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Background
Cancer is a complex genetic disease characterized by abnormal and uncontrolled cel-
lular growth, which is caused primarily by the accumulation of genomic alterations that 
together enable malignant growth [1, 2]. Recent advances in next-generation sequencing 
(NGS) technologies have generated massive amounts of cancer genomic data, such as 
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The Cancer Genome Atlas (TCGA), which provides somatic mutation landscapes to bet-
ter characterize the molecular signatures of cancer [3]. There is a consensus viewpoint 
on tumorigenesis that only a few mutational events occurring in a set of genes (called 
“cancer driver genes”) affect the homeostatic development of a set of key cellular func-
tions [4–6]. Discovery of these cancer driver genes across various tumor types is a key 
step in understanding tumor biology and developing targeted anticancer therapies.

A number of computational tools have been developed to identify cancer driver genes 
from multidimensional genomic data. Most of these tools can be classified into three 
categories based on their basic principles [7]. Frequency-based approaches define that 
the most commonly occurring mutation are more likely to be drivers, such as Mut-
SigCV and MuSic [8, 9]. Unfortunately, methods based on frequency are underpowered 
for uncovering low recurrently driver genes [10]. Functional impact-based approaches, 
such as OncodriveFM, integrate multiple-domain information to predict the functional 
impact of single nucleotide variants (SNVs) [11, 12]. However, most of these methods 
use machine learning based models. Building either a gold-standard positive data set or 
a negative data set for such model is a difficult task, and that restricts the use of these 
methods [10]. The third category is network-based methods enlightened by the obser-
vation that mutations in a cancer genome tend to converge on a few biological path-
ways, attempt to identify groups of driver genes based on prior knowledge of pathways 
and proteins or genetic interactions [13–17]. A tool named DawnRank adopts PageR-
ank algorithm to rank potential drivers based on their impact on the overall differen-
tial expression of the downstream genes [14]. HotNet2 uses a random walk with restart 
algorithm for identification of mutated subnetworks, in which the mutation frequency 
of each gene and the frequencies of its network neighbors are considered and hub genes 
are often yielded with highly predicted scores [15]. This kind of methods have advan-
tages in their ability to identify driver genes with low recurrence and improve the accu-
racy of predicting driver genes to some extent [18].

Despite the rapid progress in computational approaches to prioritize cancer driver 
genes with the advent of next-generation sequencing technologies, the false positive 
rates of these existing methods are still too high. In addition, there are evidences show-
ing that driver gene co-occurring may play a key role in cancer initiation and progres-
sion [19–21]. Because the activation or inactivation of one given driver gene is usually 
not sufficient to induce tumorigenesis, multiple mutations in different driver genes have 
to cooperate to gradually transform normal cells into precursor lesions and subsequently 
invasive and metastatic cancer [22–25]. Among majority of the published methods, the 
practice of putting single gene mutation frequency as input information could result 
in the loss of all the co-occurring alternations information of the individual tumors. In 
this study, we introduced a weighted hypergraph model and present a novel tool Driv-
erRWH by integrating mutation profile and PPI network data to predict driver genes. 
Hypergraph is a generalization of simple graphs where its edges, called hyperedges, are 
allowed to connect arbitrary number of vertices, which makes it suitable for representa-
tion of high-order relations and it can be used to model biology network, data structure, 
computations and a variety of other systems [26–28]. Herein, we adopted hyperedges to 
represent the co-exist relationship among mutated genes in individuals, so the problem 
of information loss of co-occurring alternations can be avoided in a certain extent. We 
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next specified the weights of mutated genes in each hyperedge according their interac-
tion in PPI network and construct the weighted hypergraph. Thereafter, we generalized a 
random walk algorithm to the weighted hypergraph. Finally, we ranked all the candidate 
mutated genes for the given cancer type. To verify our method, we applied DriverRWH 
to 31 cancer types from TCGA and found that our method outperforms the state-of-the-
art tools for the majority of cancer types regardless of which reference network we use. 
We also evaluated the robustness of our method and found that DriverRWH is highly 
robust to various data perturbations.

Methods
Overview

In this study, we proposed DriverRWH, which uses random walk on weighted hypergraph 
to prioritize the driver genes (Fig. 1). Firstly, for a given cancer type, a hypergraph was con-
structed basing on mutation profile, wherein tumor samples are presented as hyperedges 
and mutant genes are presented as vertices. Secondly, according to our hypothesis that a 
gene is more likely to be a driver gene if it is highly associated with other mutated genes, 
we differentiated genes within a hyperedge of sample in accordance with their degrees 
in the corresponding subnetwork of the PPI network. Then, we adopted a probabilistic 
weighted random walk that take advantage of the hypergraph structure, and carried out 
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Fig. 1  Overview of DriverRWH. A, B Construction of the weighted hypergraph model using somatic 
mutation profiles of a given cancer type and a PPI network. Each sample is indicated with colored circular 
area (hyperedge) which contains all the mutated genes (vertices) of individual. Since the number of mutated 
gene varies from samples, the hypergraph contains different number of vertices. The weights of vertices 
in each hyperedge are assigned according to the degree in the context of the background subnetwork. C 
Illustration of the random walk process on the hypergraph. For vertex u , we randomly select a hyperedge 
which incident with u and then selects a node according the weights of vertices in selected hyperedge as the 
destination vertex v to shift
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this iteratively. After some steps, the random walk would stabilize, producing a score for 
each mutated gene. At last, all candidate mutant genes are ranked in descending order 
based on their score.

The DriverRWH algorithm

In the present model, mutation data of a given cancer type and a PPI dataset are used as the 
input information (Fig. 1A). As shown in Fig. 1B, a hypergraph consisting of the mutated 
genes of all samples was constructed. If a gene is mutated in a sample, it would be presented 
as a vertex in the hyperedge corresponding to the sample. Without loss of generalization, 
the hypergraph can be defined as HG(V , E) , where V  is the set of vertices and E is the set of 
hyperedges. A hyperedge e is a subset of, satisfying 

e∈E
= V  . Hyperedge e is said to be inci-

dent with vertex u if u ∈ e ; thus, the incidence matrix H ∈ R|V |×|E| can be defined as 
follows:

After construction of the hypergraph, a specified subnetwork is generated for each sam-
ple, based on the mutated genes and their interaction in the PPI network. According to our 
hypothesis that a gene is more likely to be a driver gene if it is highly associated with other 
mutated genes, a fairly standard choice of the weight of vertices in each hyperedge are their 
degrees in the corresponding induced subnetwork of the PPI network.

Then, we developed a random walk process on the weighted hypergraph. Similar to a ran-
dom walk on a simple graph, this walk is a type of Markov process, which is seen as the 
transition between two vertices. Note that the transition on the hypergraph occurs only if 
two vertices are incident to a hyperedge, so the random walk on the hypergraph is defined 
to be a two-step process. In the first step, the surfer selects a hyperedge e incident with 
the current vertex u ; thereafter, it selects a target vertex v within the chosen hyperedge 
(Fig. 1C). If one vertex is an isolated node in the subnetwork, it also has the potential to be a 
driver gene, so a small weight of 0.01 is set. Let Ne be the subnetwork containing vertices in 
hyperedge e and denote dNe(u) as the degree of u in the subnetwork.

Thereafter, the surfer selects vertex v proportional to the weight of v within the hyper-
edge. Notably, in our model, the weights of vertices may vary in accordance with the hyper-
edges. According to the aforementioned definition, the degree of vertex u and hyperedge e 
in hypergraph HG(V , E) can be defined as follows:

h(u, e) =

{

1 if u ∈ e

0 if u /∈ e

w(u, e) =

{

dNe(u), if u ∈ e

0.01, if u /∈ e

d(u) =
∑

e∈E

h(u, e)

δ(e) =
∑

u∈e

w(u, e)
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With all the elements defined, we calculated the transition probability from vertex u to 
vertex v as follows:

which can also be written in matrix form:

where Du ∈ R
|V |×|V | is the diagonal vertex degree matrix, De ∈ R|E|×|E| is the diagonal 

hyperedge degree matrix with element δ(e) and W ∈ R|V |×|E| is the weighted incident 
matrix of hypergraph HG(V , E) . Note that the transition matrix P is stochastic, where 
each row sums to 1.

Furthermore, we implemented a random walk with restart on the hypergraph. All 
genes are considered to be potential driver genes and are assigned with equal probabil-
ities; i.e., the initially normalized probability vector −→v (0) ∈ R|V |×1 such that each ele-
ment is assigned with equal probability 1

|V | . Moreover, the restart probability at every 
step is set to be 1− α(0 < α < 1) . In this article, we set α to be 0.2. Finally, the random 
walk formula can be expressed as follows:

In the formula above, −→v (t) is defined such that the i th element means the probabil-
ity that the surfer stops at vertex i at step t . After a number of steps, the random walk 
will be stable, which can be defined as −→v (∞) . The stabilized state implies that the dis-
tance between −→v (t + 1) and −→v (t) by the L1 norm is smaller than the provided cutoff 
value. In this paper, we set the cutoff as 10−6 . The elements of the stabilized vector −→v  are 
defined as the DriverRWH score, which can reflect the role that the mutated genes play 
in cancer.

Datasets and networks

Somatic mutation data for 9183 tumor samples across 31 cancer types (Additional file 2) 
used in this work are available from TCGA, which were downloaded by UCSC Browser 
(https://​xenab​rowser.​net/​datap​ages/) [29]. We downloaded two independently devel-
oped PPI datasets from the STRINGv10 (https://​string-​db.​org) [30] and the HumanNet 
(http://​www.​funct​ional​net.​org/​human​net/) [31].

Performance evaluation

To evaluate the method, an unbiased comprehensive known cancer gene set is needed. 
Unfortunately, such a gold-standard set of cancer genes is currently unavailable. Alter-
natively, we used four complementary cancer gene sets derived from various sources as 
the reference driver gene set for all the cancer types. First, 616 cancer genes were down-
loaded from the Cancer Gene Census (CGC) database, which includes genes for which 
mutations have been causally implicated in cancer and is widely used as a gold-stand-
ard cancer gene set [32]. Second, the list of HiConf cancer gene panels consists of 99 
driver genes that have previously been detected through genetic criteria and that could 

P(u, v) =
∑

e∈E

h(u, e)

d(u)

w(v, e)
∑

v̂∈e w
(

v̂, e
)

P = D
−1
u HD

−1
e W

T

�v(t + 1) = αPT �v(t)+ (1− α)�v(0), t = 0, 1, 2, . . .

https://xenabrowser.net/datapages/
https://string-db.org
http://www.functionalnet.org/humannet/
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plausibly be detected with exome sequencing data [33]. The third set has 291 high-confi-
dence cancer driver genes identified by a rule-based method (HCD) [34]. The fourth set 
contains 125 driver genes defined by the "20/20 rules", which identifies Mut-driver genes 
based on the characteristic mutational patterns for oncogenes and tumor suppressor 
genes [35]. Now that each cancer gene set is biased toward particular features or study 
methods, we utilized a union of these four lists as the reference driver gene set, with a 
total of 785 genes. This operation can reduce the bias caused by using a single reference 
gene list to some degree. Using aforementioned reference driver genes as a benchmark, 
we generated receiver operating characteristic (ROC) curves and areas under the curve 
(AUCs) to evaluate the true positive and false positive rate. For practical reasons, only 
top-ranked candidate genes might enter into follow-up experimental validation. Consid-
ering that the high performance of prioritization for all genes cannot guarantee success-
ful prioritization for the top ranked candidates, we also assessed the number of known 
driver gene recovered in the top 20, 50, 100,150 and 200 candidate genes.

Due to the diversity of cancer types, we are more interested in tumor-specific driv-
ers than the general common drivers across all tumor types. We downloaded IntOGen 
database (https://​www.​intog​en.​org/​downl​oad) [4]. This database harnesses the strengths 
of different driver prediction methods and provides a tumor-specific driver genes list, 
which is considered to be the best trade-off between sensitivity and specificity. This list 
contains 31 types of cancer among which Kidney Chromophobe (KICH) has 7 specific 
drivers (minimum) and Uterine Corpus Endometrial Carcinoma (UCEC) has 55 (maxi-
mum). All of the above lists are shown in Additional file 3. From an application point of 
view, we should assess the ability of our method to identify novel driver genes that may 
not have been discovered in IntOGen. The genes in top 200 candidate gene list predicted 
by DriverRWH with both HumanNet and STRINGv10 while not in the tumor-specific 
drivers were considered to be potential novel drivers. From the functional perspective, 
these genes were evaluated by the biological analysis using DAVID on-line database, 
CancerGeneNet and iGMDR database [36–39].

We leveraged a literature mining method named CoCiter, which calculates the co-cita-
tion significance between predicted driver genes and the keywords cancer type, ‘driver’ 
and ‘cancer’ to verify the top 30 significant genes [40]. The higher co-citation score 
implicates the stronger association between the genes and the key terms. Without loss of 
generality, we compared DriverRWH with 24 driver gene prediction methods across 31 
cancer type, some of which identify significant drivers by P-value (the genes with FDR 
adjusted P-value < 0.05) and the rest of methods provide the priority scores for candidate 
driver genes (the top 30 genes are selected as significant drivers). It is acceptable for the 
reason that the median number of significant genes for other methods in all data sets is 
30.

Results
Known driver genes have higher degree in the PPI network

In DriverRWH, we hypothesized that a gene is more likely to be a cancer driver if it 
is prone to associate with other mutated genes in cancer. This hypothesis has already 
been proposed in some studies [15, 41]. To further validate it, we analyzed the linkage 
of mutated genes in the PPI network. For a given cancer type, an induced subnetwork of 

https://www.intogen.org/download
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the PPI network which just contains mutated genes from all samples was built. The genes 
that mutated at least once in a cancer type were divided into two groups according to 
whether they are in the reference driver gene set (the union of CGC, HiConf, MCD, Mut-
driver, with a total number of 785 genes): known driver genes and the others. We calcu-
lated the degree of vertices in the induced subnetwork. Taking the three cancer types 
LUSC, BRCA and UCEC for illustration, we found the degrees of known driver genes 
were significantly larger than those of the other mutant genes (Fig. 2, P-value < 0.001). 
This result suggests that cancer driver genes were adjacent to more mutated genes than 
the others. The same analysis using HumanNet is also available (Additional file 1: Fig S1).

Performance of DriverRWH

To evaluate the performance of our method, we compared our method from three 
aspects, prediction of known driver genes, functional enrichment analysis and literature 
mining analysis. Firstly, we implemented six prioritizing methods, MutsigCV [8], Dawn-
Rank [14], MinNetRank [16], Subdyquency [17], Gravity [41] and OncodriveFML [42] 
on three cancer types, namely Lung squamous cell carcinoma (LUSC), Breast invasive 
carcinoma (BRCA), and Uterine Corpus Endometrial Carcinoma (UCEC) (see Addi-
tional file 4). In order to eliminate the deviation brought by the background network, 
we operated DriverRWH and the other three network-based methods (MinNetRank, 
Subdyquency, and Dawnrank) basing on the same network, STRINGv10 and HumanNet 
respectively. Then, we compared DriverRWH with 24 other driver gene prediction tools 
to evaluated its performance across 31 cancer types. Lastly, we verified the robustness of 
our method by testing the performance in perturbed data where the mutation data and 
network data were extracted randomly with different size.

Results for lung squamous cell carcinoma

Lung cancer is regarded as the main leading cause of cancer deaths, which take up 18.0% 
of deaths [43]. In this research, we applied DriverRWH to 480 LUSC samples in TCGA 
database.
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Using reference driver genes as benchmarks, we generated receiver operating charac-
teristic (ROC) curves. When using STRINGv10 as background network, DriverRWH 
outperforms the other six tools. in terms of sensitivity and specificity in identifying 
known driver gene (Fig.  3A). We further assessed the predictive power for the top-
ranked candidate genes. As shown in Fig. 3B, we observed that DriverRWH identified 
more known cancer driver genes by its top 20, 50, 100, 150 and 200 genes. Furthermore, 
the number of know driver gene retrieved by DriverRWH with STRINGv10 network in 
its 20 top-ranked candidates is more than half of it. When HumanNet was used, Driver-
RWH is still significantly better than the others methods (Additional file 1: Fig S2).

To assess the ability of DriverRWH of discovering potential novel cancer driver 
genes, we considered the genes in the 200 top ranked candidate genes predicted with 
both HumanNet and the STRINGv10 while not in tumor-specific drivers list, result-
ing in 72 genes after screening. Biological enrichment analysis using DAVID against 
Genetic Association Database (GAD) shows that 36 genes (48.6%) are cancer-related 
(P-value = 5.92 × 10–6, FDR = 5.92 × 10–4) [44]. In particular, these genes are enriched 
for "lung cancer" (P-value = 1 × 10−3, FDR = 0.1217). Furthermore, the KEGG pathway 
enrichment analysis for the potential drivers is encouraging. 8 genes (11.2%) are signifi-
cantly enriched in pathway: "PI3K - Akt signaling pathway" (P-adjust < 0.05), which is sig-
nificantly related to lung cancer (Additional file 1: Fig S3) [45–48].

Specifically, using the top 30 candidate genes as significant driver, we searched these 
genes in co-citer website by the key terms ‘Cancer’, ‘Driver’ and ‘Lung’. As Table 1 shows, 
some significant well-known driver genes like TP53, PTEN and PIK3CA are near the 
top of the list. Although they are also identified by most of other methods, their ranking 
fell behind ours. The well-known suppressor TP53 which disrupts the cell cycle arrest 
and the apoptosis pathways in human cancer ranks first in our method, but it ranks 
527th in Gravity algorithm. The PTEN is proved to be related to small cell lung cancer, 
which is an admitted tumor suppressor gene with phosphatase activity [49]. It is co-cited 
with ‘Lung’ and ‘Cancer’ for 253 and 2597 times, which is regarded as driver genes in 
35 publications. The PTEN ranks the 16th in our list but ranked 44th in MinNetRank 
and 588th in Gravity. The mutation of PIK3CA gene can lead to abnormal enhancement 
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of the catalytic activity of PI3Ks and promote the carcinogenesis of cells in lung cancer 
[49]. It ranks 7th in our method but 22th in MutsigCV and OncodriveFML, and 473th 
in MinNetRank. On the other hand, KDR (Kinase insert domain-containing receptor), 
ranked 24th, was reported to play a critical role in the metastasis of cancer and is used 
as a molecular target in cancer therapy [50]. Co-cited with "Cancer" for 207 times and 
‘Lung’ for 105 times, KDR even not deemed as a diver gene in lung cancer and can be 
thought as a potential driver. The similar analysis basing on HumanNet is also available 
(Additional file 1: Table S1).

We adopted the GAD and KEGG pathway enrichment analysis and found these signif-
icant driver genes enrich in the small cell lung cancer, PI3K-Akt signaling pathway, etc., 
which are significantly related to lung cancer (Additional file 1: Fig S3). The hallmarks 
of cancer are defined as a set of crucial functional abilities acquired by human cells as 
they move from normalcy to neoplastic growth states [51]. We linked these significant 
drivers to hallmarks of cancer using CancerGeneNet online database which calculates 
the shortest paths between genes and phenotypes [38]. Half of the top 30 genes could 

Table 1  Cociter mining analysis of top 30 LUSC candidate driver genes identified by DriverRWH 
(STRINGv10)

 
Genes

Co-appeared count  
Is_Specificity

Rank position

Lung Cancer Driver MutsigCV Dawnrank Gravity OncodriveFML Subdyquency MinNetRank

TP53 854 5942 55 1 1 1 527 3 1 3

TTN 1 8 1 0 2 2771 3959 13,175 NA 1424

DNAH8 0 1 1 0 15 2 NA 2741 3 73

RYR2 3 3 2 0 4 492 400 11,456 2 1706

LRRK2 5 18 1 0 58 3 1556 10,604 NA 223

PTEN 253 2597 35 1 26 6 588 2 14 44

PIK3CA 94 576 13 1 22 36 2536 22 11 473

NOTCH1 84 486 23 1 49 24 1591 20 18 47

CSMD3 0 3 1 0 3 2434 NA 46 NA 940

ANK2 1 4 0 0 99 675 576 13,775 NA 4868

SYNE1 1 2 1 0 11 4 181 4035 NA 8653

KMT2D 1 18 1 1 NA NA 3147 1 NA 8656

DMD 14 19 3 0 23 419 1998 11,399 NA 566

USH2A 2 4 1 0 6 1136 4591 13,959 NA 215

OBSCN 0 4 0 0 209 2458 204 9252 NA 1487

RYR1 0 3 1 0 53 64 1788 1299 4 590

NF1 12 137 8 1 52 2179 3255 2881 13 1106

LRP1B 8 15 2 0 5 2397 399 9317 NA 1471

APOB 3 23 1 0 84 388 253 8676 NA 1465

RELN 0 9 2 0 113 172 40 13,119 NA 3089

MYH1 1 14 1 0 122 630 NA 6933 NA 2615

EPHA5 2 6 1 0 172 8 NA 7697 28 90

MYH2 4 3 1 0 44 98 NA 5025 7 2538

KDR 105 207 3 0 131 22 549 2832 71 43

HERC2 0 14 1 0 155 5624 148 8436 15 2403

POTEE 1 9 0 0 1153 40 3138 8733 67 229

PIK3CG 36 119 1 0 426 21 602 8186 51 234

CPS1 2 6 1 0 71 5 3852 13,518 NA 387

KMT2C 3 21 4 1 NA NA 5041 479 NA 4264

HDAC9 5 18 1 0 371 1640 3783 10,894 85 944
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be associated with hallmarks of cancer. KDR, one of the potential drivers we mentioned 
above, is linked to “Angiogenesis”, “Cell Death”, “Differentiation”, “DNA Repair”, “Glycoly-
sis”, “Immortality”, “Inflammation”, “Metastasis” and “Proliferation” (Additional file 5). In 
order to assess the drug sensitivity of these significant drivers, we performed gene-drug 
analysis using online database iGMDR, which shows that 73.3% of significant genes are 
druggable (Additional file 6).

Results for breast invasive carcinoma

Breast cancer is the most commonly diagnosed cancer, with an estimate 2.3 million new 
cases, taking up to 11.7% of all the cancer cases in 2020 [43]. We focused on 791 BRCA 
samples in TCGA database to construct the hypergraph.

Compared with other methods, DriverRWH shows the best performance in terms of 
ROC curves when STRINGv10 and HumanNet were used respectively (Fig. 4 and Addi-
tional file 1: Fig S4). Meanwhile, although DriverRWH discerned less driver gene than 
MutSigCV in top 20 candidates, it was found to predict more known driver genes in the 
top 50, 100, 150 and 200 candidates (Fig. 4B). 

We evaluated the capacity of DriverRWH in identifying the breast cancer potential 
driver genes. Similarly, we adopted 61 genes, which are in the 200 top ranked candidate 
genes predicted with both HumanNet and the STRINGv10 while not in tumor-specific 
drivers list to conduct the GAD and pathway enrichment analysis. Notably, 29 genes 
(44.6%) are enriched for "CANCER" (P-value = 1.67 × 10–4, FDR = 1.67 × 10–4) and 12 
(18.5%) are enriched for "breast cancer" (P-value = 2.15 × 10−5, FDR = 0.0087). In the 
case of pathways, these genes are significantly enriched in "Breast cancer". The top 25 
pathways are shown in additional file (Additional file 1: Fig S5).

The cociter score of the top 30 candidate genes predicted by DriverRWH using 
STRINGv10 network is demonstrated in Table 2. Particularly, 8 of the top 10 candidate 
genes are exactly driver genes, including acknowledged driver gene TP53 (ranked 1st), 
the most recurrently mutated gene PIK3CA (ranked second), etc. With high cociter 
scores, KMT2C ranked 8th in DriverRWH, not even identified in MutsigCV and Dawn-
rank and ranked 2121 in Gravity. AKT1, which co-appears with "Cancer" for 1863 times 
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and "Breast" for 477 times, ranked 10th in DriverRWH while it ranked merely 1226th in 
Gravity and 2233th in OncodriveFML. The ERBB2, which ranked 16th in DriverRWH, 
is confirmed to be related to breast cancer, but it ranked 35th in OncodriveFML, 126th 
in MutsigCV, and even 1465th in Gravity [52]. Besides, DriverRWH can identify some 
genes that are highly related with breast cancer but was not recognized by other six 
methods. For instance, EGFR is one of the first identified important targets of novel anti-
tumor agents, which co-occur "Breast" 722 times, "Cancer" 4091 times, and "Driver" 94 
times [53]. MTOR ranked 22nd, co-appearing 321 times with "Breast", 1896 times with 
"Cancer", and 21 times with "Driver". The similar analysis basing on HumanNet is also 
available (Additional file 1: Table S2).

We performed GAD and pathway enrichment analysis of the top 30 candidate driver 
genes. The identified genes are enriched in "breast cancer" in GAD. These gene are sig-
nificantly enriched in "Breast cancer", "Proteoglycans in cancer", "Endometrial cancer", 
etc., which have an association with breast cancer by KEGG enrichment analysis (Addi-
tional file 1: Fig S5). 66.7% of the candidate driver genes could be linked to hallmarks of 

Table 2  Cociter mining analysis of top 30 BRCA candidate driver genes identified by DriverRWH 
(STRINGv10)

 
Genes

Co-appeared count  
Is_Specificity

Rank position

Breast Cancer Driver MutsigCV Dawnrank Gravity OncodriveFML Subdyquency MinNetRank

TP53 1177 5942 55 1 1 1 884 5 2 24

PIK3CA 170 576 13 1 2 4 3949 9885 1 200

CDH1 291 1143 13 1 3 2 448 6 4 52

GATA3 84 114 4 1 4 11 179 1 NA 8652

TTN 2 8 1 0 NA 3148 197 16,438 3 6097

PTEN 595 2597 35 1 6 3 300 7 10 42

MAP3K1 59 129 2 1 5 122 208 4 5 528

KMT2C 3 21 4 1 NA NA 2121 3 NA 4076

DNAH8 0 1 1 0 115 7 NA 1942 78 122

AKT1 477 1863 13 1 NA 6 1226 2233 NA 31

OBSCN 1 4 0 0 NA 1724 642 15,684 14 1760

DMD 1 19 3 0 16 17 1457 5795 11 827

NF1 19 137 8 1 13 998 1641 25 34 926

UBC 176 653 4 0 197 29 NA 2704 38 16

PRDM10 1 1 2 0 916 21 4104 49 560 27

ERBB2 3631 4422 36 1 126 5 1465 35 33 51

MYH9 10 32 4 0 30 358 1540 4141 NA 476

NCOR1 16 58 2 1 9 2903 76 22 7 3160

FOXA1 82 128 5 1 26 26 33 21 NA 8660

ANK3 3 4 2 0 NA 3251 2415 4803 54 2288

LRRK2 4 18 1 0 218 39 7388 3480 278 270

MTOR 321 1896 21 0 NA 22 664 1419 47 115

EGFR 722 4091 94 0 NA 10 2909 14,413 1195 35

RYR2 2 3 2 0 NA 1689 2525 12,929 9 2197

PRKDC 57 274 4 0 77 12 127 9326 51 312

ANK2 0 4 0 0 NA 405 3532 971 44 4349

ASH1L 0 2 1 0 109 5672 957 6540 85 2723

KDM6A 5 24 3 0 64 5042 2140 78 NA 2380

SYNE1 0 2 1 0 NA 1801 1233 12,287 NA 8654

RUNX1 14 110 6 1 7 2058 748 17 28 3175
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cancer (Additional file 5). Besides, 86.7% of the identified genes are druggable according 
to the iGMDR database (Additional file 6).

Results for uterine corpus cancer

Uterine corpus cancer is the sixth most common type of cancer and the second most 
common gynecological malignancy in female, with more than 417,000 new cases and 
97,000 deaths worldwide in 2020 [54]. We used 448 patients with 40,543 candidate genes 
from the TCGA database.

DriverRWH outperforms the other six prioritizing methods with the same reference 
driver genes as benchmarks when assessed by the ROC and percentage of known driver 
gene in the top candidate genes (Fig. 5 and Additional file 1: Fig S6).

For the discovery of potential drives, we selected 41 genes with the same cri-
teria mentioned earlier, of which 22 genes (51.2%) are association with cancer 
(P-value = 1.37 × 10–4, FDR = 1.37 × 10–4). These genes are significantly enriched in 
PI3K - Akt signaling pathway and MAPK signaling pathway, both of which play an 
important role in cellular growth and survival, have been implicated in endometrial can-
cer pathogenesis (Additional file 1: Fig S7) [55]. 

We took top 30 candidate drivers in consideration, Table  3 shows the cociter score 
between these candidate genes and the terms " Endometrial", "Cancer" and "Drivers". 
Apoptosis-suppressing gene MTOR which co-appears with "Endometrial" 63 times, 
with "Cancer" 1896 times, ranked 19th in DriverRWH, but ranked 112th, 182th, and 
1380th in Dawnrank, MutsigCV and OncodriveFML. Notch1 is tumor-suppressive in 
human endometrial cancer cells [56], which ranked 11th in DriverRWH, while 61th in 
MutsigCV, 94th in Subdyquency, even 2630th in OncodriveFML and 7054th in Gravity. 
Moreover, PRKDC is proved to be significantly associated with a high mutation load, 
which ranked 20th in DriverRWH [57]. Recent research suggest that high mutation load 
is a predictive biomarker of response to immune checkpoint inhibitors in uterine corpus 
cancer [58]. The similar analysis basing on HumanNet is also available (Additional file 1: 
Table S3).
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We performed GAD and pathway enrichment analysis of these candidate genes (Addi-
tional file 1: Fig S7). In terms of GAD enrichment analysis, these genes are enriched in 
"endometrial cancer", etc. In pathway enrichment analysis, they significantly enriched in 
Endometrial cancer. 70% of the top ranked genes have the shortest path to cancer phe-
notypes in CancerGeneNet database. PRKDC is linked with “Angiogenesis”, “Cell death”, 
“Differentiation”, “DNA repair”, “Glycolysis”, “Immortality”, Metastasis” and “Prolifera-
tion” (Additional file 5). 83.3% of these candidate genes have related drugs in iGMDR 
online database (Additional file 6).

The stability of the performance across 31 cancer types

Furthermore, we compared the performance of DriverRWH with 24 up-to-date driver 
gene prediction methods in order to assess the stability of DriverRWH across 31 cancer 
types. For DriverRWH and six methods mentioned above which provide ranks of the 
candidate driver gene, top 30 genes were selected as significant drivers [59]. For those 

Table 3  Cociter mining analysis of top 30 UCEC candidate driver genes identified by DriverRWH 
(STRINGv10)

 
Genes

Co-appeared count  
Is_Specificity

Rank position

EndometrialCancer Driver MutsigCV Dawnrank Gravity Oncodrive 
FML

Subdyquency MinNetRank

PTEN 380 2597 35 1 1 1 233 168 1 9

TP53 143 5942 55 1 2 2 1687 403 4 43

PIK3CA 39 576 13 1 3 34 2 673 2 73

CTNNB1 112 2014 29 1 5 5 10 22 11 42

KRAS 51 2538 95 1 4 93 1787 8653 14 218

DNAH8 0 1 1 0 3741 6 6012 NA 24 44

LRRK2 0 18 1 0 2433 13 NA 7114 45 110

OBSCN 0 4 0 0 1171 2641 5199 2055 NA 1184

PRDM10 0 1 2 0 7658 42 NA 992 479 36

RANBP2 0 12 1 0 148 164 40 1176 32 176

NOTCH1 15 486 23 1 61 18 7054 2680 94 45

TAF1 0 9 1 0 45 7954 5227 171 NA 8657

ARID1A 14 67 4 1 31 5994 4505 2 3 1260

ANK3 0 4 2 0 216 5214 5808 157 NA 1914

ATM 4 1222 5 1 241 54 1097 493 16 148

ALB 0 32 1 0 7085 25 7566 7390 397 37

EP300 2 145 2 0 18 151 79 17 54 430

DMD 0 19 3 0 180 69 2776 3448 NA 508

MTOR 63 1896 21 1 182 112 NA 1308 95 63

PRKDC 3 274 4 0 337 40 1217 41 28 130

CTCF 2 50 3 1 1214 29 24 19 NA 164

TTN 0 8 1 0 12 7696 3 1195 NA 4116

FGFR2 23 294 5 1 177 55 4875 1394 43 80

CAD 0 40 1 0 17 27 7174 1091 122 51

NSD1 0 16 2 1 1167 53 34 631 21 85

ASH1L 0 2 1 0 1279 4694 4260 3296 49 2436

TRRAP 0 26 1 0 81 299 8 96 30 303

POTEE 0 9 0 0 4902 155 NA 4873 171 146

GLI3 2 36 2 0 21 20 2263 3088 NA 104

KMT2D 0 18 1 1 23 NA NA 3113 NA 8652
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methods that generate P-values, an adjusted P-values < 0.05 was used as the threshold 
to claim driver genes [60, 61]. The details of tools and the criteria for candidate driver 
genes are provided in the Additional file 7. Figure 6 displays the proportion of predicted 
driver genes presented in the reference driver set across 31 cancer types, arranged by 
the order of the median. DriverRWH recovered approximately 50% (median fraction is 
53.3%) of known driver genes in the top 30 ranked candidate genes in more than half of 
31 cancer types, which is significantly better than the results of the other methods.

Robustness of DriverRWH

To test the robustness of DriverRWH, we applied our method to perturbed data 
where the mutation data and network data were shuffled randomly (Fig. 7). In detail, 
for the mutation data, two types of perturbations were taken: (1) randomly selecting 
50% and 10% of the samples and (2) randomly selecting 50% and 10% of the original 
mutation information in the somatic mutation matrix. With 20 repeats, we used only 
50% and 10% of samples and 50% of mutation information. There is no significant 
decrease in terms of the AUC scores and the cumulative number of recovered driver 
genes. If only 10% of mutation information was retained, there would be a slight 
decrease. It’s worth noting that the performance of the top 20 candidates was always 
at a high level. For the network data, two forms of perturbation were also taken: (1) 
randomly selecting 50% and 10% of the original network information and (2) using 
PPI data with 50% and 10% noise added. There was also only a minor decrease in the 
AUC scores and the cumulative number of recovered cancer genes. A similar conclu-
sion could be obtained when performing robust analysis basing on HumanNet (Addi-
tional file 1: Fig S8). These results suggest that the perturbation of mutation data and 
the network did not seriously affect the result, indicating that DriverRWH is highly 
robust to the quality of the input data. 
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Discussion
Recent years, many methods have been developed to distinguish driver genes from pas-
sengers. Limited by the design of the simple network model, most of them are incapable 
of expressing the many-to-many multiple association relationship. The mutation profile 
was always compressed into the mutation frequency of genes, resulting in the loss of 
co-mutation information for individual samples. In this study, we propose a network-
based method DriverRWH, which has the capability of effectively integrating the muta-
tion and PPI network data to predict cancer driver genes. The novelty of our method 
lies in the introduction of a weighted hypergraph model, which is constructed to simul-
taneously capture two class of relation among mutated genes in individual samples: 1) 
high-order relations were captured by storing hundreds of mutated genes in a hyper-
edge for each sample. 2) using the same mutated genes as above, an induced subnet-
work of PPI network can be generated by preserving mutated genes and their interaction 
in the background network, which represents the pair-wise relations between mutated 
genes. Our model retains complete co-mutation relations for the mutated genes in indi-
vidual tumors and these interactions in PPI network, which can adequately embody the 
implicit inherent peculiarity of them and avoid the loss of information. Taking advantage 
of hypergraph structure, we extended the typical random walk process on a simple graph 
to a probabilistic weighted random walk on hypergraph.

Using a reference driver gene set as a benchmark, DriverRWH consistently outperformed 
the other six state-of-art prioritization methods in terms of the ROC analysis, rank of driver 
genes and the cumulative number of known driver genes recovered in the top-ranked can-
didate genes. Moreover, some new unknown potential driver genes which are co-cited by 
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some cancer associated literatures also can be discovered by DriverRWH, meanwhile the 
high-ranking genes enrich in some significant cancer pathway. At last, taking top 30 as 
predicted candidate driver genes, we can compare DriverRWH with other non-ranking 
methods. The results shows that DriverRWH achieves a higher performance than four pri-
oritization methods and 19 other non-ranking methods across 31 cancer types.

Despite of these encouraging results, there are several limitations in the current model. 
First, for TCGA data, tumor heterogeneity may increase the data bias, and future work 
should be done to reduce false-positive discoveries by using single-cell genomics data. 
Second, DriverRWH relies on a broad context molecular network that is still incomplete 
at present, so refined gene functional networks in the near future could improve the per-
formance of our method. A cancer-specific network might better represent the natural 
interactions of genes in cancer and potentially provide a more reliable network. Third, 
our method focuses on general driver gene detection but does not aim to offer personal-
ized means of diagnosis, which is more useful in real applications. In the future, we plan 
to extend our method to discover drivers in personalized manner.

Conclusions
Recently, many computational methods and tools have been proposed to identify driver 
genes. However, long-tail distribution of the mutation frequency of genes in cancer 
genomes remains a major concern. There are many widely accepted methods based on 
mutation frequencies, but they fail to comprehensively consider the co-mutation infor-
mation in individuals. Considering hypergraph has unique advantages of retaining com-
plete co-occurrence information, we introduced the hypergraph theory in driver gene 
prediction, thus compensating for the co-mutation information loss issue by existing 
methods. For each hyperedge, degrees of vertex in the corresponding subnetwork of the 
PPI network were utilized to design the weighted hypergraph, through which we realized 
the integration of the mutation data and the PPI data. Subsequently, motivated by Pag-
eRank algorithm, we implemented the random walk with restart on the hypergraph, and 
proposed a novel approach DriverRWH to prioritize mutated genes. As demonstrated in 
this paper, DriverRWH not only excels existing methods in the identification of known 
driver genes but also is capable of discovering potential driver genes. Furthermore, the 
model behaves robustly under the perturbation of mutation data and network data. Our 
results show that DriverRWH can be a useful tool for prioritization driver genes. The 
source code of DriverRWH is freely available at https://​github.​com/​Shand​ongUn​ivers​
ityZh​anglab/​Drive​rRWH.
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