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Abstract 

Background:  Finding correlation patterns is an important goal of analyzing biological 
data. Currently available methods for correlation analysis mainly use non-direct associa‑
tions, such as the Pearson correlation coefficient, and focus on the interpretation of 
networks at the level of modules. For biological objects such as genes, their collective 
function depends on pairwise gene-to-gene interactions. However, a large amount 
of redundant results from module level methods often necessitate further detailed 
analysis of gene interactions. New approaches of measuring direct associations among 
variables, such as the part mutual information (PMI), may help us better interpret the 
correlation pattern of biological data at the level of variable pairs.

Results:  We use PMI to calculate gene co-expression networks of cancer mRNA tran‑
scriptome data. Our results show that the PMI-based networks with fewer edges could 
represent the correlation pattern and are robust across biological conditions. The PMI-
based networks recall significantly more important parts of omics defined gene-pair 
relationships than the Pearson Correlation Coefficient (PCC)-based networks. Based on 
the scores derived from PMI-recalled copy number variation or DNA methylation gene-
pairs, the patients with cancer can be divided into groups with significant differences 
on disease specific survival.

Conclusions:  PMI, measuring direct associations between variables, extracts more 
important biological relationships at the level of gene pairs than conventional indi‑
rect association measures do. It can be used to refine module level results from other 
correlation methods. Particularly, PMI is beneficial to analysis of biological data of the 
complicated systems, for example, cancer transcriptome data.

Keywords:  Correlation analysis, Direct association, Part mutual information, Multiple 
omics integration, Cancer survival analysis
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Introduction
In the era of big data, life science research has produced vast amounts of data from dif-
ferent aspects of the biological systems. These aspects are usually referred to as omics 
such as genomics and transcriptomics. The complexity of a biological issue, such as 
cancer progression, requires integration and systematic analysis of data from multiple 
omics. Current studies mainly center on gene expression because of their direct contri-
butions to the phenotype of the research object. A study often aims to find which gene 
can be used as a target to perturb a biological system of interest. In this case, the cor-
relation pattern of gene expression will be the key for the multi-omics integration as it 
is either the results of the regulations from other omics or the reasons contributing to 
the states of other omics. The correlation pattern of gene expression, also referred to 
as a correlation network, is usually represented as an indirect graph where the genes 
are nodes and the inter-gene correlations are edges. The edges in a correlation network 
are defined by correlation measures, such as the Pearson Correlation Coefficient (PCC), 
and Spearman Correlation Coefficient (SCC), etc. To obtain important genes from the 
correlation network, a frequently used method is to extract network modules. A net-
work module on the gene correlation network is a set of genes that have high internal 
correlation but are relatively isolated from the other parts of the whole network. A set 
of genes forming one network module indicates that they may be regulated by similar 
mechanisms and contribute to common biological functions. This module level correla-
tion analysis has been remarkably successful in interpreting gene expression data. The 
most popular algorithm for network module extraction is the Weight correlation net-
work analysis (WGCNA). WGCNA uses correlation measures such as PCC to initialize 
the whole network, and uses the topological overlay measures for module extraction. 
This method can give robust results at the module level [1].

However, the module level interpretation of gene expression data lacks detailed 
analysis at the gene-pair level. The implementation of biological function relies on the 
cooperation of genes. The basic functional unit of a biological system is the relation-
ship between a pair of genes defined by omics. For example, a transcriptional regula-
tion relationship is a transcription factor regulates a target gene. The protein–protein 
interactome consists of thousands of relationships of two proteins that interact with 
each other. Obviously, the expression pattern of genes is highly related to those omics 
defined relationships. Hence, analyzing the correlation pattern of gene expression at the 
gene-pair level is necessary to better understand biological functions and to enable mul-
tiple omics integration. In the human genome, the real expression relationships among 
genes contains cascading structures, and interweaves into a network. When using cor-
relation measures like PCC, there will be many dense clique-like structures in the result-
ing correlation network, while the real active biological relationship may not be that 
densely organized. This redundancy of edges (gene-pairs) prevents us from finding the 
real important gene or inter-gene relationships. In the meantime, PCC-like correlation 
measures, such as the SCC or biweight midcorrelation are restricted for linear or mono-
tonic correlations. But the real biological relationship may not be satisfied by this math-
ematical assumption.

Partial or semi-partial(part) statistics may be helpful to eliminate redundancy. To 
detect nonmonotonic association, Mutual Information (MI) is a theoretical solution. 
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To overcome these two restrictions at one time, we should use a MI-like multivariate 
statistic for correlation analysis. Part Mutual Information (PMI) is a recently invented 
algorithm that satisfies our requirement. PMI has shown better performance on simu-
lated data based on yeast gene regulatory network than many other algorithms includ-
ing direct association like Conditional Mutual Information (CMI) [2]. PMI calculates the 
correlation network in a very unique way. PMI starts with a fully connected network and 
proceed with checking every PMI value among all combinations of variables then retains 
only the top one [2]. Compared to methods like the partial/part correlation matrix 
calculation implemented by R package ppcor, the PMI network calculation procedure 
may intrinsically consider the heterogeneity of distribution of correlation strength. The 
resulting networks are also sparser [3]. All these mathematical features are combined. 
The theoretical advantage of PMI for biological correlation analysis is promising. But 
as a new algorithm, PMI has not been widely used in real data. The high calculation 
complexity makes it hard to apply PMI to data with the scale of the human genome. 
In the meantime, switching from PCC to PMI in the analysis of correlation patterns of 
biological data raises questions in the multi-omics viewpoint, e.g., what is direct bio-
logical association, and how a direct biological association is different from an indirect 
association, when connecting them to biological mechanisms stemming from multiple 
omics. The mathematical concept of direct association has indicated that the variable-
pairs found by PMI are more important than those found by PCC, because the later one 
is indirect and redundant. We need to understand this difference in a biological context.

In this paper, we apply PMI network calculation procedure to analyze the correlation 
of mRNA transcriptome data of human cancer and confirm that PMI direct associations 
are more biologically significant than PCC indirect associations. We also apply the PMI-
based correlations for cancer survival analysis.

First, we construct PMI networks for the differential co-expression status of chosen 
gene sets using a multiple-stage breast cancer dataset. The results suggest PMI is more 
efficient in capturing important gene-relationships. We calculate PMI networks from 
several subtype cancer datasets, and compare the recall of gene correlation networks 
using PMI or PCC to the omics defined gene-pair relationships. We find that PMI is 
more efficient in recalling these relationships, and that the recalled relationships in the 
PMI network have significantly higher omics defined weights than those in the PCC 
network. Finally, we extracted gene-pairs in PMI networks that match with gene-pair 
relationships defined by copy number variation or DNA methylation in cancer. We then 
test their individual influence on patient survival, and build a simple scoring system to 
classify patient survival. Our results suggest PMI can extract more biologically impor-
tant results at the gene-pair level than PCC. The PMI network calculation procedure 
can provide networks sparse enough and are biological meaningful for further detailed 
analysis at the level of variable pairs. PMI-based correlation analysis will be more helpful 
in the study of complex biological systems with multiple omics.

Results
PMI correlation change network for cancer progression

In the first part, we want to test the performance of PMI extracting biological mean-
ingful gene-pairs in an intuitive way. We want to obtain an optimal PMI network for 



Page 4 of 22Jiang et al. BMC Bioinformatics          (2022) 23:194 

each input data, the PMI network calculation procedure will be repeated with gradually 
increased thresholds until the resulting networks are stable. We collect a breast cancer 
mRNA transcriptome dataset, which contains 2 cancer progression with 4 stages. If we 
directly use the whole genome data to calculate an optimal PMI network, the calculation 
will be too much to finish. To obtain the optimal PMI networks, we divide the whole 
genome into small gene sets by WGCNA module extraction and GO enrichment analy-
sis provided by WebGestalt [1, 4]. Then, we calculate the optimal PMI networks of one 
gene set on each stage of one cancer progression and combine the four networks into 
one integrated network, which hereafter is referred to as the PMI correlation change 
network.

To find the important parts involved in cancer development, we exam a variety of 
detailed structures in a correlation change network and review literatures that report 
their functions in cancer development. In this part, we use the correlation change net-
works of GO:0032609 production of interferon-gamma as an example. This GO term is 
enriched in all stages of ER negative and positive processes (Fig. 1) [5]. When we place 
the nodes by the mean stage values (the average of stage numbers of one node’s edges), 
the well-known immuno-suppressive genes can be observed in the late phase, such as 
EBI3 in ER negative network, and CD274 (PD-L1) and PDCD1LG2 (PD-L2) in ER posi-
tive network [6–8]. There will be several hub nodes in one correlation change network, 
in which some nodes have edges that exist in different stages. These hub node genes, in 
combination with their edge stage patterns, reflect the changes during cancer develop-
ment. For example, XCL1, a chemokine ligand for T cell attraction [7], has 9 neighbors 
in the ER positive network. XCL1 forms a connection with tumor suppressors: IRF8 and 
ITK in early cancer stages [9, 10]. In later stages, CD274 (PD-L1), an immunosuppressor, 
correlates with XCL1. The correlation change network of GO term interferon-gamma 
production gives a reasonable representation of the biological mechanisms of cancer 
progression.

In the meantime, we address the performance and reliability of an optimal PMI net-
work. Specifically, we would like to confirm that the optimal PMI network possess the 
essential part of the correlation in the PCC network for the same input data, even if the 
optimal PMI network is much sparser than the PCC network. Similar to the expression 
of housekeeping genes in a genome, a set of genes, if they are functionally involved in 
broad and a variety of different biologic conditions, will have some constitutive correla-
tions. In the two PMI correlation change networks of GO term interferon-gamma pro-
duction, we observe similar network modules that represent the core function of this 
GO term. These modules consist of 5 genes (CD2, ITK, SASH3, EOMES and IRF8) with 
similar stage composition and topological structure (Fig. 2). CD2 is an antigen expressed 
in all peripheral T cells [7]. ITK is an essential kinase for T cell differentiation and 

Fig. 1  The PMI correlation change network of GO: 0032609. The PMI correlation change network for GO: 
0032609 production of interferon-gamma in ER negative process (a) and ER positive process (b). The nodes 
are placed by the mean stage values of the edges of them from 6 o’clock position by count clock direction. 
The colors of edges represent the different development stages. Edges in one stage only are colored with 
main colors blue (normal), green (cancer stage 1), yellow (cancer stage 2) and red (cancer stage 3). Edges 
in all 4 stages or 3 cancer stages are colored with black. Edges with inconsecutive correlations along the 4 
stages are colored by white and are ignored

(See figure on next page.)
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proliferation [7]. So, a constitutive correlation between CD2 and ITK is reasonable and 
represents the existence of T cells. SASH3 is an adaptor protein, probably downstream 
of the TCR [11]. EOMES is an essential transcriptional factor (TF) for the differentiation 
of effective CD8+ T cell [7]. IRF8 is an interferon regulatory factor with tumor suppres-
sive function [9]. As these 3 genes all relate to (or affect) T cell activity in disease situa-
tion, it’s reasonable that they connect with the CD2-ITK center in cancer stages but not 
in normal situations. Similar network modules can be found in other GO term networks. 
Their existence suggests optimal PMI networks can capture biological mechanisms and 
are effective in giving reproducible results.

PMI correlation is closer to omics defined relationship

We match edges from PMI networks and comparable PCC networks with multiple types 
of omics defined gene-pair relationship, and compare the recalls between PMI and PCC. 
The results of the comparison are summarized in Table 1, the details are listed in sup-
plementary tables. In normal-status omics, including TR, CoTR, PPI and SCGD, both 
PMI and PCC networks nonrandomly recall these relationships in almost all cancer 
subtypes. PMI-recalls have higher nonrandomness and higher weights than comparable 
PCC-recalls, suggesting PMI networks captured more important parts than PCC net-
works. TR and CoTR are directly associated with gene expression. But there are too few 
PMI-recalls of TR in the whole network (Additional file 2: Table S1). Although the PMI-
recalls of CoTR cover a fair share of each network, the unrecalled parts are significantly 
larger than the recalled parts, suggesting the CoTR relationships may lack specificity 
(Additional file 3: Table S2, Additional file 4: Table S3). On the other hand, PMI-recalls 
of SCGD have more edges and significantly lower distance values than the PCC-recalls 
(Additional file 5: Table S4). This contrast suggests that the proximity of a pair of genes 
is one of the differences between PMI direct associations and PCC indirect associations. 
For PPI, the PMI-recalls have more edges and higher nonrandomness than the PCC-
recalls in all cancer subtypes (Additional file 6: Table S5).

Similar contrast between PMI and PCC is also observed in disease-specific omics. We 
look the 4 types of CoCNV (GG, LL, LG and GL). For one pair of genes in one sample, 

Table 1  Summary of PMI-PCC recall comparison

GenePairRelationship NonrandomlyRecall HigherNonrandomness HigherWeights

TR Yes Yes Not defined

TFCoTR Yes Yes Yes

miRCoTR Yes Yes No

PPI Yes Yes Not defined

SCGD Yes Yes Yes

CoCNV-GG Yes Yes Yes

CoCNV-LL Yes Yes Yes

CoCNV-GL No May exclude No

COCNV-LG No May exclude No

CoDM-HH Yes Yes Yes

CODM-LL No Yes Yes

CoDM-HL No No No

CoDM-LH No No No
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PMI-recalls of GG and LL types have higher nonrandomness and higher weight than 
comparable PCC-recalls in almost all cancer subtypes (Additional file 7: Table S6, Addi-
tional file 8: Table S7, Additional file 9: Table S8, Additional file 10: Table S9). While the 
GL and LG types seem to be nonrandomly excluded by PMI in some cancer subtypes, 
this tendency of exclusion is less significant in PCC-recalls (Additional file 7: Table S6, 
Additional file 8: Table S7). For the 4 types of the CoDM, only the HH type is nonran-
domly recalled by PMI networks from each sample in most cancer subtypes, while the 
nonrandomness of recall of the other 3 CoDM types is not very consistent across can-
cer subtypes. PMI-recalls of the HH type of CoDM have higher nonrandomness and 
higher weight than comparable PCC-recalls in most cancer subtypes (Additional file 11: 
Table S10). The LL, HL and LH types of CoDM also have higher weights in PMI-recalls 
than PCC-recalls (Additional file 12: Table S11, Additional file 13: Table S12, Additional 
file 14: Table S13, Additional file 15: Table S14).

In summary, PMI networks recall relationships with higher nonrandomness and 
higher weights than comparable PCC networks, in both normal-status omics and can-
cer-specific omics. These observations prove that the PMI network is generally closer 
to omics relationships, although it is not determinable for one specific PMI edge that is 
dominated by one specific omics defined relationship. We demonstrate that the math-
ematical concept of direct association is more biologically significant.

Cancer survival analysis based on PMI network

We perform univariate survival analysis with the gene-pairs of CoCNV or CoDM from 
PMI networks. Patients are divided into groups by the CoCNV or CoDM types of one 
gene-pair, two groups of patients with significant different survival give one signifi-
cant survival factor. Such as a CoCNV survival factor: Gene1-Gene2 GG > LL, a CoDM 
survival factor: Gene3-Gene4 HH-high > HH-low. Many significant CoCNV or CoDM 
survival factors exist in most cancer subtypes (Additional file 16: Table S15, Additional 
file 17: Table S16, Fig. 3). The CNV and DM status of one gene directly influences the 
gene transcription. So, the CoCNV and CoDM survival factors should impact patient 
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and ORM2 double loss mutation (LL group, 60 samples, blue) have better survival than those with ORM1 and 
ORM2 not changing together group (NC group, 35 samples, orange)
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survival through the changes of gene expression. However, the gene expression levels 
between groups divided by these factors are not significantly different. When we use the 
median value of the expression of these genes to divide patients into low and high expres-
sion groups, the survival statuses of the two groups are usually not significantly different 
from each other. The CNV and DM provide unique information about patient survival 
that cannot be superseded by expression level. The gene-pairs of significant CoCNV or 
CoDM survival factors can be a set of isolated edges scattered on the network or some 
small modules on the network (Fig. 4). Both isolated edges and small modules of factor 
sets can be used to calculate the scores for patients and divide the patients into groups 
with significant differences of survival. The score calculated with more survival factors 
gives better divided patient groups with survival probability (Fig.  5). Cox multivari-
ate analysis with the scores and clinical covariates shows both the CoCNV scores and 
CoDM scores are stronger classification variables than clinical covariates, and the two of 
them can be used together to achieve better classification (Additional file 18: Table S17, 
Additional file 19: Table S18). Only the LUSC00 has sufficient samples for subsampling 
remodel test, the distribution of p-values of the covariates confirmed the consistency of 
results (Additional file 20: Table S19, Additional file 21: Table S20). So, the PMI-recalled 
gene-pairs with CoCNV or CoDM relationships are systematically related to the proba-
bility of cancer survival, and they may influence the mechanisms for cancer progression.

In the meantime, we find a notable difference between CoCNV and CoDM. For 
CoCNV, some genes in the PMI network gene set can classify patients into groups with 
significantly different survival probability by their single gene CNV, such as CTLA4, 
ORM1, and RASAL3 in triple negative breast cancer. When switching from single gene 
CNV to gene-pair CoCNV, many genes have improved significance of survival classifica-
tion (Additional file 22: Table S21). For example, in triple negative breast cancer, PTPN7 
cannot separate patients into groups with significant survival difference. The p-value of 
survival test between PTPN7 gain group and PTPN7 unchanged group is 0.25. When 
cooperating with RASAL3, the PTPN7 and RASAL3 GG group has a significantly better 
survival probability than the NC group with p-value 0.02. This GG group is also more 
significant than the division by single gene RASAL3 (p-value = 0.03). This result suggests 
that the overall influence of CNV in one cancer subtype is an accumulation of the single 
CNV of each gene.

In term of CoDM, the genes that can classify patient survival by their single gene DM 
never show up in the significant CoDM survival factors in all cancer subtypes. For exam-
ple, there are 13 single-significant genes and 47 pair-significant genes in triple negative 
breast cancer without overlap. This result suggests that the impact of DM in one cancer 
subtype consists of two independent parts, a single-gene part and a pair-of-gene part.

Discussion
Correlation analysis plays an important role in the analysis of biological data. Most 
frequently used algorithms focus on obtaining module level interpretation from only 
one type of data. In case of multiple omics integration, there is a need to find impor-
tant pairs of variables (edges) from the correlation networks. Current methods in 
frequent use for correlation analysis give too dense correlation networks. The edges 
in a dense correlation network contain too much redundancy to highlight important 
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pairs of variables. The direct association and causal interaction are two ways to deal 
with redundancy. Among direct associations, PMI has a very unique calculation pro-
cedure that checks all combinations of the input variables, which may be helpful to 
get more meaningful results for biological data. Causal interaction usually refers to 
the directed relationship from TF to target gene. This kind of algorithms often rely on 
special restriction for the structure of co-expression network or take prior knowledge 
of whether a gene is TF. The results of causal interaction detection are supposed to 
be restricted in the field of transcriptional regulation [12]. Considering the above-
mentioned two points, the PMI network calculation procedure seems to be an ideal 
method to detect generally important parts of the biological system. Due to the high 
calculation complexity and unique calculation procedure, PMI has not been widely 
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module (b/e) or combined both of two sets (c/f) in lung squamous cell carcinoma. For both CoCNV and 
CoDM, using more factors (c and f) gives better classification of patient survival
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used in the analysis of biological data. The performance of PMI networks on real 
experiment data needs to be tested. Also, we are interested in learning the differences 
between PCC indirect associations and PMI direct associations as well as their con-
nections to biological relationships. In this paper, we first trialed PMI on expression 
data of WGCNA-GO enriched small gene sets. We show that optimal PMI networks 
can display the whole correlation pattern with fewer edges while retaining important 
core biological relationships. This will be very helpful to uncover important correla-
tions of a pair of genes. So, using PMI to refine the results from traditional algorithms 
is promising.

Based on the assumption that the correlation pattern of gene expression data partly 
matches the relationships defined by omics, we match edge lists from PMI/PCC net-
works and compare their recall status. Although a single specific edge in the PMI net-
work may not fully and precisely match one omics defined gene-pair relationship, the 
whole PMI network is statistically closer to many types of omics defined gene-pair rela-
tionships, as compared to the comparable PCC network. So, PMI direct association is 
indeed more biologically significant than PCC indirect association. A PMI-based cor-
relation network can better represent the correlation pattern of the biological data and is 
more helpful for multi-omics integration.

In the last part, we use gene-pairs with CoCNV or CoDM relationships from the PMI/
PCC networks of cancer subtypes to classify patient survival. In the case of the log rank 
test statistic values of single survival factors, PMI does not show significantly better 
classification than PCC. When we put the gene-pairs of both PMI and PCC significant 
survival factors on a network, we see that PMI covers more isolated edges than PCC. 
Excluding the PCC-only (Green in Fig. 6, Additional file 1: Fig. S1) edges, the network 
does not lose too much module structure. So, when selecting the same number of edges, 
using PMI-based network can cover more groups of genes with different functions, 
which will represent the mechanisms of the entire biological system better.

The ideal multiple omics integration should be to fully model the correspondence 
from the biological relationships to the mathematical relationships of the biological vari-
ables in one biological condition. Although we have proved that PMI-based gene corre-
lations are significantly closer to biological relationships than PCC-based results, we still 
cannot precisely map gene correlations and biological relationships. This ideal modeling 
may be approached by using data with less heterogeneity and higher specificity in a bio-
logical condition. On the other hand, finding the more important parts in the biological 
system is the major task of correlation analysis. For complex human diseases like cancer, 
the changes from normal status to disease status are often driven by the combination 
of a vast number of possible mutations scattered on the whole genome, instead of one 
single dominating factor. In this situation, PMI will be a better choice for the correlation 
analysis.

Our current study focuses on the performance and reliability of a whole calcula-
tion procedure for correlation analysis of real biological data. We do not include more 
comparison with other types of statistics for direct association, because the advan-
tage of PMI network calculation procedure may be the result of combining PMI core 
algorithm definition and the cutting edges by comparing combination numbers of 
PMI calculation and the threshold scanning strategy. The design and modification of 
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these calculation procedure involve too much mathematical and computational work, 
which is beyond our expertise. On the other hand, we guess the edge-cutting method 
is the key for refining edge-level correlation results, but it also causes the huge calcu-
lation cost and makes the computation cannot be done parallelly. If new computation 
methods can solve these two problems while provide similar results as the current 
PMI network calculation procedure, it will be great help for correlation analysis of 
biological data.

(A)

(C)

(B)BRCA0000 BRCA0112

LUSC00

Overlap Node/Edge PCC-only Node/Edge PMI-only Node/Edge

Fig. 6  The PCC-only survival factors are dispensable on the network viewpoint. The networks of PMI and PCC 
significant CoCNV survival factors combined for triple negative breast cancer (a), triple positive breast cancer 
(b) and lung squamous cell carcinoma (c). Red nodes and edges are PMI-only, green nodes and edges are 
PCC-only, the rest node and edges are from both PMI and PCC. It is shown that, irrelevant to their scales or 
structures, PMI covers most parts of the combined networks. Removing PCC-only parts do not change the 
biological meaning of the whole networks. These figures focus on the structure of networks, gene names 
of nodes are not listed. Similar results are observed in CoDM networks, they are too large and are shown in 
supplementary materials
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Conclusions
Our findings confirm that PMI is a precise and robust correlation measure for transcrip-
tome data. The theoretical advantage of PMI direct association over PCC indirect asso-
ciation does stand for a higher biological importance of the edges in the two types of 
correlation networks. We believe this advantage is applicable to other types of biological 
data. PMI can be easily used to refine results from the level of modules to obtain further 
interpretation at the level of variable pairs. An optimal PMI network is useful in high-
lighting the essential parts of the correlation in one module. Although the calculation 
of the optimal PMI network for a genome-scale data is incomplete, our results suggest 
it is worth of using PMI to focus on parts with high strength correlation patterns. The 
advantage of PMI direct association makes it especially suitable for cancer data analysis. 
PMI-based correlation analysis can provide more valuable targets from the detailed cor-
relation pattern of biological systems.

Materials and methods
Data selection and preprocess

We use two parts of cancer transcriptome dataset for two different purposes.
In the first part, we try to intuitively represent the characters of the PMI network. 

We want to find the differences between the PMI network and the PCC network and 
determine whether the PMI network more robustly captures the real correlation pattern. 
So, we need a dataset with the same set of variables but from different biological condi-
tions. We selected 10 mRNA expression datasets of breast cancer from Gene Expression 
Omnibus (GEO) and ArrayExpress database (Table 2). The corresponding sample infor-
mation is downloaded from ArrayExpress [13, 14]. All the 10 datasets are based on Affy-
metrix Hgu133plus2 platform [15–24]. The raw data from each dataset is normalized by 
RMA algorithm and batch-corrected by the removeBatchEffect function from R package 
Limma [25, 26]. Preprocessed data is separated by tumor grades and estrogen receptor 
(ER) status into 7 groups. Two cancer progressions are defined based on ER status in 
which the normal group is used twice (Table 3).

In the second part, we use 6 TCGA cancer datasets from XenaBrowser [27]. To reduce 
the data heterogeneity, we split each dataset by cancer subtype. The criterion for can-
cer subtype definition come from the clinical information. We use the main cancer 

Table 2  Access numbers and numbers of selected samples of first part analysis

Dataset Samples

E-MTAB-5724 515

GSE36774 107

GSE42568 118

GSE47109 208

E-TABM-276 10

GSE7904 7

GSE22544 4

GSE45827 11

GSE54002 16

GSE65194 11
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type code plus several numbers to refer to each cancer subtype; the digits of numbers 
equal to the attributes used to divide cancer subtypes. All cancer subtypes have zero 
as the first number, which means they are limited to "primary tumor" in the "sample_
type" attribute of TCGA clinical information. BRCA uses 3 more attributes; they are 
“breast_carcinoma_estrogen_receptor_status” (0 = negative, 1 = positive), “breast_car-
cinoma_progesterone_receptor_status” (0 = negative, 1 = positive), and “lab_proc_her2_
neu_immunohistochemistry_receptor_status” (0 = negative, 1 = mid type, 2 = positive). 
COAD uses 2 more attributes; the first is "CDE_ID_3226963" attribute (microsatellite 
instability, 0 = stable, 1 = low instable, 2 = high instable), and the second is "histologi-
cal_type" attribute which limits samples to normal COAD. Mucinous COAD is filtered. 
ESCA uses "histological_type" attribute (0 = NOS, 1 = ESCC). LUAD uses "Expres-
sion_Subtype" attribute (0 = Bronchioid, 1 = Squamoid, 2 = Magnoid). LUSC uses 
"histological_type" attribute and is limited to "NOS". STAD uses "CDE_ID_3226963" 
attribute (microsatellite instability, 0 = stable, 1 = low instable, 2 = high instable). For 
example, BRCA0000 means the value of “sample_type” is “primary tumor”, the values of 
“breast_carcinoma_estrogen_receptor_status”, “breast_carcinoma_progesterone_recep-
tor_status” and “lab_proc_her2_neu_immunohistochemistry_receptor_status” are all 
“negative”. The sample sizes of each cancer subtype and each type of data are listed in 
Table 4. Sample groups with more than 20 samples are used in the following analysis.

PMI network calculation

The mathematical definition of PMI is as follow. X and Y are two scalar variables and Z 
is an (n − 2)-dimensional vector (n > 2). Then, the PMI between variables X and Y given 
Z is defined as.
PMI(X;Y |Z) = D

(

p
(

x, y, z
)

||p∗(x|z)p∗
(

y|z
)

p(z)
)

,where p(x,y,z) is the joint probabil-
ity distribution of X, Y and Z, and D(p(x, y, z)||p*(x|z)p*(y|z)p(z)) represents the extended 
KL divergence from p(x,y,z) to p*(x|z)p*(y|z)p(z). The p*(x|z) and p*(y|z) are defined as.
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gence is defined as
D(p(x), q(x)) =

∑

x
p(x) log

p(x)
q(x)

.

The PMI network calculation starts with a fully connected network, and gradu-
ally removes edges by a preset threshold. To obtain the optimal PMI network for a 
given data, the calculation scans a range of the thresholds from low to high, until the 
resulting networks tend to be stable [2]. When the input data is large, the calcula-
tion complexity for an optimal calculation will be too high to finish. To overcome this 
mathematical unsolvable problem, we make a compromise on the size of data or the 

Table 3  Numbers of samples for the two cancer progressions

Stage ER negative ER positive

Normal 76

CancerStage1 46 332

CancerStage2 56 325

CancerStage3 55 117
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completeness of optimization. In the first part, we use PMI to show the change of 
correlation pattern in a small gene set along the progress of cancer, the workflow is 
shown in Fig. 7. We use a WGCNA module extraction coupled with WebGestalt GO 
enrichment analysis method to separate the whole genome into small gene sets [1, 4]. 
These small gene sets are internally correlated with GO-based functional annotation. 
We select some of them and calculate the optimal PMI networks. Then, by combin-
ing single stage networks along one cancer progression, we got the PMI correlation 
change network for the corresponding GO term. In a correlation change network, one 
edge is a combination of 1–4 single-stage edges from the 4 stages of one cancer pro-
cess, the stage number of 4 stages are defined as 1–4. The stage combination of an 
edge is marked as four 0/1 connected by hyphens, which is referred as the existence 
pattern. For nodes in the correlation change network, the mean stage value is defined 
as the average value of all the stage numbers of the single-stage edges of one node. 
In the second part, we focus on the connection between network edges and omics 
defined gene-pair relationships. The workflow is shown in Additional file 1: Fig. S2. 
Separating the whole genome into gene sets will lead to some genes missed, but the 
whole genome contains too many variables to fulfill optimal PMI calculation. So, we 
use the whole genome data as input, starting with a high threshold, and try to get as 
many as edges in the limited time for each cancer subtype.

Table 4  The numbers of samples for cancer subtypes

CancerSubtype GeneExpressionSamples CNVSamples DMSamples

BRCA0000 116 112 83

BRCA0001 32 32 24

BRCA0002 37 37 17

BRCA0010 8 8 7

BRCA0011 4 4 4

BRCA0012 3 3 3

BRCA0100 65 65 49

BRCA0101 20 19 16

BRCA0102 23 23 9

BRCA0110 369 366 253

BRCA0111 123 118 98

BRCA0112 100 98 64

COAD000 156 248 162

COAD010 41 67 41

COAD020 40 59 41

ESCA00 89 88 89

ESCA01 95 96 96

LUAD00 89 89 69

LUAD01 78 78 68

LUAD02 63 63 48

LUSC00 479 479 352

STAD00 276 294 271

STAD01 59 63 56

STAD02 79 83 68
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Comparable PCC network

To understand the difference between PMI and PCC in the context of analysis of bio-
logical data, we need to construct a series of PCC networks based on each PMI network. 
The PCC networks use similar standards to the corresponding PMI network, including 
using the strength of correlation to select the top several correlations among a set of 
genes. For each PMI network, we construct 3 types of comparable PCC networks. Type 
1 PCC network selects edges from all gene pairs within the PMI gene set by descend-
ing absolute PCC value until it has the same number of edges with the corresponding 
PMI network. Type 2 PCC network uses the same method until it covers all the genes 
in the PMI network. Type 3 PCC network considers each PMI edge separately. For one 
PMI edge Gene1-Gene2 from one PMI network, if another gene, Gene3, from the PMI 
network has higher absolute PCC values with both Gene1 and Gene2 than the absolute 
PCC value of Gene1 with Gene2, then edge Gene3-Gene1 and edge Gene3-Gene2 are 
both included into the edges of comparable PCC network. Edges in Type 3 PCC net-
work may not exist in the PMI network; these edges are called PCC-only edges. PCC-
only edges have higher PCC values than those of the reference PMI edges when they are 
selected. However, they are removed in the PMI network. The biological characters of 
PCC-only edges may be the key for explaining the difference between PMI correlation 
and PCC correlation in the gene expression pattern along with the cancer progression. 
Type 1 and type 2 PCC networks are only used to compare the network sparsity between 
PMI and PCC. Type 3 PCC networks are used to compare the difference between PMI 
and PCC connecting to omics defined relationships.

Omics defined gene‑pair relationships

We need to compare the edges from gene correlation networks with the relationships 
between a pair of genes defined by biological data or knowledge. We use transcriptional 
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Fig. 7  The generation of a PMI correlation change network. The cancer mRNA transcriptome data from 
databases is split into normal group and groups of 3 cancer stages. The WGCNA and GO enrichment are ran 
on each group of data separately. For a GO term enriched in all 4 group along a cancer progress, the gene 
sets from 4 groups are different, they are combined into one gene set. The expression of the combined gene 
set of a GO term is used for PMI fully calculation, the resulting networks of 4 groups along a cancer progress 
are combined into one network, which is the PMI correlation change network
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regulation (TR) data from the RegNetwork database [28]. Besides the transcriptional 
factor (TF) targeting one gene relationship, we check each gene-pair for common upper 
regulators (TF or microRNA) and transform the original TR data into CoTR data. 
TF and microRNA are checked separately. The CoTR relationship of one gene-pair is 
weighted by the number of common upper regulators. The protein–protein interaction 
(PPI) data is from the High-quality protein interactomes (HINT) database, only litera-
ture curated data is used [29]. The human genome coordinate data is downloaded from 
UCSC genome browser. GRCh37 version of NCBI RefSeq data is used. We calculate 
the distance between two transcription starting points of a pair of genes (if they are on 
the same chromosome) for the omics comparison (Same Chromosome Gene Distance, 
SCGD) [30]. The cancer dataset from XenaBrowser contains copy number variation 
(CNV) and DNA methylation (DM) data for each sample [27]. In consideration of the 
status of two genes, we convert them into CoCNV and CoDM data for the omics com-
parison. The CoCNV status of a pair of genes in one sample can be one of the following 
5 types: gain–gain (GG), loss–loss (LL), gain–loss (GL), loss–gain (LG), or one or two of 
the genes are not mutated (NC). We define the DM data of one gene in one sample as 
the 2 numbers of low or high (L or H) methylation CpG islands. The CoDM status of a 
gene-pair in one sample is described by 4 values (LL, HH, LH, HL). Which are the prod-
ucts of 2 values of 2 genes cross timed. The CoCNV and CoDM of one gene-pairs are 
weighted and normalized by the number of samples with the corresponding mutation.

Comparison of PMI with PCC

We assume that the correlation pattern of gene expression stems from the omics defined 
gene-pair relationships. We therefore match gene-pairs from PMI/PCC networks in 
previous steps with each type of gene-pair relationships and compare the recalling sta-
tistics between PMI network and comparable PCC network. We use the word “recall” 
to refer the gene-pair of a PMI edge is also a record in each omics data. For example, 
Gene1 and Gene2 have PPI interaction record from database, a PMI network contains 
the Gene1-Gene2 edge, then the PMI network recalls the Gene1-Gene2 PPI; Gene3 and 
Gene4 have one or more samples with both gene amplification mutation, a PMI net-
work contains the Gene3-Gene4 edge, then the PMI network recalls the Gene3-Gene4 
CoCNV-GG. Each network in each omics has a Z-score about the number of recalled 
gene-pairs. The null distribution was calculated by randomly select the same number of 
gene-pairs from all gene-pairs and check the numbers of recall for 100 times. For CoTR, 
CoCNV and CoDM, their records can be weighted by one or more record attributes, so 
they have more than one types of Z-scores. A CoTR record Gene1-Gene2 is weighted by 
the number of regulators (TF or miRNA) targeting both Gene1 and Gene2. A CoCNV or 
CoDM record is weighted by the number of samples with the type of CoCNV or CoDM. 
Because a CNV mutation record can be ± 1 (low level loss or amplification) or ± 2 (high 
level loss or amplification), so a CoCNV record can be further weighted by the absolute 
value of the product of the two mutation levels of two genes.

Cancer survival analysis

We collect gene-pairs with CoCNV or CoDM relationships from the PMI networks and 
use them to divide patients. We use the disease specific survival (DSS) data and perform 
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univariate survival analysis with Python lifelines package [31]. The survival curves are 
drawn by Python matplotlib package [32]. For one gene-pair, the CoCNV data divide 
the patients into 5 groups: GG, LL, GL, LG and NC. Every 2 groups with more than 
20 samples are compared. A CoCNV survival factor is marked, for example as “Gene1-
Gene2 GG > LL”, while the CoDM data of one gene-pair consists of 4 values: HH, LL, HL, 
LH. CoDM values with normalized mean average deviation higher than 0.25 are cho-
sen. We use the median of one chosen CoDM value as threshold to divide patients into 
two groups, then perform the survival analysis. So, a CoDM survival factor is marked 
as “Gene1-Gene2 HH-low > HH-high”. Survival factors with log rank test p-value lower 
than 0.05 are considered as significant. We also perform similar survival analysis with 
single gene CNV/DM or the expression of one or two genes and compare their effi-
ciency with the gene-pair-based factors. Then, we build a simple scoring system to clas-
sify patients with gene-pairs in significant CoCNV/CoDM factors. For a given set of 
CoCNV/CoDM survival factors, the survival score of a patient is calculated by summing 
up the influence of all gene-pairs,

where Igp is depended on the relative survival status in the gp survival factor. For 
CoCNV survival factors, if one type is NC, only the other type is considered has impact 
on survival. For example, a gene-pair Gene1-Gene2 has only one CoCNV survival factor 
GG > NC,

If another gene-pair Gene3-Gene4 has CoCNV survival factors LL > NC, NC > GG, 
LL > GG and GL > GG,

For CoDM survival factor, each CoDM type is analyzed separately. For example, a 
gene-pair has CoDM HH-high > HH-low survival factor,

Patients with higher score have better survival. Patients are divided into 3 groups by 
the CoCNV/CoDM scores then perform survival analysis. To assess if the distribution of 
the gene-pairs of a set of survival factors on the PMI network has influence on the sur-
vival classification, we choose 3 sets survival factors for CoCNV or CoDM, the first set 
has survival factors from isolated edges, the survival factors in the second set construct 
small network modules, the third set is the first two sets combined.

To confirm that the CoCNV/CoDM survival scores provide additional informa-
tion about the survival classification as compared to other clinical covariates, we 
performed Cox multivariate analysis with the CoCNV/CoDM survival scores and 

Score =
∑

GP

Igp,

Igp =

{

1(If Gene1− Gene2in patient is GG)
0(If Gene1− Gene2in patient is NC)

.
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clinical covariates. For the 3 cancer subtypes we used for survival analysis, clinical 
covariates gender, age_at_initial_pathologic_diagnosis, pathologic_M, pathologic_N, 
pathologic_T and pathologic_stage are chosen. The raw values of pathologic T/N/M/
stage are simplified and converted to integers 0/1/2/3/4. Gender is used as covariate 
only for LUSC, and BRCA only use samples from female patients. We perform 100 
times of 80% subsample, remodel on two models of LUSC00 and calculate the mean 
and standard deviation of the p-values of each covariate to confirm the consistency of 
results.

Network visualization

All networks are visualized by Cytoscape with default preferred layout and manual 
adjustment [33].
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