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Background
Multi-agent simulation (MAS) is an essential technique for exploring system phenomena 
in which the overall behaviour is determined by the constituent autonomous entities [1]. 
It provides an effective tool for modeling systems with complex organization and non-
linear interactions. As agents can be applied with different disciplines, it is widely used 
in studying social, economic, organization and epidemiology sciences [2–4]. Domínguez 
et al. [5] propose multi-agent modeling for complex supply chains to overcome limita-
tions from classical methods. McArthur et al. [6] investigate MAS technology in power 
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industry with complex scalable power networks. Moreover, it is also evaluated as effi-
cient in smart city, such as controlling city congestion, pollution and delivery time [7]. 
Many other applications can be found in [8].

A significant application of MAS is studying infectious diseases. Classical methods use 
mathematical models to emulate the transmission of infectious diseases. Some classical 
examples include Susceptible-Infect-Susceptible (SIS) epidemic model [9], Susceptible-
Infect-Recovered (SIR) epidemic model [10], etc. However, these simple models are not 
afforded to analyze complex and find-grained systems. MAS integrating evolution and 
phylogeny helps to understand emerging infectious diseases in complex systems. Dion 
et al. [11] leverage it to study the landscape epidemiology of the foot-and-mouth disease 
in South Africa. Yergen et al. [12] propose IDESS for rapidly constructing MAS models 
of Avian Flu (H5N1) virus spreading.

Outbreaks of COVID-19 raise concerns about effectively preventing spread of infec-
tious diseases, and MAS is widely adopted for studying this issue. Its fine-grained 
spreading dynamics is established through many efforts. Castro et  al. [13] analyze the 
spread processes of COVID-19 epidemics in open regions by considering effects from 
different environments. Vyklyuk et al. [14] propose modeling its spread in large regions 
by simulating a set of autonomous multi-agent systems. Nanna et al. [15] extend MAS 
to dynamically verify influences on diseases spread from government strategies. For 
COVID-19 preventions, both non-pharmaceutical interventions (NPI) and pharmaceu-
tical interventions (PI) have been elaborately invested [16] with this paradigm. Yin et al. 
[17] proposed a data-driven NPI MAS model to suppress the diseases in Shenzhen and 
evaluate strategies including contact tracing, mask wearing and prompt testing. Zhou 
et  al. [18] examine the spatial heterogeneity of the disease transmission and optimize 
vaccine distribution strategies considering spatial prioritization.

Although many researches focus on exploring underlying dynamics through MAS 
modeling, fewer concern the computation performance [19–21]. However, computa-
tion performance is a significant aspect for large-scale simulations where obstructions 
from heavy calculation, intensive memory access and communication are inevitable. In 
general, approaches to improve MAS performance include parallel computing [22–24] 
and distributed computing [25–27] on both CPU and GPU platforms. Well known of 
parallel and distributed platforms contain Mason [28], Gama [29] and Simphony [30]. 
Meanwhile, FPGA is remarked with fine-grained parallelism and flexible memory archi-
tecture. Some studies also focus on the acceleration on FPGA platforms [31, 32]. As 
communication patterns among agents are continuously changing in distributed sys-
tems, some works seek for effective agent allocation strategies to improve the perfor-
mance [33, 34]. On the other hand, massive-scale simulations in serial algorithm often 
suffer from poor data locality, but seldom researches about this issue is established. Wil-
lem et al. [35] introduce a sorting phase of population and optimize data structure to 
improve system performance.

A general MAS simulation [36] for infectious diseases contains two steps: (a) update 
each person’s health state according to the epidemic model; (b) compute the disease 
transmissions over the contact network. Accessing agent states is irregular and random, 
which is the major factor limiting the computational efficiency. In this work, we study 
optimizing MAS for COVID-19 transmission in Shenzhen. Two methods are explored 
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and evaluated including algorithm and data structure optimization. In order to improve 
data locality, we reconstruct the loop order of MAS algorithm, and propose a hierar-
chical Hash table structure leveraging cache and hardware properties. Our results show 
prominent improvement in the system performance and indicate wide applicability to 
interventions for infectious diseases.

Specifically, we make the following contributions: 

(1) We reorder the inner structure of MAS method to improve the data locality, where 
iterations of infectious agents take priority rather than the time evolution. And for-
mulate a simple convolutional scheme to eliminate its systematic errors. (Section 
Methods–Case-focused simulation)

(2) We propose a hierarchical hash table to support irregular and randomly accessing 
agent states with high efficiency. It leverages cache characteristics to organize data 
in a compact manner and reduce its sparsity in memory space, and adopts a key-
value separating structure for flexible operations. In addition, single instruction, 
multiple data (SIMD) instructions are applied to boost the handling speed of hash 
collisions. (Section Methods– Hierarchical Hash Table)

Methods
Epidemic dynamics

A stochastic, discrete-time susceptible-latent-infectious-removed (SLIR) model is imple-
mented where the transmission of COVID-19 is triggered by contacts between agents in 
households, workplaces, schools and other buildings [17]. Once a susceptible individual 
has a contact with an infectious agent, the probability of infection p via this contact is 
calculated as follows:

where pTrans denotes the transmission probability per contact and is estimated as 0.165 
by calibrating the modeled basic reproductive number R0 to the observed value of 2.4 
[37–41]. Ic is the intensity of daily contact at different contact settings derived from a 
contact survey [42]. r differentiates the infectivity of infectious agents with and without 
symptoms, i.e. the infectivity of asymptomatic agents is as 0.12 of their counterparts [17]. 
In addition, this simulation assumes that all infected agents would not be re-infected.

The infectious dynamics of SLIR model is demonstrated in Fig.  1. Once a suscepti-
ble individual (S) is infected, a probability of 25% is assumed to turn into latent status 
[43–45]. The latent period (La) is set to 4.6 days ( � ) for asymptomatic agents to become 
infectious [46–48]. These agents remain infectious for 9.5 days ( µ ) until being removed 

(1)p = pTrans × Ic × r

Fig. 1 A compartmental SLIR model for COVID‑19
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from the model after recovery [49]. Symptomatic agents are assigned an incubation 
period ( ǫ ) with a mean of 5.2 days to manifest symptoms (Is), including latent status (Ls) 
[48]. Their infectivity starts from 2 days ( γ ) before symptom onset (Ps) [47]. After the 
onset of symptoms, agents remain infective until they get recovered. Parameters in this 
SLIR model are confident based on the assessment of local Center for Disease Control 
(CDC) collaborators, who have first-hand COVID-19 clinical data.

Case‑focused simulation

In general, MAS algorithm for infectious diseases makes efforts to mimic its natural 
transmission process among population, where diseases spread as time evolves. Hence, 
traditional MAS algorithm is evolution-focused, where the evolution is represented as 
calculation by time step, and is shown in Algorithm  1. It contains 3-order loops. The 
first loop ( k ∈ MaxIter ) is the time-evolving loop, where MaxIter is simulated max time 
step. The second loop is made up by three subprocesses (two of ai(k) ∈ A(k) , and one 
of bj(k) ∈ B(k) ), including removing recovered agents, building up contacting networks, 
implementing diseases spreading calculation. A, B organized as hash table format denote 
infected agents and contacting network respectively. Regions represents general venues 
population gather together including both private and public areas. The innerest loops 
( gi ∈ Regions(ai) and lj ∈ bj(k) ) scan over infected agents’ appearance places daily to find 
contacting population and contacted candidates to decide increasingly infected agents 
at current time step k. These agent information are dynamically changed with either 
shrinking or expanding behaviors in hash tables A and B during the iteration.
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As indicated by middle-order loops in this algorithm, all the elements from the con-
structed hash tables A and B require accessing and utilization once for each time iter-
ation. As the amount of population is large, such a scanning mechanism wastes data 
fetching from memories. It will degrade system performance severely owing to this 
poor locality as data arrangement heavily exceeds cache capacities. For simulation 
in a megacity with ones of millions population, this issue is inevitable in performing 
real-time simulation and quickly response to intervention strategies. Key point is to 
manage effective reutilization of data as fetching from hash tables to maintain the 
locality.

In order to improve data locality, we propose a case-focused method, where the 
algorithm loops are reorganized. As shown in Algorithm 2, the table scanning loop is 
elevated to the outer order, while time-evolution loop is demoted. MaxCase is size of 
A, and changes automatically as A varies during simulation. At a primitive transmis-
sion stage of pandemic diseases, rapid spreading among population increases Max-
Case prominently. It will get decreased and vanish when diseases are suppressed and 
immunity gets common. In the reconstructed loops, infected agent am gets accessed 
and transferred to cache once for each iteration. The time evolution is implemented 
in the inner loop [Tm0,Tm1] , thus am can be reutilized Tm1 − Tm0 times. Meanwhile, 
as infection period of am finishes at the end of each agent m, m gets recovered natu-
rally and we need not to query for recovered agents appearing at evolution-focused 
method. In addition, contacting candidates bm are sampled independently for each 
infected agent am , and construction of B is independent. As bulky information of 
agents will be transferred into higher-level cache and frequently fetching from main 
memory is suppressed, it is expected that case-focused method will improve system 
performance significantly.

It should be mentioned that these two algorithms have similar computation com-
plexity possessing 3-order loops. An interesting difference between them is causality. 
The evolution-focused method follows a natural process, while case-focused method 
reduces priority of time evolution to maintain data locality. It will affect produced 
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distribution of infected-agent evolution. For widely spreading diseases with large 
overlapping susceptible population from infectious agents, the probability of a can-
didate bi gets infected is boosted by both of the amount of its contacting infectious 
agents and their infectious periods. The calculation order of the two factors make dif-
ferent effects, where the inner loop of factor takes priorities. For each time step k in 
evolution-focused MAS, number of contacting agents take the priority to determine 
candidate’s healthy status. However, in case-focused MAS, each candidate agent m is 
domained by infectious agent’s period [Tm0,Tm1] . Both of them share a same infec-
tious probability, but candidate bm is more likely to be infected within a relatively 
delayed time with respect to evolution-focused method.

We formulate this difference as the systematic error from case-focused method. It can 
be demonstrated and modified by a simply assumption. Assuming the delayed infected 
time δ follows a uniform distribution, it can be directly derived from statistic theory that 
the average delayed time δ̄ obeys a gaussian distribution N (µ, σ 2) . µ represents the mean 
of the distribution, and σ 2 is its variance, which can be regarded as super parameters 
tuned for real simulation. Conversion between two algorithms can be implemented by 
convoluting former method with a delayed-gaussian function. In other words, case-
focused MAS will generate delayed and vague results with respect to traditional method.

Hierarchical hash table

As indicated in algorithms 1 and 2, hash table is an important participant in the simula-
tion, and its performance affects system significantly. In general, hash tables consume 
the majority of cycles on many key applications such as databases [50], networking [51] 
and genomics [52]. But they suffer from inefficiencies in current systems owing to poor 
core utilization and poor spatial locality [53]. Hash tables spread key-value pairs uni-
formly and sparsely across allocated memory to reduce mapping conflicts. In the MAS 
simulation, each agent’s index and its bulky information are formed together into the 

Fig. 2 A: Traditional (software) hash table format. B: Overview of hierachical hash table format



Page 7 of 14Jin et al. BMC Bioinformatics          (2022) 23:260  

key-value pair filled in the table as shown in Fig. 2A. Due to sampling for agents is a ran-
dom process during the simulation, same-line neighbors of frequently accessed agents 
may be rarely accessed. This leads to a significant waste of cache capacity.

There are many researches focusing on reducing hash table overheads. Data-level par-
allelism of inter keys is introduced in prior works to optimize the throughput [50, 54]. 
Near-memory [55] and near-storage [56, 57] acceleration bypass the cache hierarchy 
entirely to avoid spatial locality problems. Exploiting hierarchical memory layout and 
characteristics of caches [53] is found improving spatial locality prominently.

In the MAS computation, the key-value pair of agent information is made up by 
agent index (key, k) and bulky data (value, d) derived from simulation, such as infected 
and recover date. These pairs stored by traditional (software) hash tables are allocated 
sparsely across memory as demonstrated in Fig.  2A. Lookup and update operators of 
hash table have to access bulk memory in units k + d , which generate larger memory 
occupancy and heavier accessing burden. Hence, cross-line and misses of caches are fre-
quently confronted. It is essential to allocate hash table elements across memory into a 
dense alignment for better spatial locality.

We reorganize hash table as a hierarchical structure and leverage caches to optimize 
spatial locality. The agent table constructed during the simulation is organized as three-
level hierarchical tables in Fig. 2B. This hierarchical hash table (HHT) is composed of 
three parts: Cacheline Hash Table (CHT), Software Hash Table (SHT) and Bulk-Info 
Table (BIT). Agent indices and bulky data are stored separately, while extra projection 
index i is introduced to connect them. CHT and SHT store (k, i) pairs, in which i indi-
cates address offset to locate d. BIT is a compact array where agents’ information data ds 
are aligned contiguously and accessed by i transferred from former hash tables. Although 
projection indices possess extra memory, compact alignment of agent information data 
saves prominent memory occupancy. In addition, MAS computation queries the agent’s 
existence frequently leaving its information alone, such a key-value separating architec-
ture is expected to save memory occupancies and boosts key-only lookup speed.

CHT leverages the characteristics of cache to accelerate hash operations. Data is 
transferred in fixed block size between cache and main memory, namely cache line. In 
nowaday processors, a typical cache line size is 64-bytes. We construct cache line as the 
basic CHT element, where hash values derived from keys are located to address of cache 
line. In a line, data-level parallelism is implemented, where first 32 bytes make up 8-key 
group and the rest is corresponding index group. As elements within a cache line share 
the same hash value, collision occurs when lookup CHT. We use SIMD instructions to 
handle this issue and accelerate lookup and update in the line. SHT is used as a victim 
table, which holds pairs overflowing from CHT. It has a traditional structure and occu-
pies subtle space with respect to CHT to maintain CHT priority.

Major interfaces of HHT contain three hash-table operations: find, insert and delete. 
Find operator decomposes key-value querying requestion into two parts. CHT has the 
priority to search for the key. If CHT’s lookup is not resolved, i.e., the key is not found 
and the line is full, it continues searching across SHT. Key searching operation returns 
corresponding projection address i of k. If i is meaningful and bulky data is required, 
specific values are extracted as located at i in BIT. For implementing insert and delete 
operations, two extra labels are introduced representing their states. Insert operator 
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fills content at empty seat of the line in CHT, and turns to SHT if a cache-line over-
flow occurs. Storage of the bulky value makes continuously increments at the end of BIT. 
Moreover, delete operation is achieved by replacing target content with the delete label. 
As a result, CHT and BIT make dense alignment for key-value storage and can reduce 
overhead for accessing cache.

Results and discussion
The megacity Shenzhen with a population larger than ten million is adopted as a study 
case. We implement the optimization methods on spatial explicit MAS system without 
NPIs proposed by Yin [17]. In the system, 11.2 million agents with demographic charac-
teristics are synthesized in assistance of cross-referencing census data and house-hold 
travel survey [58]. Agents’ hourly movements are formulated from mobile phone tra-
jectory records or house-hold travel survey. Each individual is anchored onto different 
types of buildings for a daily trajactery, including living, working, studying and perform-
ing other activities. The synthesized agents are modeled to contact with each other when 
staying at the same location within one hour.

We perform the simulation on an Intel Core i9-10850K CPU platform with 10 physi-
cal cores and 20 threads. It is configured with 64 GB main memory, and cooperates with 
32 KB L1 DCache, 256 KB L2 Cache and 20 MB L3 Cache. As case-focused MAS is 
convenient to be implemented in data-parallel manner, we perform multi-thread com-
putation in assistant of C++11’s thread, mutex and atomic libraries. thread is used to 
create and detach threads for agent-parallel processing. mutex and atomic help to avoid 
changing memory values simultaneously among threads.

First, performances between Algorithm  1 and Algorithm  2 are present on single-
thread mode. As shown in Table  1, both of these methods generate almost the same 
amount of total infected agents. But their time evolution diverges as demonstrated in 
Fig. 3. Convolution with gaussian function is implemented to eliminate divergences, and 
parameters are fitted with ROOT toolkit [59] as N (6, 132) . It results that average delayed 
time is 6 days with 13-day deviation. In the statistical perspective, 68% of cases would be 

Fig. 3 Evolutions of increasing cases per day among different methods. Blue solid line is calculated by 
evolution‑focused MAS. Read solid line is calculated by case‑focused MAS. Purple dashed line is the result 
from convoluting evolution‑focused MAS outputs with delayed‑gaussian function N(6, 132)
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observed with a delay of 6± 13 days as calculated by the case-focused MAS, and a typi-
cal confidence of 95% derives this range with 6± 26 days.

We perform error analysis about parameters applied in the MAS. First, both values 
of infectious probability and period are assumed with 20% uncertainties. Simulation 
results indicate that they have similar effects on the amount of total infected agents, 
which generate variations of the amount within [−7%, 4%] respectively. Second, the sta-
bility of the gaussian kernel is evaluated under uncertainties of the infectious probabil-
ity. We find parameters of the kernel can remain almost unchanged within its deviation 
[−5%, 20%] considering statistical uncertainties, and results are shown in Fig.  4. This 
systematic error of Algorithm 2 originates from overlapping contact networks of suscep-
tible individuals under different iteration orders. It will have little effects as the infected 
agents possess a minor amount of the population. We produce this scenario by assuming 
in-time quarantined of infectious population to heavily suppress the diseases. Results 
demonstrate that both Algorithm 1 and Algorithm 2 are equivalent to each other under 
statistical uncertainties.

As mentioned above, case-focused iteration has potential to significantly improve sys-
tem performance by maintaining data locality. We use perf provided by Linux to evalu-
ate cache accesses during simulation. As shown in Table 1, results indicate that almost 
94% cache references are saved and cache misses are reduced by 90%. This optimized 
algorithm accelerates simulation prominently and achieves ×4.4 speedup. As a result, it 
maintains the data locality well and improves calculation speed significantly, but sacrific-
ing part of precision.

Next, proposed hash table HHT is implemented for further optimizing system perfor-
mance under the case-focused method. As SHT is provided by system and holds victims 
overflowing from CHT, frequently accessing SHT may affect HHT’s querying perfor-
mance. We set its member occupancies is 1% to CHT capacity to minimize the influence. 
Algorithm 1 with libstdc++’s C++11 unordered_map under single-thread operation is 
adopted as benchmark. The single-thread computation is shown in the first ticks along 
thread axis of Fig. 5. HHT achieves ×6.4 speedup which leverages both algorithm and 
hash table optimization. Comparing the result with unordered_map implemented under 
the same MAS algorithm, HHT is still faster by 47%.

Fig. 4 Evolutions of increasing cases per day among different methods with variances of infectious 
probability as ‑5% (Left) and +20% (Right). Blue solid lines are calculated by evolution‑focused MAS. 
Read solid lines are calculated by case‑focused MAS. Purple dashed lines are the result from convoluting 
evolution‑focused MAS outputs with delayed‑gaussian function N(6, 132)
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Traditional hash table is a thread-unsafe data mapping paradigm. It requires multi-
ple memory duplication and migration during the table expands or shrinks. As hash 
insert and find encounter from different threads, while the insert causes rehashing 
and expands the table’s capacity by factor 2, another thread may lose the actual access 
to target and a program fault occurs. We use atomic operator on HHT to maintain a 
thread-safe manner across multi-thread operations. As demonstrated by Fig. 5, this par-
allel implementation prominently boosts the program, where original 40-min process is 
compressed within ∼ 30s. Consequently, parallel acceleration with 20 threads achieves 
×80(±2) speedup to the benchmark, and processor efficiency is derived roughly 64% 
accordingly.

Conclusions
The MAS is an essential method for studying epidemiology sciences, especially for 
intervention for COVID-19 transmission. Traditional methods need querying over 
population as time evolves and suffers from poor-locality issues. In this work, we 
focus on optimizing MAS for infectious diseases, and propose two successive pro-
cesses to accelerate computation. First, we reconstruct the iteration order of MAS 
and propose the case-focused method. It can improve data locality significantly, 

Fig. 5 Multi‑thread speedup of HHT implementation on the case‑focused MAS comparing to benchmark 
(unordered_map implementation on the evolution‑focused MAS)

Table 1 Comparison between Evolution‑focused MAS and case‑focused MAS on single‑thread 
mode

Evolution‑focused MAS Case‑focused MAS

Total Infected Agents 84% 84%

Cache References 2.5× 10
11

1.5× 10
10

Cache Misses 8.5× 10
10

8× 10
9

Running Time (s) 2.6(±0.7)× 10
3

6(±0.04)× 10
2

Speedup ×1 ×4.3(±0.1)



Page 11 of 14Jin et al. BMC Bioinformatics          (2022) 23:260  

where 90% cache references are saved. Consequently, the program is accelerated by 
×4.3 . Next, we design a thread-safe and high-performance hash table HHT for man-
aging intermediate products from simulation. HHT leverages cache characteristics 
and SIMD instructions to optimize hash operations. It can further get a faster speed 
by 47% compared with classical hash table, and a 20-thread implementation achieves 
×80 speedup finally.

It should be noticed that major MAS researches adopted evolution-focused method as 
simulation backbone [60–62]. As indicated by [36], general MAS methods for infectious 
diseases have to handle irregular and randomly accessing agent states, which is a major 
factor limiting the calculation efficiency. Our proposed case-focused method overcomes 
their disadvantages to improve data locality significantly, and this method is suitable not 
only for COVID-19 but also for other infectious diseases. However, it takes a trade-off 
with blurred and delayed results. Although the results can be recovered by deconvolut-
ing from a mixing kernel, kernel parameters need pre-calibrated under a specific sce-
nario. Careful studies for this mechanism will be implemented in next works. Moreover, 
NPI and PI methods are crucial for intervening spreading of infectious diseases. Studies 
of fast calculation with these interventions are left in the future.
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