
Optimize data‑driven multi‑agent simulation
for COVID‑19 transmission
Chao Jin1*, Hao Zhang2,3, Ling Yin2, Yong Zhang2 and Sheng‑zhong Feng1

Background
Multi-agent simulation (MAS) is an essential technique for exploring system phenomena
in which the overall behaviour is determined by the constituent autonomous entities [1].
It provides an effective tool for modeling systems with complex organization and non-
linear interactions. As agents can be applied with different disciplines, it is widely used
in studying social, economic, organization and epidemiology sciences [2–4]. Domínguez
et al. [5] propose multi-agent modeling for complex supply chains to overcome limita-
tions from classical methods. McArthur et al. [6] investigate MAS technology in power

Abstract

Background: Multi‑Agent Simulation is an essential technique for exploring com‑
plex systems. In research of contagious diseases, it is widely exploited to analyze their
spread mechanisms, especially for preventing COVID‑19. Nowadays, transmission
dynamics and interventions of COVID‑19 have been elaborately established by this
method, but its computation performance is seldomly concerned. As it usually suffers
from inadequate CPU utilization and poor data locality, optimizing the performance is
challenging and important for real‑time analyzing its spreading.

Results: This paper explores approaches to optimize multi‑agent simulation for
COVID‑19 disease. The focus of this work is on the algorithm and data structure designs
for improving performance, as well as its parallelization strategies. We propose two suc‑
cessive methods to optimize the computation. We construct a case‑focused iteration
algorithm to improve data locality, and propose a fast data‑mapping scheme called
hierarchical hash table to accelerate hash operations. As a result, The case‑focused
method degrades ∼ 90% cache references and achieves ×4.3 speedup. Hierarchical
hash table can further boost computation speed by 47%. And parallel implementation
with 20 threads on CPU achieves ×80 speedup consequently.

Conclusions: In this work, we propose optimizations for multi‑agent simulation of
COVID‑19 transmission from aspects of algorithm and data structure. Benefit from
improvement of locality and multi‑thread implementation, our methods can signifi‑
cantly accelerate the simulation computation. It is promising in supporting real‑time
prevention of COVID‑19 and other infectious diseases in the future.

Keywords: Multi‑agent simulation, Case‑focused method, Hash table

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Jin et al. BMC Bioinformatics (2022) 23:260
https://doi.org/10.1186/s12859‑022‑04799‑4 BMC Bioinformatics

*Correspondence:
jinchaohpc@gmail.com

1 National Supercomputing
Center in Shenzhen,
Shenzhen 518055, Guangdong,
People’s Republic of China
2 Shenzhen Institute of Advanced
Technology, Chinese Academy
of Sciences, Shenzhen 518055,
Guangdong, People’s Republic
of China
3 University of Chinese Academy
of Sciences, Beijing 100049,
People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04799-4&domain=pdf

Page 2 of 14Jin et al. BMC Bioinformatics (2022) 23:260

industry with complex scalable power networks. Moreover, it is also evaluated as effi-
cient in smart city, such as controlling city congestion, pollution and delivery time [7].
Many other applications can be found in [8].

A significant application of MAS is studying infectious diseases. Classical methods use
mathematical models to emulate the transmission of infectious diseases. Some classical
examples include Susceptible-Infect-Susceptible (SIS) epidemic model [9], Susceptible-
Infect-Recovered (SIR) epidemic model [10], etc. However, these simple models are not
afforded to analyze complex and find-grained systems. MAS integrating evolution and
phylogeny helps to understand emerging infectious diseases in complex systems. Dion
et al. [11] leverage it to study the landscape epidemiology of the foot-and-mouth disease
in South Africa. Yergen et al. [12] propose IDESS for rapidly constructing MAS models
of Avian Flu (H5N1) virus spreading.

Outbreaks of COVID-19 raise concerns about effectively preventing spread of infec-
tious diseases, and MAS is widely adopted for studying this issue. Its fine-grained
spreading dynamics is established through many efforts. Castro et al. [13] analyze the
spread processes of COVID-19 epidemics in open regions by considering effects from
different environments. Vyklyuk et al. [14] propose modeling its spread in large regions
by simulating a set of autonomous multi-agent systems. Nanna et al. [15] extend MAS
to dynamically verify influences on diseases spread from government strategies. For
COVID-19 preventions, both non-pharmaceutical interventions (NPI) and pharmaceu-
tical interventions (PI) have been elaborately invested [16] with this paradigm. Yin et al.
[17] proposed a data-driven NPI MAS model to suppress the diseases in Shenzhen and
evaluate strategies including contact tracing, mask wearing and prompt testing. Zhou
et al. [18] examine the spatial heterogeneity of the disease transmission and optimize
vaccine distribution strategies considering spatial prioritization.

Although many researches focus on exploring underlying dynamics through MAS
modeling, fewer concern the computation performance [19–21]. However, computa-
tion performance is a significant aspect for large-scale simulations where obstructions
from heavy calculation, intensive memory access and communication are inevitable. In
general, approaches to improve MAS performance include parallel computing [22–24]
and distributed computing [25–27] on both CPU and GPU platforms. Well known of
parallel and distributed platforms contain Mason [28], Gama [29] and Simphony [30].
Meanwhile, FPGA is remarked with fine-grained parallelism and flexible memory archi-
tecture. Some studies also focus on the acceleration on FPGA platforms [31, 32]. As
communication patterns among agents are continuously changing in distributed sys-
tems, some works seek for effective agent allocation strategies to improve the perfor-
mance [33, 34]. On the other hand, massive-scale simulations in serial algorithm often
suffer from poor data locality, but seldom researches about this issue is established. Wil-
lem et al. [35] introduce a sorting phase of population and optimize data structure to
improve system performance.

A general MAS simulation [36] for infectious diseases contains two steps: (a) update
each person’s health state according to the epidemic model; (b) compute the disease
transmissions over the contact network. Accessing agent states is irregular and random,
which is the major factor limiting the computational efficiency. In this work, we study
optimizing MAS for COVID-19 transmission in Shenzhen. Two methods are explored

Page 3 of 14Jin et al. BMC Bioinformatics (2022) 23:260

and evaluated including algorithm and data structure optimization. In order to improve
data locality, we reconstruct the loop order of MAS algorithm, and propose a hierar-
chical Hash table structure leveraging cache and hardware properties. Our results show
prominent improvement in the system performance and indicate wide applicability to
interventions for infectious diseases.

Specifically, we make the following contributions:

(1) We reorder the inner structure of MAS method to improve the data locality, where
iterations of infectious agents take priority rather than the time evolution. And for-
mulate a simple convolutional scheme to eliminate its systematic errors. (Section
Methods–Case-focused simulation)

(2) We propose a hierarchical hash table to support irregular and randomly accessing
agent states with high efficiency. It leverages cache characteristics to organize data
in a compact manner and reduce its sparsity in memory space, and adopts a key-
value separating structure for flexible operations. In addition, single instruction,
multiple data (SIMD) instructions are applied to boost the handling speed of hash
collisions. (Section Methods– Hierarchical Hash Table)

Methods
Epidemic dynamics

A stochastic, discrete-time susceptible-latent-infectious-removed (SLIR) model is imple-
mented where the transmission of COVID-19 is triggered by contacts between agents in
households, workplaces, schools and other buildings [17]. Once a susceptible individual
has a contact with an infectious agent, the probability of infection p via this contact is
calculated as follows:

where pTrans denotes the transmission probability per contact and is estimated as 0.165
by calibrating the modeled basic reproductive number R0 to the observed value of 2.4
[37–41]. Ic is the intensity of daily contact at different contact settings derived from a
contact survey [42]. r differentiates the infectivity of infectious agents with and without
symptoms, i.e. the infectivity of asymptomatic agents is as 0.12 of their counterparts [17].
In addition, this simulation assumes that all infected agents would not be re-infected.

The infectious dynamics of SLIR model is demonstrated in Fig. 1. Once a suscepti-
ble individual (S) is infected, a probability of 25% is assumed to turn into latent status
[43–45]. The latent period (La) is set to 4.6 days (�) for asymptomatic agents to become
infectious [46–48]. These agents remain infectious for 9.5 days (µ) until being removed

(1)p = pTrans × Ic × r

Fig. 1 A compartmental SLIR model for COVID‑19

Page 4 of 14Jin et al. BMC Bioinformatics (2022) 23:260

from the model after recovery [49]. Symptomatic agents are assigned an incubation
period (ǫ) with a mean of 5.2 days to manifest symptoms (Is), including latent status (Ls)
[48]. Their infectivity starts from 2 days (γ) before symptom onset (Ps) [47]. After the
onset of symptoms, agents remain infective until they get recovered. Parameters in this
SLIR model are confident based on the assessment of local Center for Disease Control
(CDC) collaborators, who have first-hand COVID-19 clinical data.

Case‑focused simulation

In general, MAS algorithm for infectious diseases makes efforts to mimic its natural
transmission process among population, where diseases spread as time evolves. Hence,
traditional MAS algorithm is evolution-focused, where the evolution is represented as
calculation by time step, and is shown in Algorithm 1. It contains 3-order loops. The
first loop (k ∈ MaxIter) is the time-evolving loop, where MaxIter is simulated max time
step. The second loop is made up by three subprocesses (two of ai(k) ∈ A(k) , and one
of bj(k) ∈ B(k)), including removing recovered agents, building up contacting networks,
implementing diseases spreading calculation. A, B organized as hash table format denote
infected agents and contacting network respectively. Regions represents general venues
population gather together including both private and public areas. The innerest loops
(gi ∈ Regions(ai) and lj ∈ bj(k)) scan over infected agents’ appearance places daily to find
contacting population and contacted candidates to decide increasingly infected agents
at current time step k. These agent information are dynamically changed with either
shrinking or expanding behaviors in hash tables A and B during the iteration.

Page 5 of 14Jin et al. BMC Bioinformatics (2022) 23:260

As indicated by middle-order loops in this algorithm, all the elements from the con-
structed hash tables A and B require accessing and utilization once for each time iter-
ation. As the amount of population is large, such a scanning mechanism wastes data
fetching from memories. It will degrade system performance severely owing to this
poor locality as data arrangement heavily exceeds cache capacities. For simulation
in a megacity with ones of millions population, this issue is inevitable in performing
real-time simulation and quickly response to intervention strategies. Key point is to
manage effective reutilization of data as fetching from hash tables to maintain the
locality.

In order to improve data locality, we propose a case-focused method, where the
algorithm loops are reorganized. As shown in Algorithm 2, the table scanning loop is
elevated to the outer order, while time-evolution loop is demoted. MaxCase is size of
A, and changes automatically as A varies during simulation. At a primitive transmis-
sion stage of pandemic diseases, rapid spreading among population increases Max-
Case prominently. It will get decreased and vanish when diseases are suppressed and
immunity gets common. In the reconstructed loops, infected agent am gets accessed
and transferred to cache once for each iteration. The time evolution is implemented
in the inner loop [Tm0,Tm1] , thus am can be reutilized Tm1 − Tm0 times. Meanwhile,
as infection period of am finishes at the end of each agent m, m gets recovered natu-
rally and we need not to query for recovered agents appearing at evolution-focused
method. In addition, contacting candidates bm are sampled independently for each
infected agent am , and construction of B is independent. As bulky information of
agents will be transferred into higher-level cache and frequently fetching from main
memory is suppressed, it is expected that case-focused method will improve system
performance significantly.

It should be mentioned that these two algorithms have similar computation com-
plexity possessing 3-order loops. An interesting difference between them is causality.
The evolution-focused method follows a natural process, while case-focused method
reduces priority of time evolution to maintain data locality. It will affect produced

Page 6 of 14Jin et al. BMC Bioinformatics (2022) 23:260

distribution of infected-agent evolution. For widely spreading diseases with large
overlapping susceptible population from infectious agents, the probability of a can-
didate bi gets infected is boosted by both of the amount of its contacting infectious
agents and their infectious periods. The calculation order of the two factors make dif-
ferent effects, where the inner loop of factor takes priorities. For each time step k in
evolution-focused MAS, number of contacting agents take the priority to determine
candidate’s healthy status. However, in case-focused MAS, each candidate agent m is
domained by infectious agent’s period [Tm0,Tm1] . Both of them share a same infec-
tious probability, but candidate bm is more likely to be infected within a relatively
delayed time with respect to evolution-focused method.

We formulate this difference as the systematic error from case-focused method. It can
be demonstrated and modified by a simply assumption. Assuming the delayed infected
time δ follows a uniform distribution, it can be directly derived from statistic theory that
the average delayed time δ̄ obeys a gaussian distribution N (µ, σ 2) . µ represents the mean
of the distribution, and σ 2 is its variance, which can be regarded as super parameters
tuned for real simulation. Conversion between two algorithms can be implemented by
convoluting former method with a delayed-gaussian function. In other words, case-
focused MAS will generate delayed and vague results with respect to traditional method.

Hierarchical hash table

As indicated in algorithms 1 and 2, hash table is an important participant in the simula-
tion, and its performance affects system significantly. In general, hash tables consume
the majority of cycles on many key applications such as databases [50], networking [51]
and genomics [52]. But they suffer from inefficiencies in current systems owing to poor
core utilization and poor spatial locality [53]. Hash tables spread key-value pairs uni-
formly and sparsely across allocated memory to reduce mapping conflicts. In the MAS
simulation, each agent’s index and its bulky information are formed together into the

Fig. 2 A: Traditional (software) hash table format. B: Overview of hierachical hash table format

Page 7 of 14Jin et al. BMC Bioinformatics (2022) 23:260

key-value pair filled in the table as shown in Fig. 2A. Due to sampling for agents is a ran-
dom process during the simulation, same-line neighbors of frequently accessed agents
may be rarely accessed. This leads to a significant waste of cache capacity.

There are many researches focusing on reducing hash table overheads. Data-level par-
allelism of inter keys is introduced in prior works to optimize the throughput [50, 54].
Near-memory [55] and near-storage [56, 57] acceleration bypass the cache hierarchy
entirely to avoid spatial locality problems. Exploiting hierarchical memory layout and
characteristics of caches [53] is found improving spatial locality prominently.

In the MAS computation, the key-value pair of agent information is made up by
agent index (key, k) and bulky data (value, d) derived from simulation, such as infected
and recover date. These pairs stored by traditional (software) hash tables are allocated
sparsely across memory as demonstrated in Fig. 2A. Lookup and update operators of
hash table have to access bulk memory in units k + d , which generate larger memory
occupancy and heavier accessing burden. Hence, cross-line and misses of caches are fre-
quently confronted. It is essential to allocate hash table elements across memory into a
dense alignment for better spatial locality.

We reorganize hash table as a hierarchical structure and leverage caches to optimize
spatial locality. The agent table constructed during the simulation is organized as three-
level hierarchical tables in Fig. 2B. This hierarchical hash table (HHT) is composed of
three parts: Cacheline Hash Table (CHT), Software Hash Table (SHT) and Bulk-Info
Table (BIT). Agent indices and bulky data are stored separately, while extra projection
index i is introduced to connect them. CHT and SHT store (k, i) pairs, in which i indi-
cates address offset to locate d. BIT is a compact array where agents’ information data ds
are aligned contiguously and accessed by i transferred from former hash tables. Although
projection indices possess extra memory, compact alignment of agent information data
saves prominent memory occupancy. In addition, MAS computation queries the agent’s
existence frequently leaving its information alone, such a key-value separating architec-
ture is expected to save memory occupancies and boosts key-only lookup speed.

CHT leverages the characteristics of cache to accelerate hash operations. Data is
transferred in fixed block size between cache and main memory, namely cache line. In
nowaday processors, a typical cache line size is 64-bytes. We construct cache line as the
basic CHT element, where hash values derived from keys are located to address of cache
line. In a line, data-level parallelism is implemented, where first 32 bytes make up 8-key
group and the rest is corresponding index group. As elements within a cache line share
the same hash value, collision occurs when lookup CHT. We use SIMD instructions to
handle this issue and accelerate lookup and update in the line. SHT is used as a victim
table, which holds pairs overflowing from CHT. It has a traditional structure and occu-
pies subtle space with respect to CHT to maintain CHT priority.

Major interfaces of HHT contain three hash-table operations: find, insert and delete.
Find operator decomposes key-value querying requestion into two parts. CHT has the
priority to search for the key. If CHT’s lookup is not resolved, i.e., the key is not found
and the line is full, it continues searching across SHT. Key searching operation returns
corresponding projection address i of k. If i is meaningful and bulky data is required,
specific values are extracted as located at i in BIT. For implementing insert and delete
operations, two extra labels are introduced representing their states. Insert operator

Page 8 of 14Jin et al. BMC Bioinformatics (2022) 23:260

fills content at empty seat of the line in CHT, and turns to SHT if a cache-line over-
flow occurs. Storage of the bulky value makes continuously increments at the end of BIT.
Moreover, delete operation is achieved by replacing target content with the delete label.
As a result, CHT and BIT make dense alignment for key-value storage and can reduce
overhead for accessing cache.

Results and discussion
The megacity Shenzhen with a population larger than ten million is adopted as a study
case. We implement the optimization methods on spatial explicit MAS system without
NPIs proposed by Yin [17]. In the system, 11.2 million agents with demographic charac-
teristics are synthesized in assistance of cross-referencing census data and house-hold
travel survey [58]. Agents’ hourly movements are formulated from mobile phone tra-
jectory records or house-hold travel survey. Each individual is anchored onto different
types of buildings for a daily trajactery, including living, working, studying and perform-
ing other activities. The synthesized agents are modeled to contact with each other when
staying at the same location within one hour.

We perform the simulation on an Intel Core i9-10850K CPU platform with 10 physi-
cal cores and 20 threads. It is configured with 64 GB main memory, and cooperates with
32 KB L1 DCache, 256 KB L2 Cache and 20 MB L3 Cache. As case-focused MAS is
convenient to be implemented in data-parallel manner, we perform multi-thread com-
putation in assistant of C++11’s thread, mutex and atomic libraries. thread is used to
create and detach threads for agent-parallel processing. mutex and atomic help to avoid
changing memory values simultaneously among threads.

First, performances between Algorithm 1 and Algorithm 2 are present on single-
thread mode. As shown in Table 1, both of these methods generate almost the same
amount of total infected agents. But their time evolution diverges as demonstrated in
Fig. 3. Convolution with gaussian function is implemented to eliminate divergences, and
parameters are fitted with ROOT toolkit [59] as N (6, 132) . It results that average delayed
time is 6 days with 13-day deviation. In the statistical perspective, 68% of cases would be

Fig. 3 Evolutions of increasing cases per day among different methods. Blue solid line is calculated by
evolution‑focused MAS. Read solid line is calculated by case‑focused MAS. Purple dashed line is the result
from convoluting evolution‑focused MAS outputs with delayed‑gaussian function N(6, 132)

Page 9 of 14Jin et al. BMC Bioinformatics (2022) 23:260

observed with a delay of 6± 13 days as calculated by the case-focused MAS, and a typi-
cal confidence of 95% derives this range with 6± 26 days.

We perform error analysis about parameters applied in the MAS. First, both values
of infectious probability and period are assumed with 20% uncertainties. Simulation
results indicate that they have similar effects on the amount of total infected agents,
which generate variations of the amount within [−7%, 4%] respectively. Second, the sta-
bility of the gaussian kernel is evaluated under uncertainties of the infectious probabil-
ity. We find parameters of the kernel can remain almost unchanged within its deviation
[−5%, 20%] considering statistical uncertainties, and results are shown in Fig. 4. This
systematic error of Algorithm 2 originates from overlapping contact networks of suscep-
tible individuals under different iteration orders. It will have little effects as the infected
agents possess a minor amount of the population. We produce this scenario by assuming
in-time quarantined of infectious population to heavily suppress the diseases. Results
demonstrate that both Algorithm 1 and Algorithm 2 are equivalent to each other under
statistical uncertainties.

As mentioned above, case-focused iteration has potential to significantly improve sys-
tem performance by maintaining data locality. We use perf provided by Linux to evalu-
ate cache accesses during simulation. As shown in Table 1, results indicate that almost
94% cache references are saved and cache misses are reduced by 90%. This optimized
algorithm accelerates simulation prominently and achieves ×4.4 speedup. As a result, it
maintains the data locality well and improves calculation speed significantly, but sacrific-
ing part of precision.

Next, proposed hash table HHT is implemented for further optimizing system perfor-
mance under the case-focused method. As SHT is provided by system and holds victims
overflowing from CHT, frequently accessing SHT may affect HHT’s querying perfor-
mance. We set its member occupancies is 1% to CHT capacity to minimize the influence.
Algorithm 1 with libstdc++’s C++11 unordered_map under single-thread operation is
adopted as benchmark. The single-thread computation is shown in the first ticks along
thread axis of Fig. 5. HHT achieves ×6.4 speedup which leverages both algorithm and
hash table optimization. Comparing the result with unordered_map implemented under
the same MAS algorithm, HHT is still faster by 47%.

Fig. 4 Evolutions of increasing cases per day among different methods with variances of infectious
probability as ‑5% (Left) and +20% (Right). Blue solid lines are calculated by evolution‑focused MAS.
Read solid lines are calculated by case‑focused MAS. Purple dashed lines are the result from convoluting
evolution‑focused MAS outputs with delayed‑gaussian function N(6, 132)

Page 10 of 14Jin et al. BMC Bioinformatics (2022) 23:260

Traditional hash table is a thread-unsafe data mapping paradigm. It requires multi-
ple memory duplication and migration during the table expands or shrinks. As hash
insert and find encounter from different threads, while the insert causes rehashing
and expands the table’s capacity by factor 2, another thread may lose the actual access
to target and a program fault occurs. We use atomic operator on HHT to maintain a
thread-safe manner across multi-thread operations. As demonstrated by Fig. 5, this par-
allel implementation prominently boosts the program, where original 40-min process is
compressed within ∼ 30s. Consequently, parallel acceleration with 20 threads achieves
×80(±2) speedup to the benchmark, and processor efficiency is derived roughly 64%
accordingly.

Conclusions
The MAS is an essential method for studying epidemiology sciences, especially for
intervention for COVID-19 transmission. Traditional methods need querying over
population as time evolves and suffers from poor-locality issues. In this work, we
focus on optimizing MAS for infectious diseases, and propose two successive pro-
cesses to accelerate computation. First, we reconstruct the iteration order of MAS
and propose the case-focused method. It can improve data locality significantly,

Fig. 5 Multi‑thread speedup of HHT implementation on the case‑focused MAS comparing to benchmark
(unordered_map implementation on the evolution‑focused MAS)

Table 1 Comparison between Evolution‑focused MAS and case‑focused MAS on single‑thread
mode

Evolution‑focused MAS Case‑focused MAS

Total Infected Agents 84% 84%

Cache References 2.5× 10
11

1.5× 10
10

Cache Misses 8.5× 10
10

8× 10
9

Running Time (s) 2.6(±0.7)× 10
3

6(±0.04)× 10
2

Speedup ×1 ×4.3(±0.1)

Page 11 of 14Jin et al. BMC Bioinformatics (2022) 23:260

where 90% cache references are saved. Consequently, the program is accelerated by
×4.3 . Next, we design a thread-safe and high-performance hash table HHT for man-
aging intermediate products from simulation. HHT leverages cache characteristics
and SIMD instructions to optimize hash operations. It can further get a faster speed
by 47% compared with classical hash table, and a 20-thread implementation achieves
×80 speedup finally.

It should be noticed that major MAS researches adopted evolution-focused method as
simulation backbone [60–62]. As indicated by [36], general MAS methods for infectious
diseases have to handle irregular and randomly accessing agent states, which is a major
factor limiting the calculation efficiency. Our proposed case-focused method overcomes
their disadvantages to improve data locality significantly, and this method is suitable not
only for COVID-19 but also for other infectious diseases. However, it takes a trade-off
with blurred and delayed results. Although the results can be recovered by deconvolut-
ing from a mixing kernel, kernel parameters need pre-calibrated under a specific sce-
nario. Careful studies for this mechanism will be implemented in next works. Moreover,
NPI and PI methods are crucial for intervening spreading of infectious diseases. Studies
of fast calculation with these interventions are left in the future.

Abbreviations
MAS Multi‑agent simulation
COVID‑19 Coronavirus disease 2019
HHT Hierarchical hash table
CHT Cacheline hash table
SHT Software hash table
BIT Bulk‑info table
CPU Central processing unit
GPU Graphics processing unit
FPGA Field programmable gate array
SIMD single instruction, multiple data
CDC Center for disease control
SLIR susceptible‑latent‑infectious‑removed

Acknowledgements
We thank local CDC collaborators in Shenzhen for data support in this work.

Author Contributions
CJ contributed this study and wrote the manuscript. CJ, HZ and LY developed the model. YZ and SF reviewed this manu‑
script. All authors read and approved the manuscript.

Funding
National Key Research and Development Program of China (Grant No. 2020YFB0204802)

Availability of data and materials
Mobile phone data were provided by the Shenzhen Transportation Operation Command Center (Contact: Binliang Li,
240854198@qq.com). Travel survey data, building survey data and census data were offered by the Planning and Natural
Resources Bureau of Shenzhen Municipality (Contact: Renrong Jiang, jiangrenrong@126.com). The epidemic surveillance
data were provided by the Shenzhen Center for Disease Control and Prevention (Contact: Shujiang Mei, sjmei66@163.
com). Researchers who meet the criteria for accessing to confidential data can send requests to the above local govern‑
ment departments. The daily confirmed cases of COVID‑19 are publicly accessible from the Shenzhen Municipal Health
Commission (http://wjw.sz.gov.cn/yqxx/). Baidu migration data can be openly obtained from http://qianxi.baidu.com/.

Declarations

Ethics approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable

Page 12 of 14Jin et al. BMC Bioinformatics (2022) 23:260

Authors’ information
Not applicable

Received: 20 February 2022 Accepted: 15 June 2022

References
 1. Sansores C, Pavón J. Agent‑based simulation replication: a model driven architecture approach. In: Mexican

international conference on artificial intelligence, 2005;244–53 . Springer.
 2. Davidsson P. Agent based social simulation: a computer science view. J Artif Soc Soc Simul. 2002;5(1).
 3. Wolf S, Fürst S, Mandel A, Lass W, Lincke D, Pablo‑Marti F, Jaeger C. A multi‑agent model of several economic

regions. Environ Model Softw. 2013;44:25–43.
 4. Chen D. Modeling the spread of infectious diseases: a review. Analyzing and modeling spatial and temporal

dynamics of infectious diseases, 2014;19–42.
 5. Domínguez R, Cannella S, Framinan JM. Scope: a multi‑agent system tool for supply chain network analysis. In:

IEEE EUROCON 2015‑international conference on computer as a tool (EUROCON), 2015;1–5, IEEE.
 6. McArthur SD, Davidson EM, Catterson VM, Dimeas AL, Hatziargyriou ND, Ponci F, Funabashi T. Multi‑agent

systems for power engineering applications‑part i: concepts, approaches, and technical challenges. IEEE Trans
Power Syst. 2007;22(4):1743–52.

 7. Wangapisit O, Taniguchi E, Teo JS, Qureshi AG. Multi‑agent systems modelling for evaluating joint delivery
systems. Procedia Soc Behav Sci. 2014;125:472–83.

 8. Dorri A, Kanhere SS, Jurdak R. Multi‑agent systems: a survey. IEEE Access. 2018;6:28573–93.
 9. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the royal

society of london Series A, Containing papers of a mathematical and physical character. 1927;115(772):700–21.
 10. Bailey NT. The mathematical theory of infectious diseases and its applications. In: The mathematical theory of

infectious diseases and its applications, 1975;413–413.
 11. Dion E, VanSchalkwyk L, Lambin EF. The landscape epidemiology of foot‑and‑mouth disease in South Africa: a

spatially explicit multi‑agent simulation. Ecol Model. 2011;222(13):2059–72.
 12. Yergens D, Hiner J, Denzinger J, Noseworthy T. Multiagent simulation system for rapidly developing infectious

disease models in developing countries. In: Proceedings of the 2nd international workshop on multi‑agent
systems for medicine and computational biology, Hakodate, Japan, 2006;104–116.

 13. Castro BM, de Melo YdA, Dos Santos NF, da Costa Barcellos AL, Choren R, Salles RM. Multi‑agent simulation
model for the evaluation of covid‑19 transmission. Comput Biol Med. 2021;136: 104645.

 14. Vyklyuk Y, Manylich M, Škoda M, Radovanović MM, Petrović MD. Modeling and analysis of different scenarios for
the spread of covid‑19 by using the modified multi‑agent systems‑evidence from the selected countries. Res
Phys. 2021;20: 103662.

 15. Nanna GA, Quatraro NF, De Carolis B. A multi‑agent system for simulating the spread of a contagious disease. In:
WOA, 2020:1613;119.

 16. Lorig F, Johansson E, Davidsson P. Agent‑based social simulation of the covid‑19 pandemic: a systematic review.
JASSS: J Artif Soc Soc Simul 2021:24(3).

 17. Yin L, Zhang H, Li Y, Liu K, Chen T, Luo W, Lai S, Li Y, Tang X, Ning L, et al. A data driven agent‑based model that
recommends non‑pharmaceutical interventions to suppress coronavirus disease 2019 resurgence in megacities.
J R Soc Interface. 2021;18(181):20210112.

 18. Zhou S, Zhou S, Zheng Z, Lu J. Optimizing spatial allocation of covid‑19 vaccine by agent‑based spatiotemporal
simulations. GeoHealth. 2021;5(6):000427.

 19. Eubank S, Guclu H, Kumar VA, Marathe MV, Srinivasan A, Toroczkai Z, Wang N. Modelling disease outbreaks in
realistic urban social networks. Nature. 2004;429(6988):180–4.

 20. Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS. Strategies
for containing an emerging influenza pandemic in southeast asia. Nature. 2005;437(7056):209–14.

 21. Germann TC, Kadau K, Longini IM, Macken CA. Mitigation strategies for pandemic influenza in the united states.
Proc Natl Acad Sci. 2006;103(15):5935–40.

 22. Barceló J, Ferrer JL, García D, Florian M, Le Saux E. Parallelization of microscopic traffic simulation for att systems
analysis. In: Equilibrium and Advanced Transportation Modelling, pp. 1998;1–26. Springer.

 23. Aydt H, Xu Y, Lees M, Knoll A. A multi‑threaded execution model for the agent‑based semsim traffic simulation.
In: Asian Simulation Conference, 2013;1–12 . Springer.

 24. Saprykin A, Chokani N, Abhari RS. Large‑scale multi‑agent mobility simulations on a gpu: towards high perfor‑
mance and scalability. Proc Comput Sci. 2019;151:733–8.

 25. Rao DM. Accelerating parallel agent‑based epidemiological simulations. In: Proceedings of the 2nd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, 2014;127–38.

 26. Cameron GD, Duncan GI. Paramics‑parallel microscopic simulation of road traffic. J Supercomput.
1996;10(1):25–53.

 27. Rickert M, Nagel K. Dynamic traffic assignment on parallel computers in transims. Futur Gener Comput Syst.
2001;17(5):637–48.

 28. Luke S, Cioffi‑Revilla C, Panait L, Sullivan K. Mason: a new multi‑agent simulation toolkit. In: Proceedings of the
2004 Swarmfest Workshop, 2004;8:316–27 . Michigan, USA.

 29. Amouroux E, Chu T‑Q, Boucher A, Drogoul A. Gama: an environment for implementing and running spatially
explicit multi‑agent simulations. In: Pacific Rim International Conference on Multi‑Agents, 2007;359–371 .
Springer.

Page 13 of 14Jin et al. BMC Bioinformatics (2022) 23:260

 30. North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P. Complex adaptive systems modeling with
repast simphony. Complex Adapt Syst Model. 2013;1(1):1–26.

 31. Cui L, Chen J, Hu Y, Xiong J, Feng Z, He L. Acceleration of multi‑agent simulation on fpgas. In: 2011 21st interna‑
tional conference on field programmable logic and applications, 2011;470–473 . IEEE.

 32. Zhou X, Fu W. A multi‑agent simulation method of urban land layout structure based on fpga. Mob Netw Appl.
2020;25(4):1572–81.

 33. Jang M‑W, Agha G. Dynamic agent allocation for large‑scale multi‑agent applications. A parametric model for
large scale agent systems, 2005;252.

 34. Jang M‑W, Agha G. Adaptive agent allocation for massively multi‑agent applications. In: International workshop
on massively multiagent systems, 2004;25–39 . Springer.

 35. Willem L, Stijven S, Tijskens E, Beutels P, Hens N, Broeckhove J. Optimizing agent‑based transmission models for
infectious diseases. BMC Bioinform. 2015;16(1):1–10.

 36. Zou P, Lü Y‑S, Wu L‑D, Chen L‑L, Yao Y‑P. Epidemic simulation of a large‑scale social contact network on gpu
clusters. Simulation. 2013;89(10):1154–72.

 37. Aleta A, Martin‑Corral D, Pastore y Piontti A, Ajelli M, Litvinova M, Chinazzi M, Dean NE, Halloran ME, Longini IM
Jr, Merler S, et al. Modelling the impact of testing, contact tracing and household quarantine on second waves
of covid‑19. Nat Hum Behav. 2020;4(9):964–71.

 38. Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Jombart T, O’Reilly K, Endo A, Hellewell J, Nightin‑
gale ES, et al. Effects of non‑pharmaceutical interventions on covid‑19 cases, deaths, and demand for hospital
services in the uk: a modelling study. The Lancet Public Health. 2020;5(7):375–85.

 39. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial undocumented infection facilitates the rapid
dissemination of novel coronavirus (sars‑cov‑2). Science. 2020;368(6490):489–93.

 40. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, et al. Early transmission dynamics
in wuhan, china, of novel coronavirus–infected pneumonia. New Engl J Med. 2020;382:1199–207.

 41. Zhou Y, Xu R, Hu D, Yue Y, Li Q, Xia J. Effects of human mobility restrictions on the spread of covid‑19 in shenz‑
hen, china: a modelling study using mobile phone data. The Lancet Digital Health. 2020;2(8):417–24.

 42. Zhang J, Klepac P, Read JM, Rosello A, Wang X, Lai S, Li M, Song Y, Wei Q, Jiang H, et al. Patterns of human social
contact and contact with animals in shanghai, China. Sci Rep. 2019;9(1):1–11.

 43. Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT, Tam C, Dickens BL. Interventions to mitigate early spread of sars‑
cov‑2 in Singapore: a modelling study. Lancet Infect Dis. 2020;20(6):678–88.

 44. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease
2019 (covid‑19) cases on board the diamond princess cruise ship, yokohama, japan, 2020. Eurosurveillance.
2020;25(10):2000180.

 45. Nishiura H, Kobayashi T, Miyama T, Suzuki A, Jung S‑M, Hayashi K, Kinoshita R, Yang Y, Yuan B, Akhmetzhanov
AR, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (covid‑19). Int J Infect Dis.
2020;94:154–5.

 46. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of sars‑cov‑2
through the postpandemic period. Science. 2020;368(6493):860–8.

 47. Ferguson NM, Laydon D, Nedjati‑Gilani G, Imai N, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Cucunubá Z,
Cuomo‑Dannenburg G et al. Impact of non‑pharmaceutical interventions (npis) to reduce covid‑19 mortality
and healthcare demand 2020.

 48. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J. The incubation period
of coronavirus disease 2019 (covid‑19) from publicly reported confirmed cases: estimation and application. Ann
Intern Med. 2020;172(9):577–82.

 49. Hu Z, Song C, Xu C, Jin G, Chen Y, Xu X, Ma H, Chen W, Lin Y, Zheng Y, et al. Clinical characteristics of 24
asymptomatic infections with covid‑19 screened among close contacts in Nanjing, China. Sci China Life Sci.
2020;63(5):706–11.

 50. Kocberber O, Grot B, Picorel J, Falsafi B, Lim K, Ranganathan P. Meet the walkers accelerating index traversals for
in‑memory databases. In: 2013 46th Annual IEEE/ACM international symposium on microarchitecture (MICRO),
2013;468–79 . IEEE.

 51. Song H, Dharmapurikar S, Turner J, Lockwood J. Fast hash table lookup using extended bloom filter: an aid to
network processing. ACM SIGCOMM Comput Commun Rev. 2005;35(4):181–92.

 52. Melsted P, Pritchard JK. Efficient counting of k‑mers in dna sequences using a bloom filter. BMC Bioinform.
2011;12(1):1–7.

 53. Zhang G, Sanchez D. Leveraging caches to accelerate hash tables and memoization. In: Proceedings of the 52nd
annual IEEE/ACM international symposium on microarchitecture, 2019;440–52.

 54. Hayes T, Palomar O, Unsal O, Cristal A, Valero M. Vector extensions for decision support dbms acceleration. In:
2012 45th annual IEEE/ACM international symposium on microarchitecture, 2012;166–76 . IEEE

 55. Lloyd S, Gokhale M. Near memory key/value lookup acceleration. In: Proceedings of the international sympo‑
sium on memory systems, 2017;26–33.

 56. Tanaka S, Kozyrakis C. High performance hardware‑accelerated flash key‑value store. In: The 2014 Non‑volatile
Memories Workshop (NVMW) 2014.

 57. Xu S, et al. Bluecache: a scalable distributed flash‑based key‑value store. PhD thesis, Massachusetts Institute of
Technology 2016.

 58. Zhao Z, Shaw S‑L, Yin L, Fang Z, Yang X, Zhang F, Wu S. The effect of temporal sampling intervals on typical
human mobility indicators obtained from mobile phone location data. Int J Geogr Inf Sci. 2019;33(7):1471–95.

 59. Antcheva I, Ballintijn M, Bellenot B, Biskup M, Brun R, Buncic N, Canal P, Casadei D, Couet O, Fine V, et al. Root‑a
c++ framework for petabyte data storage, statistical analysis and visualization. Comput Phys Commun.
2011;182(6):1384–5.

 60. Cuevas E. An agent‑based model to evaluate the covid‑19 transmission risks in facilities. Comput Biol Med.
2020;121: 103827.

Page 14 of 14Jin et al. BMC Bioinformatics (2022) 23:260

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 61. Jalayer M, Orsenigo C, Vercellis C. Cov‑abm: a stochastic discrete‑event agent‑based framework to simulate
spatiotemporal dynamics of covid‑19. arXiv preprint arXiv: 2007. 13231 2020.

 62. Kou L, Wang X, Li Y, Guo X, Zhang H. A multi‑scale agent‑based model of infectious disease transmission to
assess the impact of vaccination and non‑pharmaceutical interventions: the covid‑19 case. J Saf Sci Resil.
2021;2(4):199–207.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2007.13231

	Optimize data-driven multi-agent simulation for COVID-19 transmission
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Epidemic dynamics
	Case-focused simulation
	Hierarchical hash table

	Results and discussion
	Conclusions
	Acknowledgements
	References

