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Results: To address the above mentioned barriers, we have implemented the peptide
design and analysis under Galaxy (PDAUG) package, a Galaxy-based Python powered
collection of tools, workflows, and datasets for rapid in-silico peptide library analysis.

In contrast to existing methods like standard programming libraries or rigid single-
function web-based tools, PDAUG offers an integrated GUI-based toolset, provid-

ing flexibility to build and distribute reproducible pipelines and workflows without
programming expertise. Finally, we demonstrate the usability of PDAUG in predicting
anticancer properties of peptides using four different feature sets and assess the suit-
ability of various ML algorithms.

Conclusion: PDAUG offers tools for peptide library generation, data visualization,
built-in and public database peptide sequence retrieval, peptide feature calculation,
and machine learning (ML) modeling. Additionally, this toolset facilitates researchers
to combine PDAUG with hundreds of compatible existing Galaxy tools for limitless
analytic strategies.

Introduction

Interest in peptides-related research has been gaining in popularity over the last sev-
eral decades [35]. A large number of naturally occurring peptides (over 7000) with
potentially important roles in human physiology have been identified. Currently,
more than 140 peptide therapeutics are in different stages of clinical trials [17]. In
view of their integral importance in a number of signal transduction pathways, they
are ideal candidates for functioning as drugs, especially as anticancer or antimicrobial
agents [1]. Usually, peptides are naturally occurring molecules that are synthesized by
cellular processes and adopt alternative conformations according to their biological
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functions [35]. Peptides can either act as natural ligands in the form of cofactors,
coenzymes, and hormones, or directly interact with macromolecules including pro-
teins, RNA, or DNA [15]. The research underlying the design of therapeutic peptides,
such as peptide-based drugs and vaccines, demands intense effort and assets for
establishing their pharmacokinetic and pharmacodynamic properties such as serum
stability, bioavailability toxicity, etc. [7, 44]. Peptide-based vaccines have emerged as a
powerful approach to counter infectious diseases and cancer [37]. Characterization of
peptides that bind to specific major histocompatibility complex (MHC) molecules is
therefore of great importance for peptide-based vaccines. However, in comparison to
expensive and lengthy biochemical experiments, bioinformatics methods for predict-
ing MHC binding peptides have been very popular in recent years [24, 28, 45]. Vari-
ous computational approaches have been shown to offer the best cost—benefit ratio
across translational research areas [50, 59, 60]. Leveraging in-silico approaches to
uncover peptides with desired pharmacological action can be expected to significantly
lower the cost and time required to establish a drug or a vaccine candidate [34]. In
fact, computational predictions of peptides with desired functions have been provid-
ing effective alternatives to traditional methods in peptide research, thus saving time
and effort [5, 22, 25, 33, 39, 52]. The concept of prioritizing sequence-based proper-
ties of a protein sequence as a function of sequence-derived features is not new [29].
Over the past decade, approaches based on physicochemical, compositional proper-
ties, k-mer counting, etc. have been proposed [10, 51, 62]. With the rise of computa-
tional power, feature-based methods have evolved substantially, expanding into the
analysis of 3D structure level of biomolecules [23]. However, necessary programming
and mathematics expertise, as well as limitations in hardware resources, are among
the core challenges associated with utilizing programming-based resources [30, 49].
Web-based data analysis platforms, such as Galaxy [2, 19, 26], have been provid-
ing a user-friendly solution to enable researchers to include advanced data analysis
methods in their work. Galaxy is an open-source, web-based platform for accessible,
reproducible, and transparent computational research. It provides a wealth of com-
putational tools, workflows, and training materials for advance data visualization and
analysis.

In this paper, we present PDAUG, a Galaxy tool suite that includes 24 different tools
for the analysis of peptide libraries. The main objective of this paper is to provide a set of
user-friendly tools for peptide library generation, visualization, machine learning (ML)
modeling and analysis. PDAUG provides user-friendly tools in various categories includ-
ing peptide library generation, feature analysis, data visualization and plotting, ML mod-
eling, and dataset retrieval. These modular command-line tools leverage the Galaxy
platform to provide an interactive graphical interface for each tool as well as an expand-
able set of workflows for peptide data representation and analysis. Individual tools rely
on pandas dataframes to handle the data matrices, with tabular and FASTA formats for
input/output (IO) operations. Data formats were chosen for PDAUG to complement the
strengths of Galaxy’s existing toolsets and to enhance usability.

Tests have been defined for each tool to maintain reliable and reproducible results. In
addition, we have produced an interactive Galaxy tutorial for each example workflow
used in this article, which demonstrates the functionality and usability of this toolset.
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Finally, we utilized this toolset to assess a suitable combination of features and ML algo-
rithms in predicting the anti-cancer properties of peptides to demonstrate the usability

of this toolset in peptide research.

Implementation

A graphical overview of PDAUG has been described in Fig. 1. Galaxy tools depend on
two components, (1) an underlying software dependency, usually programming scripts
or command-line tools that perform all the algorithmic tasks under the hood, Fig. 1A,
and (2) an extensible markup language (XML) wrapper that describes the user interface
and contains the commands to execute software tools. Figure 1B. By default, Galaxy
automatically generates a separate conda environment for each combination of under-
lying dependencies for every tool, ensuring versioned reproducibility. All other com-
plex tasks, such as job submission, database management, web-server, workflow, etc.,
are handled by the Galaxy platform, but can be delegated to third-party resources by
an administrator, Fig. 1C, D. PDAUG tools are categorized into 9 different categories
based on their functionalities. Implementation details for each tool have been included
in Table 1, and important Python packages have been highlighted.

Programming languages

Due to its popularity among the scientific community, Python has been chosen to
implement the functions and backend scripts for these Galaxy tools. We have lev-
eraged popular scientific libraries such as NumPy, SciPy, pandas, Matplotlib,
scikit-learn (sklearn), etc. for data manipulation and representation to maintain uni-
formity and simplicity. Galaxy tool wrappers have been designed and uploaded to
the ToolShed [6], enabling point-and-click installation. We also provide a Docker
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Fig. 1 Extending peptide library analysis with the PDAUG toolset inside Galaxy. A Tools are created with
Python libraries. B Implementing Galaxy tool wrappers and tests for each tool. C PDAUG toolset with 24
individual tools. D Implementing reusable workflows using PDAUG
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Table 1 Description of PDAUG tools. PDAUG toolset comprises 24 different tools across 9 functional

categories

Functionality

Tool name

Major libraries used

Data visualization and plotting

Descriptor calculation

Peptide library generation

ML

Circular dichroism (CD) data
analysis

Peptide 3D structure
Core functionality

Peptide data access
Data handling and 10

PDAUG basic plots

PDAUG fishers plot

PDAUG peptide data plotting
PDAUG peptide Ngrams

PDAUG sequence network

PDAUG peptide length distribution
PDAUG uversky plot

PDAUG AA property based peptide
descriptor

PDAUG peptide core descriptors
PDAUG peptide global descriptors

PDAUG sequence property based
descriptors

PDAUG word vector descriptor

PDAUG AA property based peptide
generation

PDAUG sequence based peptide
generation

PDAUG ML models
PDAUG word vector model

PDAUG peptide CD spectral
analysis

PDAUG peptide structure builder
PDAUG peptide sequence analysis
PDAUG peptide core functions
PDAUG peptide data access
PDAUG TSVtoFASTA

PDAUG merge dataframes

PDAUG AddClassLabel

matplotlib*, pandas*, seaborn*,
quantiprot

modIAMP, pandas, pydpi

modIAMP, pandas

sklearn*, matplotlib, seaborn, pandas,
gensim, nltk

modIAMP, pandas

fragbuilder, pandas
modIAMP, pandas

modIAMP, biopython, pandas
pandas

Libraries utilized for functionally important tasks are listed for each tool

*Python libraries used in data science

image containing Galaxy and these tools pre-installed (https://hub.docker.com/r/

jayadevjoshil2/galaxy_pdaug, https://github.com/jaidevjoshi83/docker_pdaug).

Accessing peptide data from pre-populated local and remote web-based resources

In addition to allowing the upload of user-provided datasets, PDAUG has been
equipped with the “PDAUG Peptide Data Access” tool for quick and easy access
to various publicly available peptide datasets. This tool is implemented based on
modlAMP [40] and Biopython [12], and includes antimicrobial peptides (AMPs),
trans-membrane peptides, peptides from the UniProt database, anticancer peptides
(ACPs), helical transmembrane peptides (HTPs) and randomly scrambled AMPs.
Additionally, options have been provided to fetch data directly from two popular
web resources: the antimicrobial peptide database (APD) [57] and the collection of
antimicrobial peptides database (CAMP) [56].
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Peptide library generation

Two tools with several options to generate peptide sequences have been implemented.
These tools provide various methods based on amino acid (AA) and sequence proper-
ties to generate peptide sequence libraries. These peptides with different properties
can be utilized for further analysis inside the Galaxy.

1. PDAUG AA Property-Based Peptide Generation. This tool generates sequences
mostly based on AA properties. The user can generate peptide sequences based on
10 different options including, "AmphipathicArc Peptides” which returns peptides
with presumed amphipathic helices, "AMPngrams Peptides " which returns peptides
from the most frequent n-grams in the APD3 database, "Centrosymmetric Peptides”
which returns centrosymmetric peptide sequences with a symmetry axis, "Helices
Peptides” which returns presumed amphipathic helical peptides, "HelicesACP Pep-
tides" which returns peptides with AA probability similar to helical ACPs, "Kinked
Peptides” which returns peptides with presumed amphipathic helices with a kink,
"Hepahelices Peptides” which returns peptides with presumed amphipathic helices
and a heparin-binding-domain, "Oblique Peptides" which returns presumed oblique
oriented peptides, "Random Peptide”, which returns random peptides with a speci-
fied AA distribution, and "MixedLibrary Peptides " which returns a library of mixed
peptides. Most of the functions of this tool have been implemented on top of mod-
IAMP [40] and pandas libraries.

2. PDAUG Sequence-Based Peptide Generation. This tool generates peptide libraries
based on three different options. The primary method “Random Peptides” is based
on permutation and combinations that perform a search for all the possible combi-
nations of 20 AA within the given length. The second method “Mutated Peptides”
produces the replacement of existing AA with the remaining 19 possibilities at given
positions. The last method “Sliding Window Peptides” takes an input of a protein
sequence and generates random peptide fragments based on a sliding window and

fragment size.

Peptide structure

The tool “PDAUG Peptide Structure Builder” has been implemented to generate a
peptide structure based on the libraries FragBuilder [11] and Open Babel [42]. This
tool can generate peptide sequences of up to 4 AA, which can then further be utilized
in small peptide docking simulations with molecular docking tools inside of Galaxy
such as AutoDock Vina [54].

Peptide descriptor generation

Four different tools have been implemented that calculate more than 10,000 descrip-
tors based on 50 different classes of peptide descriptors for a given peptide sequence.
We have included mathematical details in the Additional file 11: Table S1.
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1. PDAUG Peptide Global Descriptors. This tool calculates simple one-dimensional
peptide descriptors based on 11 different options which include Sequence Length,
Molecular Weight, Sequence Charge, Charge Density, Isoelectric Point, Instability
Index, Aromaticity, Aliphatic Index, Boman Index, Hydrophobic Ratio and All. These
descriptors are important to define the global properties of a peptide sequence and
can be utilized to build ML models to predict biological properties.

2. PDAUG Sequence Property-Based Descriptors. This tool calculates descriptors based
on 13 different options. Option "GetAAComp" calculates AA composition descrip-
tors, "GetDPComp" calculates dipeptide composition descriptors "GetTPComp"
calculates tri-peptide composition descriptors, "GetMoreauBrotoAuto” calculates
normalized Moreau-Broto autocorrelation descriptors, "GetMoranAuto calculates”
moran autocorrelation descriptors, "GetGearyAuto" calculates Geary autocorrelation
descriptors, "GetCTD" calculates composition Transition Distribution descriptors,
"GetPAAC" calculates Type I Pseudo AA composition descriptors, "GetAPAAC"
calculates amphiphilic (Type II) Pseudo AA composition descriptors, "GetSOCN"
calculates sequence order coupling numbers, "GetQSO" calculates quasi sequence
order descriptors, "GetTriad" calculates the conjoint triad features from the protein
sequence and, “BinaryDescriptor” calculates the binary descriptor of peptides with
identical lengths. Lastly, the “All” option calculates all the above descriptors, exclud-
ing binary, with one click. These descriptors are implemented based on the PyDPI
library [8].

3. PDAUG AA Property-Based Peptide Descriptor. This tool calculates descriptors
derived from AA properties based on six different options. "Calculate AutoCor”"
computes descriptors via auto-correlating the AA values. "Calculate CrosCor" com-
putes descriptors via cross-correlating the AA values. "Calculate Movement" com-
putes a descriptor based on the maximum or mean movement of the AA values.
The "Calculate Global” option computes descriptors via calculating global/window
averaging descriptor values. “Calculate Profile” computes descriptors via calculating
hydrophobicity or hydrophobic moment profiles for given sequences and fitting for
slope and intercept. “Calculate Arc” computes descriptors via calculating property
arcs. These descriptors depend upon the given descriptor scale and window size.

4. PDAUG Word Vector Descriptor. Word2vec is a popular technique of word embed-
ding [38, 3] and shows a better performance in protein and peptide classification
over other sequence descriptors [22, 58, 61]. In this toolset, we have included two
tools. The first tool, "PDAUG Word Vector Model", generates a word2vec model that
contains the contextual information for each trigram in the corpus of given protein
sequences. Input protein sequences are referred to as corpus and are utilized to gen-
erate a trigram-based vocabulary. Gensim library [48] is used to apply a continuous
bag of words (CBOW) or skip-gram algorithm to generate a 200-dimensional vector
for each trigram. These 200-dimensional vectors represent the context information
of all the trigrams present in the training. These vectors can be utilized to generate
the descriptor for peptides using the second tool, “PDAUG Word Vector Descriptor”.
A pre-calculated skip-gram word2vec model, generated based on the UniProtKB/
TrEMBL database [22], has been provided with the supplementary data as model.
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txt, which can be utilized directly with the “PDAUG Word Vector Descriptor” tool to
calculate 200 descriptors.

Data visualization and analysis
PDAUG contains several data visualization tools for both sequence and feature-based
data representations.

1. PDAUG Basic Plots. This tool is equipped with four different options to plot the data
in tabular and FASTA formats. Four different options, "Heat Map", "Box Plot", "Scat-
ter Plot", and "Word Cloud" have been provided for standard data visualization.

2. PDAUG Fisher’s Plot. Fisher’s plot has been implemented to assess two peptide
sequences based on their feature spaces. In principle, Fisher’s plot compares two
peptide sequences in two-dimensional spaces, defined by quantitative features of
peptide sequences. This tool computes Fisher’s exact test on a local and global ratio
of peptide sequence in a feature space where the global and local ratio is computed
either in the whole feature space or in a feature space belonging to each set. This tool
is implemented based on the Quantiprot [32] package and can be utilized to compare
two peptide libraries.

3. PDAUG Peptide Data Plotting. Four different plotting options have been provided
in this tool. The “Helical Wheel” option plots a helical wheel plot for a given peptide
sequence. The “Probability Density Estimation” option plots probability density esti-
mations of given data vectors. The “Violin Plot” option creates a violin plot from the
given data array. The “Amino Acid Distribution” option plots the amino acid distribu-
tion of a given sequence library.

4. PDAUG Peptide Ngrams. Distribution of n-grams varies from sequence to sequence
with different AA compositions that affect the property of peptide sequences. This
tool counts n-grams in the entire peptide sequence data and fits their distribution
with Zipf’s law, also known as the power-law distribution [32].

5. PDAUG Sequence Similarity Network. This tool calculates the Levenshtein distance
between peptide sequences, and plots the data in the form of a sequence similar-
ity network. A dispersed and multiply-clustered network represents less similarity
between sequences. Conversely, a network that is compact and has a smaller number
of clusters represents high sequence similarity between sequences [4].

6. PDAUG Uversky Plot. The Uversky plot separates proteins into globular and intrinsi-
cally disordered protein subsets on the basis of their mean net charge versus mean
hydropathy [55]. Uversky plot has been implemented under the tool name “PDAUG
Uversky Plot”, where users can compare two different peptide libraries on the basis of
their globular and intrinsically disordered properties [32].

7. Summary Plot. Summary plot options of the “PDAUG Peptide Sequence Analysis”
tool consist of six subplots for an overall summary of peptide libraries based on AA
fractions, global charge fraction, sequence length distribution, global hydrophobicity,
and hydrophobic movement.

8. PDAUG Peptide Core Functions. This tool is equipped with four options. The
“Mutate Amino Acids” option randomly mutates amino acids at the several posi-
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tions per sequence with a given probability value. The “Filter Duplicates” option
removes duplicate sequences from a library. The “Keep NaturalAA” option filters
out sequences with unnatural AA. And the “Filter Amino Acids” option filters out
sequences with user-specified AA.

9. PDAUG Peptide Sequence Analysis. This tool provides functionality to calculate sev-
eral important sequence-based properties such as AA frequency, global hydropho-
bicity, hydrophobic moments, total molecular charge, and sequence length.

ML model building, cross-validation, and accuracy assessment

PDAUG provides standard utilities for ML modeling and model selection via “PDAUG
ML Models” tools. These tools can classify peptides in a binary fashion and predict dif-
ferent peptide classes. A total of seven different supervised algorithms and one artifi-
cial neural network algorithm have been implemented. These include logistic regression
classifier (LRC) [53], Gaussian Naive—Bayes classifier (GNBC) [18], K-nearest neighbor
classifier (KNBC) [14], decision-tree classifier (DTC) [27], Support vector machines
classifier (SVMC) [13], random forest classifier (RFC) [36], gradient boosting classifier
(GBC) [41], Stochastic gradient descent classifier (SGDC) [63], and multilayer percep-
tron (MLP) [46]. Cross-validation has been included in our methodology for accuracy
estimation [31]. The Performance of an ML algorithm is commonly assessed by several
metrics. (a) Precision, also known as the probability of positive values (PPV), is summa-
rized as the probability of currently predicted positive instances and estimated on the
basis of true positive (TP) and False positive (FP). (b) Recall, also known as sensitivity, is
defined as the estimation of the percentage of the correctly predicted positive instances
and is also calculated with TP and FP. (c) FI-measure is also an important estimate of
model accuracy and can be defined as a harmonic mean of precision. The value for each
of these three estimates falls between 0 and 1, with larger values indicating better per-
formance and better accuracy. (d) Accuracy is described as correctly predicted instances
and calculated on the basis of TP and true negative (TN) divided by TP, TN, FP, and false
negative (FN). () AUC is Area under the ROC curve, where ROC is a receiver operating
characteristic. AUC represents the area covered by ROC.

Two normalization methods, max—min and z-scaling, to optionally normalize the data
before computational modeling is also implemented. Four different options, “Internal
Test’, “Train-Test Split”, “External Test Data’, which enables the inclusion of a separate
data file as a testing data set other than training data, and “Predict unknown” have been
implemented to test generated models.

Circular dichroism spectral data analysis

Circular dichroism (CD) is a technique used to potentially determine the secondary
structure and folding properties of proteins [47]. We have included “PDAUG Peptide
CD Spectral Analysis’, a tool based on the modlAMP and pandas libraries, that can be
used to analyze CD spectroscopy of peptides data in different solvents. This tool han-
dles CD data based on 4 different options. The “Calculate Ellipticity” option calculates
molar ellipticity and mean residue ellipticity for all the tabular data provided. The “Gen-
erate CD Plots” option generates the CD plots. The “Save Data in DichroWeb Readable
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Format" option converts and returns data into DichroWeb compatible format. The “Cal-
culate the Percent of Helicity” option calculates percentage of helicity based on mean
residue ellipticity data.

10 operations

These tools were implemented based on the pandas dataframe for seamless data opera-
tion between the various tools. We have included three tools to handle and manipulate
FASTA and tabular data files. “PDAUG TSVtoFASTA” tool changes the input data for-
mats from tabular to FASTA and splits the data on the basis of their class label in sepa-
rate FASTA files. The “PDAUG AddClassLabel” tool adds the desired class label to the
samples in a dataframe. The last tool in this category is “PDAUG Merge Dataframes”
which merges two user-provided dataframes. This simplifies IO operations allowing
PDAUG to interact with other existing Galaxy tools.

ML workflow for the example dataset

A high-quality peptide dataset was extracted from a previously published work [21].
Four different types of descriptor sets have been used to construct ML models which
include (1) Composition, Transition, Distribution descriptors (CTD), (2) Geary autocor-
relation descriptors (GearyAuto), (3) Moran autocorrelation descriptors (MoranAuto),
and (4) Word Vector descriptor. A total number of 140, 200, 200, and 200 descriptors
have been calculated, respectively.

Six ML algorithms, LRC, RFC, GBC, DTC, SGDC, and SVMC, have been applied
to the training dataset and tenfold cross-validation was used for accuracy estimation
(Kohavi 1995). Data normalization was applied to the data before ML modeling and the
effect of normalization was assessed on ML models. The entire workflow was applied to
the four descriptor sets and the performance was estimated based on accuracy, preci-
sion, recall, f1-score, and AUC scores.

Result and discussion

PDAUG has been developed for peptide library analysis to meet the increasing popu-
larity of the design and screening of large peptide libraries. Traditional peptide library
design and analysis is labor-intensive work that requires bioinformatics methods to ena-
ble scalable alternatives. To maximize accessibility and impact, we have released PDAUG
as a set of Galaxy tools, enabling web-based access and sharing of tools, pipelines, and
analysis results. For more details such as functionality and implementation details please
refer to Table 1.

ML modeling of example anticancer/non-anticancer peptide dataset

To demonstrate the usability of the PDAUG toolset, we have presented a case study in
which ML models have been built that can predict peptides with anti-cancer properties.
We have collected a high-quality dataset that was extracted from a previously published
work [21]. Initial data contains 192 anticancer peptides ACPs and 215 non-ACPs. The
example dataset was cleaned as described in previously published work [52] in order to
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Fig. 2 Sequence length distributions for the anticancer peptide and non-anticancer peptides. Mean lengths
of anticancer and non-anticancer peptides are 40.06 and 32.25 AA, respectively, with less variability in length
shown among the anticancer peptides

ACPs . s non-ACPs

.
.

Fig. 3 Sequence similarity network of the ACPs and non-ACPs. In comparison to the non-ACPs peptides,
ACPs show two compact clusters that indicate a relatively high sequence similarity. In case of non-ACPs,
relatively scattered networks have been observed

remove redundancy and improve the data quality. Finally, a total number of 138 ACPs
and 138 non-ACP sequences were selected for the final training data set.

Figure 2 describes the length distribution of the ACP and non-ACP sequences. Mean
lengths of ACPs and non-ACPs are observed somewhere in the range of 32—-40 AA. The
sequence similarity network calculated by Levenshtein distance algorithms shows two
compact clusters in the ACP dataset, conversely, a comparatively scattered network is
observed in the case of the non-ACP dataset. The sequence similarity network shows
relatively fewer diverse sequences in the ACP data set in comparison to the non-ACP
sequence (Fig. 3). A detailed summary plot, which compares ACPs and non-ACPs based
on their AA fraction, global hydrophobicity, global hydrophobic movement, and global
charge, was created with the help of the “PDAUG Peptide Sequence Analysis” tool. The
results suggest a significant difference in the frequency distribution of G, I, K, and L AA
between the two datasets Fig. 4A. Global charge distribution, Fig. 4B, shows that ACPs
depict a relatively higher positive global charge in comparison to non-ACPs, which
tend to hold a relatively higher global negative charge. In addition to this, higher global
hydrophobicity and hydrophobic movement have been observed in Fig. 4D, E respec-
tively, in the case of ACPs. ACPs and non-ACPs show separation when plotted on the
basis of their global hydrophobicity, global hydrophobic movement, and global change
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Fig. 4 ACPs and non-ACPs datasets were compared and represented with a summary plot. A AA frequency
distribution plot shows a significant difference in the frequency distribution of G, |, K, and L AA between ACPs
and non-ACPs. B Global charge distribution shows a higher positive charge among the ACPs, while overall
higher negative charge occurs among non-ACPs sequences. C There are no significant differences observed
in the length distribution of ACPs and non-ACPs, except few outliers. D ACPs and non-ACPs show differences
in global hydrophobicity. E A relatively smaller hydrophobic moment has been observed in the non-ACPs

in comparison to the ACPs. F 3D scatter plot of global hydrophobicity, global hydrophobic movement and
global charge showed separation between ACPs and non-ACPs

on a 3D scatter plot, Fig. 4F. Fisher’s test was used to explore the feature space expressed
by hydropathy and the volume of AA. The example data set depicts a significant over-
representation of ACP sequences with larger hydrophobic AA. On the other hand, in
Fig. 5 we can clearly observe that smaller hydrophilic residues are more frequent among

sequences present in non-ACP groups.

ML modeling results

The accuracy and performance of all algorithms greatly depend upon the robustness
of the training parameters, size and complexity of the test dataset. Supervised classi-
fication methods have been commonly used to construct statistical models to predict
across an unknown dataset based on a trained model. In this study, we have used com-
mon performance measures, which includes, precision, recall, f1, measure, accuracy and
AUC, to evaluate the performance of the enlisted ML algorithms. Details of these per-
formance measures have been already included in the implementation section. Results
suggest that data normalization plays an important role in ML modeling and improves
the performance of various ML algorithms. In Fig. 6, we can clearly observe that nor-
malization significantly improves the performance of almost all of the algorithms except
RFC, which is not affected by normalization in this study (Fig. 6). The descriptor set is an
important factor that plays a crucial role in the performance of the ML algorithms. Here
we examined the effect of different descriptors on an ML algorithm and vice versa. First,
the impact of descriptors on the ML performance was assessed, and we found that ML
algorithms exhibit comparatively higher performance when trained on CTD descriptors,
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Fig. 5 Feature space visualization of ACPs and non-ACPs. ACPs and non-ACPs in the feature space
represented by their mean hydropathy and AA volume. The sequences with larger hydrophobic AA are more
frequent in ACPs in comparison to non-ACPs

in comparison to Moran and Geary Autocorrelation descriptors. Additionally, a rela-
tively higher positive effect of normalization was also observed if the model was trained
on CTD descriptors in comparison to the models trained on other two descriptor sets
(Fig. 6). We found that SGDC is very sensitive to normalization and exhibits a significant
improvement in the performance when trained on different descriptor sets. Conversely,
as described earlier, RFC shows less sensitivity to normalization and remains almost
unaffected when trained on different descriptor sets. The other three algorithms, GBC,
SVM, and LRC showed improved (Fig. 6) performance after normalization in the case of
all the three previously mentioned descriptor sets. Interestingly, Word Vector descrip-
tors, which are commonly used in natural language processing and adopted here to cal-
culate text-based descriptors for ML modeling, outperformed models trained on other
descriptor sets in order to classify peptide sequences. We can clearly observe in Fig. 6
that almost all of the algorithms depict model accuracy close to 1.0 for each accuracy
measure when trained on the Word Vector descriptor set, in comparison to the other
three descriptor sets (Fig. 6). Results clearly indicate that the Word Vector descriptors
outperformed all the other three descriptor sets, and exhibits relatively high accuracy
in ML model building for this study. Workflows for each analysis, including ML mod-
eling with the sequence-based descriptors (Additional file 1: Fig. S1), ML modeling with
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without z-scaling normalization. Results suggest that the models trained on the word vector descriptors
perform superior to the models trained on other descriptors

word vector descriptors (Additional file 1: Fig. S2), and peptide library analysis workflow
(Additional file 1: Fig. S3), are provided along with the example dataset as supplemen-
tary material.

Many efforts have been made by researchers to provide various web-based tools and
programming libraries such as ifeature server (https://ifeature.erc.monash.edu/) [9],
which provides a web interface and Python package to calculate descriptors. Program-
ming libraries such as PyBioMed [16], modLamp [40], PepFun [43], and PyDPI [8] pro-
vide various functions to analyze data and solve challenges in peptide research. Public
web servers are excellent in terms of accessibility and ease of use,however, they are often
not very helpful in creating complex workflows and pipelines. On the other hand, pro-
gramming libraries provide freedom to create complex pipelines and workflows, but
due to the lack of programming expertise, it’s not easy for everyone to use them [20].
Since PDAUG is developed on top of the Galaxy platform, it addresses all of the above-
mentioned challenges. PDAUG is equipped with standard and advanced algorithms for
peptide library generation, descriptor calculation, ML modeling, and data visualization.
These essential functionalities have been provided in a single toolset in such a way that
they can be utilized to create complex, flexible, and reproducible workflows without the
knowledge of programming nor the requirement of any other resources. In addition to
this, users can combine other Galaxy community tools from the ToolShed in PDAUG
workflows to extend their analysis.
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However, despite the above-mentioned features, we believe that there are some limi-
tations of the PDAUG toolset that can be addressed in the future, thus offering scope
for new researchers and for us to amend and improve the toolset. Deep learning algo-
rithms are increasingly popular, and in several studies, they outperformed classical ML
algorithms. Currently, we have not included any deep learning methods in this toolset.
Similarly, 3D structure prediction is currently restricted to peptides with 3 AA due to
limitations of the underlying algorithm. In our current implementation, descriptor cal-
culation methods rely only on the sequence-based features, therefore, there is an absence
of a method that can directly account for structural features of a peptide sequence.

Conclusion

PDAUG leverages the Galaxy platform to provide a user-friendly, reproducible peptide
analysis environment. Researchers are able to assess the impact of differing tools, meth-
ods and algorithms, and can share and distribute their results and workflows. This tool-
set provides researchers with access to GUI based tools for peptide library generation,
feature analysis, data visualization and plotting, ML modeling, and dataset retrieval.
PDAUG is released as an open-source toolset under the MIT license with source code
available from https://github.com/jaidevjoshi83/pdaug. Installation of PDAUG into a
researcher’s Galaxy instance can be achieved using a point-and-click interface from the
ToolShed. A Docker image containing a PDAUG Galaxy system can also be obtained
from https://hub.docker.com/r/jayadevjoshil2/galaxy_pdaug (https://github.com/jaide
vjoshi83/docker_pdaug). Two interactive tutorials featuring this toolset, including work-
flows and sample datasets, combined with a detailed explanation of various tools, are
available from https://training.galaxyproject.org/training-material/topics/proteomics/
tutorials/peptide-library-data-analysis/tutorial.html and https://training.galaxyproject.
org/training-material/topics/proteomics/tutorials/ml-modeling-of-anti-cancer-pepti
des/tutorial. html. A PDF version of these tutorials is also provided within the supple-
mentary data.

Availability and requirements

Project name: PDAUG

Project home page: https://github.com/jaidevjoshi83/pdaug.git
Operating system(s): Platform independent

Programming language: Python

Other requirements: Galaxy

License: MIT
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