subtilis. We obtained the data 
from [37]. Please refer to the Data Availability Study for where to download the ribofla-
vin data. There is a single real-valued response variable, which is the logarithm of the 
riboflavin production rate, and p = 4088 (co)variables that measure the logarithm of the 

Table 6  Average misclassification rates and number of variables selected for the RNA-seq study

Averages are over 50 repetitions of randomly splitting the data into training (99 observations) and testing (48 observations). 
Reported average error rates are obtained from the test sets

Method Mean test error # of variables selected

β̂1 β̂2 β̂3

CISESIR 0.005 (0.0218) 352.26 352.26 352.26

CISELDA 0.002 (0.0147) 297.63 297.63 297.63

MGSDA 0.007 (0.0024) 4.30 4.30 4.30

PLDA 0.058 (0.0094) 6774.9 5225.3 5476.8

MSDA – –

Fig. 2  RNA-seq test set projected onto estimated discriminant vectors. Top-right panel: CISESIR; Top-left 
panel: CISELDA; Bottom-right panel: MGSDA; Bottom-left panel: PLDA
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expression level of 4088 genes; these gene expression profiles were normalized using the 
default in the R package affy [38]. The data consist of n = 71 samples that were hybrid-
ized repeatedly during a fed-batch fermentation process in which different engineered 
strains and strains grown under different fermentation conditions were analyzed. We 
refer interested readers to [37] for more details.

Next, we estimate the structural dimension, which we find to be d̂ = 1 . Following, we 
randomly split the data into 50 training and 21 test samples. Then, we apply the pro-
posed method on the training samples to obtain an estimate of the direction that span 
the central subspace, v̂1 , and project both the training and the test samples to this esti-
mated direction to obtain the corresponding sufficient predictors, v⊤1 Xtrain and v⊤1 Xtrain . 
Figure  3 depicts the sufficient summary plots. We also repeated the foregoing proce-
dure 50 times and counted the number of times each gene was selected, i.e. had a cor-
responding non-zero estimated coefficient in v̂1 . We find that the following nine genes 
were selected in 80% of the replications: XHLA_at, YCGO_at, YHDX_r_at, YRZI_r_at, 
YTGD_at, YCKE_at, YXLD_at, YCDH_at, GAPB_at.

Summary and conclusion
We have introduced a novel sparse estimation method for the population reduction 
vectors in semi-parametric multi-index models using the sliced inverse regression [1]. 
Unlike most existing methods in this literature that follow the sequential estimation 
fashion, our proposed method yields simultaneous estimation of the reduction vectors. 
The estimated dimension reduction matrix is row-sparse and thus leads to coordinate-
independent sparse estimates, in the sense that the selected predictors are the same 
under any orthogonal transformation of the reduction vectors that span the subspace of 
interest, making it appealing for variable screening. The proposed method extends the 
scope of the popular sliced inverse regression for dimension reduction [1] to the high-
dimensional setting. We carried out extensive simulations and applications to assess the 
effectiveness of the proposed method. Relative to other state of the art methods in the 
literature, our numerical experiments show that our proposed method is competitive 

Fig. 3  Riboflavin production data: left panel plot is the sufficient summary plot (Ytrain versus v̂⊤
1
Xtrain) for the 

50 training samples; right panel is the sufficient summary plot (Ytest versus v̂⊤
1
Xtest) of the 21 test samples
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in prediction performance, and generally yield smaller false positive rates (FPRs) with 
respect to variable selection.

The proposed method was applied to three real datasets including data from a depres-
sion study aimed at identifying metabolites that differentiate patients with major depres-
sive disorder (MDD) symptoms from patients without MDD symptoms. Our results 
show that a number of metabolites including some known to be associated with major 
depression are enriched in the set of metabolites selected by our method.
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