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Abstract 

Background:  Recent studies on acute mountain sickness (AMS) have used fixed-
location and fixed-time measurements of environmental and physiological variable to 
determine the influence of AMS-associated factors in the human body. This study aims 
to measure, in real time, environmental conditions and physiological variables of par‑
ticipants in high-altitude regions to develop an AMS risk evaluation model to forecast 
prospective development of AMS so its onset can be prevented.

Results:  Thirty-two participants were recruited, namely 25 men and 7 women, and 
they hiked from Cuifeng Mountain Forest Park parking lot (altitude: 2300 m) to Wul‑
ing (altitude: 3275 m). Regression and classification machine learning analyses were 
performed on physiological and environmental data, and Lake Louise Acute Mountain 
Sickness Scores (LLS) to establish an algorithm for AMS risk analysis. The individual R2 
coefficients of determination between the LLS and the measured altitude, ambient 
temperature, atmospheric pressure, relative humidity, climbing speed, heart rate, blood 
oxygen saturation (SpO2), heart rate variability (HRV), were 0.1, 0.23, 0, 0.24, 0, 0.24, 0.27, 
and 0.35 respectively; incorporating all aforementioned variables, the R2 coefficient 
is 0.62. The bagged trees classifier achieved favorable classification results, yielding a 
model sensitivity, specificity, accuracy, and area under receiver operating characteristic 
curve of 0.999, 0.994, 0.998, and 1, respectively.

Conclusion:  The experiment results indicate the use of machine learning multivariate 
analysis have higher AMS prediction accuracies than analyses utilizing single varieties. 
The developed AMS evaluation model can serve as a reference for the future develop‑
ment of wearable devices capable of providing timely warnings of AMS risks to hikers.
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Background
Acute mountain sickness (AMS) is a maladaptation syndrome that occurs at high alti-
tudes [1, 2]. The occurrence rate of AMS in Taiwan is 36% [3], and patient age and 
AMS risk are not correlated [4]. An altitude of 2500  m is considered the threshold 
for AMS [5]. Mountain sickness is mainly caused by the low oxygen concentration 
in mountain environments. Low oxygen concentrations increase sympathetic nerv-
ous system activity and subsequently cerebral blood volume, resulting in hypoxia [6, 
7]. Every year, millions of mountaineers engage in activities at high-altitude locations, 
with some overlooking and or dismissing the risk of AMS. Studies have revealed that 
AMS may cause life threatening conditions, including but not limited to high-altitude 
pulmonary and cerebral edema [1].

As of this writing, the mechanism and diagnosis of AMS remain uncertain. The 
2018 Lake Louise Acute Mountain Sickness (LLS) is currently used to assess the 
severity of AMS. The score is based on headache, gastrointestinal symptoms, fatigue 
and/or weakness, and dizziness or lightheadedness. The maximum total score is 12 
points, with 3–5, 6–9, and 10–12 points indicating mild, moderate, and severe lev-
els of AMS, respectively [8]. However, because these scores are susceptible to sub-
jective bias, an objective scoring system is necessary for diagnosing AMS symptoms. 
Multiple studies have indicated that in high-altitude environments, the human body 
stimulates the sympathetic and parasympathetic nervous systems to moderate the 
heart rate to adapt to the low-pressure and low-oxygen environment. This process 
of changing heart rate is observable in electrocardiograms (ECGs) [9–12]. Therefore, 
heart rate variability (HRV) is a critical factor in AMS diagnosis [13–17]. Relevant 
studies have proposed that AMS may be caused by multiple factors, including envi-
ronmental conditions (e.g., altitude, ambient temperature, and atmospheric pressure) 
and biological factors (e.g., heart rate, blood oxygen saturation (SpO2), and HRV) [2, 
6, 18, 19]. Recent studies have used wearable devices to take physiological measure-
ments; these studies measured users’ heart rate, SpO2, and HRV to diagnose moun-
tain sickness [20, 21].

The majority of studies on AMS perform linear analyses to build AMS prediction 
models with environmental and biological data (e.g., SpO2 and HRV) that are collected 
daily. [13, 22, 23] As compared to linear analyses, multivariate analyses have higher 
model sensitivity, specificity, and accuracy; however, require increased quantities of data 
[24]. Therefore, to facilitate optimal training outcomes, multivariate analyses are per-
formed on collected data in this study; and to ensure data is sufficient, environmental 
and physiological data are continuously and timely measured.

To summarize, this study employed machine learning algorithm applications to deter-
mine the correlation between AMS and environmental and physiological factors. The 
proposed algorithm can be used to predict the occurrence of AMS in real time. Further-
more, the algorithms can be applied to evaluate AMS risk among hikers, prevent the 
occurrence of hiking incidents, and ensure the safety of mountain activities.
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Results
Coefficient of determination (R2) analysis

We used linear regression analysis of the LLSs and the recorded altitude, ambient tem-
perature, atmospheric pressure, relative humidity, climbing speed, heart rate, blood oxy-
gen saturation (SpO2), and heart rate variability (HRV) was performed using MATLAB 
R2020a to obtain the coefficient of determination (R2) of each variable and all variables. 
The coefficients of determination for altitude, ambient temperature, atmospheric pres-
sure, relative humidity, climbing speed, heart rate, SpO2, HRV, and all variables were 0.1, 
0.23, 1.2 × 10–6(≒0), 0.24, 1.5 × 10–5(≒0), 0.24, 0.27, 0.35, and 0.62, respectively. Single 
variable analysis revealed that HRV had the highest coefficient of determination, namely 
0.35. The coefficient of determination for all eight variables was 0.62. The correlation 
analysis results are presented in Table 1. A comparison between the results of univariate 
and multivariate coefficient of determination analyses revealed that multivariate analysis 
yielded more satisfactory results. Therefore, this study employed the multivariate analy-
sis results for subsequent binary classification analysis.

Binary classifier

Based on the suggestion of The Lake Louise AMS Score Consensus Committee in the 
2018, we considered an LLS of 3–5 to indicate mild AMS [8]. Therefore, we set an 
LLS < 3 as 0 and an LLS ≥ 3 as 1. The 25 machine learning algorithms employed the 
eight variables as the predictors to establish a machine learning model to diagnose mild 
AMS. The most favorable classification results were obtained by using bagged trees clas-
sifiers, achieving a sensitivity, specificity, accuracy, and area under the receiver operat-
ing characteristic curve (AUC) of 0.999, 0.994, 0.998, and 0.9999(≒1), respectively. See 
Table 2 for the classification results of each algorithm. Figure 1 shows the 4 algorithms: 
Fine Tree, Cubic SVM, Weighted KNN, Bagged Trees, which yielded the highest AUCs’ 
respective receiver operating characteristic (ROC) curves.

Discussion
In the results show that using MATLAB R2020a line regression analysis and machine 
learning model to diagnose mild AMS. We use measured environmental and physiolog-
ical factors to Coefficient of determination (R2) for LLS. And the binary classification 
method using bagged trees classifiers to obtain a high degree of accuracy modeling, a 

Table 1  R-squared results for the linear regression model

SpO2: blood oxygen saturation. HRV: heart rate variability

Variable Linear Regression R-Squared p

Altitude 0.1  < 0.001

Ambient temperature 0.23  < 0.001

Atmospheric pressure 1.2 × 10–6  < 0.001

Relative humidity 0.24  < 0.001

Rise rate 1.5 × 10–5  < 0.001

Heart rate 0.24  < 0.001

SpO2 0.27  < 0.001

HRV 0.35  < 0.001

Above all variables 0.62  < 0.001
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variety of factors in the machine learning to build models, can be conducive to the devel-
opment of the AMS risk assessment model.

The results revealed that the participants’ SpO2 measured at the start of the path was 
lower than 94, relatively lower than their mean SpO2 measured in their usual state at 
their home (SpO2: 97). In the experiment, the mean SpO2 was approximately 83.5 (in 
Table 2), indicating the occurrence of anoxia [25]. A comparison between with previous 
studies [19, 26] demonstrates that with an increase in altitude, the atmospheric pressure 
decreased, thereby causing a decrease in oxygen tension and resulting in the participants 
experiencing anoxia [19]. Therefore, SpO2 is a key indicator for diagnosing AMS.

Autonomic nervous system activity was monitored through HRV measurements; this 
method only requires observing R–R interval changes in the electrocardiogram (ECG). 
HRV are conducive to evaluating autonomic nervous system activity [9, 13, 14, 20] and 

Table 2  Binary mild AMS classification results

AUC: area under the receiver operating characteristic curve

The Bagged Trees yielded the highest sensitivity, specificity, accuracy, and AUC; and was bolded for that reason

Classifier type Sensitivity Specificity Accuracy AUC​

Decision Trees

Fine Tree 0.998 0.978 0.996 0.9999

Medium Tree 0.993 0.952 0.988 0.99

Coarse Tree 0.975 0.862 0.963 0.90

Discriminant Analysis

Linear Discriminant 0.977 0.730 0.946 0.98

Quadratic Discriminant 0.997 0.707 0.952 0.99

Logistic Regression Classifiers

Logistic Regression 0.978 0.858 0.965 0.99

Naive Bayes Classifiers

Gaussian Naive Bayes 0.983 0.498 0.886 0.96

Kernel Naive Bayes 0.990 0.766 0.960 0.99

Support Vector Machines

Linear SVM 0.981 0.858 0.967 0.99

Quadratic SVM 0.995 0.939 0.989 0.9999

Cubic SVM 0.997 0.967 0.994 0.9999

Fine Gaussian SVM 0.995 0.975 0.992 0.9999

Medium Gaussian SVM 0.995 0.914 0.985 0.9999

Coarse Gaussian SVM 0.974 0.895 0.966 0.98

Nearest Neighbor Classifiers

Fine KNN 0.997 0.972 0.994 0.99

Medium KNN 0.996 0.957 0.991 0.9999

Coarse KNN 0.977 0.866 0.965 0.99

Cosine KNN 0.996 0.940 0.990 0.9999

Cubic KNN 0.995 0.949 0.990 0.9999

Weighted KNN 0.997 0.970 0.994 0.9999

Ensemble Classifiers

Boosted Trees 0.998 0.984 0.997 0.9999

Bagged Trees 0.999 0.994 0.998 0.9999

Subspace Discriminant 0.970 0.795 0.951 0.97

Subspace KNN 0.997 0.959 0.993 0.9999

RUSBoosted Tree 0.999 0.929 0.991 0.9999
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produce fluctuations when the human body cannot adapt to low-pressure, low-oxygen 
environments; thereby indicating a decrease in the autonomic nervous system’s respon-
siveness [27].

In the measured results, the participants’ HRV significantly decreased in the moun-
tain regions, thereby suggesting a correlation between the HRV-measured decrease in 
autonomic nervous system activity and anoxia severity, as indicated by SpO2. In high-
altitude environments with low pressure and low oxygen, the autonomic nervous sys-
tem response of patients with AMS decreases. Decrease in HRV demonstrates to more 
suggestive of AMS symptoms than decrease in oxygen levels. During the on-site experi-
ment, some participants experienced an increased heart rate and expressed discomfort.

Relevant studies on the factors that influence AMS have revealed a low correlation 
between heart rate and LLSs. During the hiking process, the participants’ physiological 
indicators changed with hiking duration and altitude changes; in particular, participants 
experienced an increase in heart rate relative to their usual state.

The on-site experiment results indicate that in the hiking process, the varia-
tions of environmental factors resulted in changes in the participants’ physiological 

Fig. 1  Area under the ROC curve for binary classifiers (Fine Tree, Cubic SVM, Weighted KNN, and Bagged 
Trees)
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factors. Additionally, a positive correlation was revealed between heart rate and LLSs, 
whereas SpO2 and HRV exhibited a negative correlation with LLSs. This result is con-
sistent with that of most studies on mountain sickness [9, 13, 20].

However, the coefficient of determination between atmospheric pressure and 
climbing speed with LLSs in this study was 0. Some studies have shown that the above 
two factors are related to AMS [9, 21]. This may be because this study only recorded 
data of participants engaging in hiking activities, and the elevation gain was slow; 
these two factors may have resulted in atmospheric pressure having a lower overall 
influence.

From the results, the 25 machine learning algorithms were employed to analyze the 
collected environmental and physiological factors, and demonstrated to yield sensi-
tivity, specificity, and accuracy better than those of previous studies [13, 28], thus has 
comparatively higher developmental value.

Limitations
The experiment location was at an altitude over 2500 m, thereby meeting the thresh-
old for acute mountain sickness (AMS). However, because no participant exceeded 
six hours of hiking, the recorded data are considered short-term measurements. 
Additionally, the data may have been influenced by underlying factors, including the 
amount of exercise the participant had performed in the previous day and their rest 
and sleep duration. Therefore, this study had inadequate data when compared with 
studies that collected data for three consecutive days [13, 26, 28, 29]. These factors 
may have contributed to the differences in the measured physiological values [19, 23, 
26, 30]. Furthermore, the unfavorable coefficient of determination of atmospheric 
pressure in linear regression may have been caused by the short experiment duration, 
which prevented the collection of a comparatively high number data points.

After participants put on the wearable devices and hiked from the Cuifeng Moun-
tain Forest Park parking lot to Wuling, the ECG pads may have loosened due to par-
ticipant activity, resulting in data inaccuracies. During data processing, we eliminated 
data collected during incidences when recording equipment was loosened to increase 
data accuracy. However, this also reduced the number of data collected and may have 
resulted in error values. In future studies, we plan to use more secure physiological 
monitoring equipment to prevent the occurrence of errors.

Participants were predominantly male and were relatively old in age. In the future, 
we will recruit more woman participants ranging between 18 and 40  years old and 
increase the data collection instances along the planned hiking path to increase the 
AMS diagnosis accuracy.

The highest LLS recorded in this study was 7, thereby indicating moderate AMS 
(LLS range: 6–9 points). During the measurement, the participant expressed 
immense discomfort and an inability to continue hiking. In accordance with institu-
tional review board regulations, participants had the right to stop hiking. Therefore, 
this study did not collect data on participants experiencing severe AMS (LSS range: 
10–12). This study focused on diagnosing whether AMS occurred. In the future, we 
will more thoroughly research all levels of AMS severity.
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Conclusions
When traveling to mountain regions, the low-pressure and low-oxygen environment 
may result in the weakening of the human heart self-regulating function. This increases 
the possibility of AMS or other high-altitude conditions. The literature on AMS sug-
gests that among hikers exposed to simulated atmospheric pressure or low-pressure and 
low-oxygen conditions, those with lower SpO2 and HRV are more prone to experiencing 
AMS [31]. The analysis results of using environmental and physiological factors meas-
ured during on-site testing at over 2500 m altitude to predict AMS occurrence in par-
ticipants revealed room for improvement.

We employed machine learning algorithms and various environmental and physiologi-
cal factors for AMS diagnosis. Our model achieved a sensitivity and AUC of 0.99, indi-
cating that the use of multivariate factors to train multivariate analysis-based machine 
learning models exhibit high developmental value in LLS evaluation. This machine 
learning algorithm can be coupled with equipment capable of the timely detection of 
multiple factor data to increase the accuracy for AMS predictions. Additionally, this 
application may prevent hikers from overlooking AMS symptoms and remind them to 
take preventive measures (e.g., taking medication or decreasing their altitude), thereby 
preventing the risk of severe AMS.

This study is the first to employ timely recorded environmental and physiological fac-
tors and multivariate analysis for AMS diagnosis. In terms of using LLS to diagnose 
AMS symptom severity, correlation analysis results revealed that the diagnosis effect of 
a single variable and LLS was unsatisfactory. However, the use of multiple variables and 
LLS exhibited satisfactory diagnosis effectiveness. The degree of correlation of SpO2 and 
HRV with AMS observed in this study was consistent with that of previous studies [32]. 
Additionally, correlation analysis results revealed that using more environmental and 
physiological factors with LLS may yield more satisfactory results. This finding is condu-
cive to the establishment of AMS prediction and diagnosis models.

Methods
The pathogenesis and measurement methods of acute mountain sickness.

To research the physiological mechanisms of acute mountain sickness (AMS) [1, 2, 6], 
this study measured the environmental conditions (e.g., altitude, ambient temperature, 
atmospheric pressure, relative humidity, and climbing speed) and physiological vari-
ables (e.g., heart rate, blood oxygen saturation (SpO2), and heart rate variability (HRV) in 
real-time. The Lake Louise Acute Mountain Sickness score (LLS) was adopted to evalu-
ate AMS severity. The flowchart (Fig. 2) for pathogenesis and measurement methods of 
Acute Mountain Sickness.

Subjects

The experimental protocol was approved by the Tri-Service General Hospital Human 
Ethics Committee under registration number IRB: B202005136, and the informed con-
sent of the experiment participants was obtained before this study. Adults between 
25 and 55  years old capable of engaging in hiking activities and living below an alti-
tude of 500 m were recruited as participants. Additionally, participants with diabetes, 
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neuropathy, cardiovascular and pulmonary diseases, or other symptoms that could 
influence heart rate variability (HRV) were excluded. Before testing, participants 
were required to administered the 2017 Physical Activity Readiness Questionnaire 
(2017PAR-Q +) [33] to confirm if any of the aforementioned diseases were present and 
whether the participants used drugs that may influence HRV, including plant-based neu-
romuscular-blocking drugs and sedative drugs.

Participant demographics

This study initially recruited 34 participants, however, only 32 fulfilled the inclusion cri-
teria; two participants with self-reported cardiovascular disease and diabetes respec-
tively were excluded. The final sample set were comprised of 25 men and 7 women. 
The mean participant age was 36.5 ± 8.1  years, and the mean body mass index (BMI) 
was 24.3 ± 2.36. The mean home altitude of the participants was 65.4 ± 90.4 m. No par-
ticipant had consumed drugs (e.g., acetazolamide) 30 days before the experiment. The 
most common acute mountain sickness (AMS) symptoms were weakness and dizziness, 
which were observed in 13 (40.6%) of the participants. The baseline demographics of the 
participants are listed in Table 3.

Physiological and environmental variable sensors and measurement methods

This study used the MD-670P Plus portable pulse oximeter and electrocardiogram 
(ECG) monitor (Department of Health Medical Device Manufacturing No. 001657, 
COMDEK Industrial Corp., Taiwan) to measure heart rate, blood oxygen saturation 
(SpO2), and ECG. The monitor was connected to a Smart Link I application and a USB 
interface to transmit the data to a personal computer for data observation and analysis. 
Time domain analysis was performed on the collected ECG data, and the standard devi-
ation of the R–R intervals was calculated to obtain the HRV data [15].

Fig. 2  The flowchart for pathogenesis and measurement methods of Acute Mountain Sickness. This figure 
simply illustrates the pathogenesis of acute mountain sickness. In mountainous areas over 2500 m above sea 
level, the human body responds to measurable physiological factors in order to adapt to the alpine hypoxia. 
The thick bordered boxes show acute mountain sickness pathogenesis, the thin bordered boxes are the 
respective method of measurement
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Additionally, the TI CC2650 SensorTag (Texas Instruments, Texas, USA) was 
employed to measure the environmental factors of a participant’s position, including 
altitude, ambient temperature, atmospheric pressure, relative humidity, and climbing 
speed. Throughout the experiment, the participants were required to wear the pulse 
oximeter and ECG monitor and the SensorTag and hike along Provincial Highway 
14. The participants embarked from the Cuifeng Mountain Forest Park parking lot in 
Nantou (2300 m altitude), passed the Yuanfeng Lookout (2756 m altitude), the Kuny-
uan parking lot (3085 m altitude), Wuling (3275 m altitude), and arrived at Shimen 
Mountain Class 3 Triangulation Point No. 6389 (3237  m altitude). The total hiking 
distance was 16.3 km, and the experiment duration was 8 h. The map of the experi-
mental route is presented in Fig. 3 If the participants experienced swelling, itching, or 

Table 3  Baseline demographics

Values are presented as mean ± standard deviation. BMI body mass index

Demographic Result

Age, y 36.5 ± 8.1

Gender

Male 25 (78%)

Female 7 (22%)

Body weight, kg 67.4 ± 6.9

Body height, m 1.66 ± 0.07

BMI, kg/m2 24.3 ± 2.36

Home altitude, m 65.4 ± 90.4

drug use within 30 day of ascent

Acetazolamide 0(0%)

Steroids 0(0%)

Asthma medication 0(0%)

Pain reliever 0(0%)

Smoker 2(6.3%)

Alcohol consumer 0(0%)

History of AMS 5(15.6%)

Knowledge of AMS 14(43.8%)

Fig. 3  The map of the experimental route
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other irritations where the wearable device was worn, they were required to immedi-
ately remove the device and were excluded from the experiment.

Participants’ physiological variables

The participants’ physiological variables were collected from the heart rate, SpO2, and 
ECG records of the portable pulse oximeter and ECG monitor. During the hiking activ-
ity, participants who experienced discomfort were immediately required to complete the 
online digital LLS. Additionally, professionals were assigned to the Cuifeng Checkpost, 
Yuanfeng, Kunyang parking, Wuling, and Shimenshan Trail to verbally administer the 
LLS to passing participants, thereby preventing the participants’ subjective factors from 
influencing the acute mountain sickness assessment. The recording equipment auto-
matically measured and recorded the data without requiring manual operation by the 
participants.

In the experimental process, data were not recorded during incidences when record-
ing equipment (ECG pads and pulse oximeter) were loosened; a total of 8410 data points 
were collected and used for analysis. Table 4 presents the measured environment and 
participants’ physiological variables. The average heart rate, SpO2, and HRV values of 
participants in mountainous areas were 115.84, 83.5, and 39.17, respectively; and were 
slightly lower than in their usual state. The measured physiological variables of the par-
ticipants engaging in hiking activities were roughly equal to those recorded in previous 
studies [14–17].

Classification and evaluation

The MATLAB R2020a machine learning and deep learning tool (MathWorks, Natick, 
MA) [34] was employed for data analysis.

First, the linear regression model of regression learner applications was adopted to 
analyze the measured environmental and physiological factors. The coefficient of deter-
mination (R2) of each individual factor and all factors was calculated to determine factor 
correlations with the LLSs.

Subsequently, binary classification analysis was performed on the factors and the 
LLSs. The established mild AMS diagnosis model employed MATLAB R2020a’s clas-
sification machine learning application that used the eight collected physiological and 

Table 4  Environment and participants’ physiological variables

Std. Dev Standard Deviation

Altitude Ambient 
temperature

Atmospheric 
pressure

Relative 
humidity

Rise rate Heart rate SpO2 HRV LLS

Average 2868.79 24.26 698.11 0.64 3.08 115.84 83.5 39.17 0.64

Median 2852.89 24 693.36 0.67 3.96 117 84 38.9 0

Mode 3275 25 675.59 0.74 0 132 86 36 0

Std. Dev 297.59 1.73 18.9 0.12 3.4 19.32 4.92 10.76 1.3

Variance 88,562.6 3 357.16 0.01 11.6 373.14 24.18 115.71 1.7

Mini 2300 20 675.59 0.42 -10 77 70 13 0

Max 3275 29.4 742.2 0.78 10 160 94 80.5 7

Reliability 
(95%)

6.36 0.04 0.4 0.002 0.07 0.41 0.11 0.23 0.03
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environmental variables as predictors, and the classification output was set as whether a 
participant experienced mild AMS symptoms.

The classifier type selected in this study includes 25 machine learning algorithms such 
as: Decision Trees (Fine Tree, Medium Tree, Coarse Tree), Discriminant Analysis (Lin-
ear Discriminant, Quadratic Discriminant), Logistic Regression Classifiers (Logistic 
Regression), Naive Bayes Classifiers (Gaussian Naive Bayes, Kernel Naive Bayes), Sup-
port Vector Machines (Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian SVM, 
Medium Gaussian SVM, Coarse Gaussian SVM)、Nearest Neighbor Classifiers (Fine 
KNN, Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, Weighted KNN), Ensem-
ble Classifiers (Boosted Trees, Bagged Trees, Subspace Discriminant, Subspace KNN, 
RUSBoosted Tree).

Finally, the characteristics of the developed AMS prediction model were evaluated 
based on sensitivity, specificity, accuracy, and area under the receiver operating charac-
teristic curve (AUC). To prevent training and or testing bias, the 8410 data points were 
randomly divided into 90: 10 training and testing sets respectively. The aforementioned 
25 machine learning algorithms were used to build the model, and were validated with 
the tenfold cross validation to prevent reliance on sample characteristics; and also to sta-
bilize the final model.

Statistical analysis

After a classification algorithm has trained on data, we want to examine the performance 
of the algorithm on a specific test dataset. We assessed the predictive performance of 
our model using a range of common performance metrics: sensitivity, specificity, accu-
racy, and area under the curve (AUC), all of which range from 0 to 1 [35]. From Table 5, 
estimated sensitivity is the proportion of subjects with the condition of the true positives 
that are diseased. Estimated specificity is the proportion of subjects without the condi-
tion of true negatives that are diseased-free [36]. Accuracy is a commonly applied metric 
from the machine learning domain.

The three conventional evaluation indicators (sensitivity, specificity and accuracy) 
were calculated as follows.

Sensitivity = TP/(TP + FN).
Specificity = TN/(FP + TN).
Accuracy = (TP + TN)/(TP + FN + FP + TN).
We can adjust different thresholds to get the true positive rate versus false positive rate 

(equivalently, sensitivity versus 1–specificity), by plotting a Receiver Operating Charac-
teristic curve (ROC) to get the area under the curve (AUC) size, we can use the ROC 
curve to find the classifier that maximizes the classification accuracy, or to evaluate the 
performance of the classifier in high sensitivity and high specificity regions. We adopted 

Table 5  Confusion matrix for binary classification

Where TP = number of true positive events, FP = number of false positive events

TN = number of true negative events, FN = number of false negative events

Diseased Diseased-free

Positive diagnostic test True positives (TP) False positives (FP)

Negative diagnostic test False negatives (FN) True negatives (TN)
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tenfold cross-validation to obtain the mean values and standard deviations of these eval-
uation indicators to fairly compare their performance. In detail, the dataset is divided 
into ten approximately equal-sized sub-datasets, and the positive samples are divided 
equally in each sub-dataset.
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