
Identification of all‑against‑all protein–
protein interactions based on deep hash 
learning
Yue Jiang1†, Yuxuan Wang2†, Lin Shen1, Donald A. Adjeroh3, Zhidong Liu2* and Jie Lin1* 

Abstract 

Background: Protein–protein interaction (PPI) is vital for life processes, disease treat-
ment, and drug discovery. The computational prediction of PPI is relatively inexpensive 
and efficient when compared to traditional wet-lab experiments. Given a new protein, 
one may wish to find whether the protein has any PPI relationship with other existing 
proteins. Current computational PPI prediction methods usually compare the new 
protein to existing proteins one by one in a pairwise manner. This is time consuming.

Results: In this work, we propose a more efficient model, called deep hash learning 
protein-and-protein interaction (DHL-PPI), to predict all-against-all PPI relationships 
in a database of proteins. First, DHL-PPI encodes a protein sequence into a binary 
hash code based on deep features extracted from the protein sequences using deep 
learning techniques. This encoding scheme enables us to turn the PPI discrimination 
problem into a much simpler searching problem. The binary hash code for a protein 
sequence can be regarded as a number. Thus, in the pre-screening stage of DHL-PPI, 
the string matching problem of comparing a protein sequence against a database with 
M proteins can be transformed into a much more simpler problem: to find a number 
inside a sorted array of length M. This pre-screening process narrows down the search 
to a much smaller set of candidate proteins for further confirmation. As a final step, 
DHL-PPI uses the Hamming distance to verify the final PPI relationship.

Conclusions: The experimental results confirmed that DHL-PPI is feasible and effec-
tive. Using a dataset with strictly negative PPI examples of four species, DHL-PPI is 
shown to be superior or competitive when compared to the other state-of-the-art 
methods in terms of precision, recall or F1 score. Furthermore, in the prediction stage, 
the proposed DHL-PPI reduced the time complexity from O(M2) to O(M logM) for 
performing an all-against-all PPI prediction for a database with M proteins. With the 
proposed approach, a protein database can be preprocessed and stored for later 
search using the proposed encoding scheme. This can provide a more efficient way to 
cope with the rapidly increasing volume of protein datasets.

Keywords: Protein–protein interaction, Deep learning, Binary hash code, Binary 
search, Hamming distance

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Jiang et al. BMC Bioinformatics          (2022) 23:266  
https://doi.org/10.1186/s12859‑022‑04811‑x BMC Bioinformatics

†Yue Jiang and Yuxuan Wang 
have contributed equally to this 
work.

*Correspondence:   
lzdzrd@163.com; linjie891@163.
com

1 College of Computer and Cyber 
Security, Fujian Normal 
University, Fuzhou 350108, 
People’s Republic of China
2 No. 2 Thoracic Surgery 
Department Beijing Chest 
Hospital, Capital Medical 
University, Beijing Tuberculosis 
and Thoracic Tumor Research 
Institute, Beijing 101149, People’s 
Republic of China
3 Lane Department of Computer 
Science and Electrical 
Engineering, West Virginia 
University, Morgantown 26506, 
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04811-x&domain=pdf


Page 2 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

Background
Protein–Protein Interaction (PPI) in biological cells is vital for molecular processes and 
biochemical reactions, such as intracellular communications, signal transduction and 
gene regulation. Hence,the identification of PPI is important in life process research, dis-
ease diagnosis and treatment, and in drug development [1–3].

To identify PPI using wet-lab experiments is costly and time consuming. Though cur-
rent high throughput methods have significantly improved the efficiency and cost, for 
instance using yeast 2-hybrid (Y2H)  [4], mass spectrometric protein complex identifi-
cation (MS-PCI)  [5], Co-Immunoprecipitation (Co-IP)  [6], and Tandem affinity puri-
fication-mass spectrometry (TAP-MS) [7], the wet lab methods are still expensive and 
often results in many false positives and false negatives   [8]. Computational identifica-
tion methods are often used to pre-screen and predict PPIs before the wet-lab experi-
ments, given the convenience, efficiency, and improving effectiveness of algorithmic 
approaches.

The protein sequence is a key element in algorithmic approaches to PPI prediction. 
The existing sequence-based PPI recognition methods can be divided into three basic 
groups: co-occurrence based, pattern matching based, and machine learning based 
methods.

The methods based on co-occurrence  [9] judge the potential interaction between 
a pair of proteins by counting the frequency of their co-occurring patterns. Bunescu 
et  al.  [10] recognized the protein–protein interaction by extracting frequent patterns. 
One problem with use of frequent patterns and co-occurrence approaches is that they 
generally achieve high recall but low precision and poor generalization [11].

Pattern matching based methods search for potential PPI by establishing certain pat-
tern rules. Fundal [12] proposed the dependency relationship based on the structure of 
syntax rules of sentences. Temkin [13] distinguished PPI through the sentence analyzer 
with the rules of grammar generation. This method needs to construct patterns manu-
ally, thus it is inefficient, time-consuming and labor-intensive [14]. Moreover, because of 
the diversity of relational patterns of PPI, the predefined rules may not always cover all 
PPI rational patterns. Both pattern matching and co-occurrence based methods often 
involve the use of efficient search data structures such as suffix trees and suffix arrays 
[15] for improved processing time.

Kernel based methods are often used to reduce the problems of predefining pattern 
rules. Haussler et al.  [16] presented the convolution kernel which can be used on dis-
crete structures. The string kernel was proposed by Lodhi et  al.  [17], and it used the 
inner product of the word substring with a specific length in the feature space. Ker-
nel-based approaches analyze PPI according to the grammar, syntax and dependency 
of a single sentence. However, due to the complex grammar and the possibly indirect 
manifestation of PPI, the resulting predictions may not have high accuracy. The kernel-
based approaches can exploit various properties of proteins as features, for instance, 
physicochemical properties such as hydrophobicity profiles, amino acid composition, 
and domain composition, genomic features such as gene neighbourhoods, and features 
based on network topology [18].

The machine learning based PPI analysis methods can be classified into supervised 
or unsupervised, depending on whether they used labeled data, or unlabeled data. 



Page 3 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

The supervised methods for PPI prediction learn the relevant mapping functions from 
labeled PPI data, and then predicts PPIs. Frequently used supervised machine learn-
ing methods include decision trees [19, 20], support vector machines (SVM)  [21–24], 
artificial neural networks (ANN)   [25–27], k-nearest neighbors (KNN)  [28] and Naive 
Bayes [29]. Unsupervised PPI analysis methods learn the intrinsic feature representation 
of the unlabeled data, and then carry on deeper analysis. For instance, the method of 
k-means is often applied on PPI clustering problems [30, 31]. Some related methods on 
predicting protein-ncRNA interactions (for instance, [32, 33]) have used a combination 
of pattern matching and machine learning methods.

More recently, machine learning methods based on deep learning[34], has been widely 
used for PPI prediction, with remarkable results. Zhao et al.  [35] used nine properties 
of amino acids as feature representation (including Relative Exterior Solvent Accessible 
area (RESA) and Hydropathy Index (HI)), and then trained Long-Short Term Memory 
(LSTM) [36] networks to predict interface residue pairs from two monomer proteins. 
Li et al.  [37] firstly substituted corresponding random numbers for amino acids in the 
protein sequence to complete sequence coding. Then they mapped amino acids to 
dense vector by using word2vec through an embedding layer. Next, they exploited the 
potential long term dependence between amino acids by using Convolution Neural Net-
works (CNN) [34] and LSTM. Finally, the learnt features are fed into the fully connected 
layer to predict PPIs. Somaye et al. [38] divided a protein into subsequences, and used 
these subsequences to perform multiple sequence alignment through PSI-BLAST to 
obtain a protein profile. This is then fed to a convolutional module and a random pro-
jection module to predict PPIs. Sun  [39] combined autocovariance(AC) and conjoint 
triad(CT) as feature representation for the proteins, and used these to perform PPI pre-
diction between protein sequences using stacked a autoencoder (SAE) [34], where AC 
used seven physicochemical properties of amino acids and CT described the composi-
tion of amino acids. Similarly, Du et al.  [40] analyzed the composition of amino acids 
using three considerations – composition, transition and distribution, while using quasi-
sequence-order descriptors, Amphiphilic Pseudoamino Acid Composition(APAAC) 
to represent the physical and chemical properties of the proteins. Then they learned 
protein representations using two different deep neural (DNN) network approaches. 
Sunil  [41] presented a protein domain-based method, DeepInteract, which taking the 
protein domain frequency as a feature. It used 2,971 protein domains and performed PPI 
prediction using DNN.

Graph based deep learning methods construct networks according to proteins and 
their relationships, typically using the proteins as nodes, and the interactions between 
them as edges. Huang  [42] used the adjacency matrix to represent the interaction 
between proteins in a graph. They simulated the evolution process of the PPI network 
implicitly using SAE, and finally predicted PPIs using a regularized Laplacian kernel. 
One problem with this approach is the significant sparseness of the network, since 
most of the proteins would not be interacting. Fang et al. [43] attempted to reduce the 
problem of sparseness by representing the protein sequence by using the conjoint triad 
(CT), and further learned the embedding of protein sequences using local information 
extracted from the sequences via a signed variational graph autoencoder (S-VGAE).



Page 4 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

A major problem in analyzing PPIs is the huge number of proteins in a natural envi-
ronment. This makes it difficult and too expensive to verify all potential PPIs between 
every pair of proteins. This is the all-against-all PPI problem. This difficulty typically 
leads to the problem of incompleteness in current known PPI networks  [44]. Given a 
dataset with M protein sequences, in order to predict the potential PPIs among them, 
current approaches compare each protein to every other protein one by one in a pair-
wise manner. This will require comparison for M(M−1)

2  protein pairs, that is, with O(M2) 
time complexity. In this work, we propose DHL-PPI that solves the all-against-all PPI 
problem in a reduced time complexity of O(M log2M).

The proposed DHL-PPI method transforms a protein sequence into a binarized hash 
code using deep learning techniques. In the pre-screening stage, DHL-PPI takes part 
of a binarized hash query code which can be regarded as a number, to search against 
the same part of binarized hash ontic codes in a database with M proteins, which can 
be regarded as an array with M numbers inside. Then the string matching problem is 
turned into a problem of finding exact number inside an array. After this pre-screening 
stage, searching on the whole database can be narrowed down to a much smaller can-
didate set. This smaller candidate set is further processed by calculating the Hamming 
distance between the query hash code and ontic hash codes to determine whether there 
is PPI relationship or not. On average, the proposed DHL-PPI only needs O(M log2M) 
time complexity to predict all PPI in a database with M proteins. This reduces the time 
complexity and improves the search performance significantly.

The experimental results confirm that DHL-PPI is feasible and effective for PPI predic-
tion. On a dataset with strictly negative PPI examples of four species data, DHL-PPI  is 
superior to, or competitive with, the other methods in terms of precision, recall, and 
F1 score. The results demonstrate that the proposed DHL-PPI is suitable to predict PPI 
accurately in much simpler, faster, and efficient way. For a given dataset, the hash codes 
can be computed for each protein and stored for later search.

The remainder of the paper is organized as follows. In “Experiments and results” sec-
tion, we show our experiments and results, including a brief description of the datasets, 
evaluation criteria, and results. In “Discussion” section, we discuss the experimental 
results. In “Conclusion” section, we draw our conclusions. In “Methods” section, we pre-
sent details of the methods, including the algorithms used and their complexity analysis.

Experiments and results
The experimental dataset contains information on protein sequences, including both 
pairs with known PPI, and those known to have no PPI. In this benchmark data set, we 
verify the validation of the proposed DHL-PPI method. For the experiments, we adopted 
the standard 10-way cross validation (CV) approach.

Dataset

The dataset is from the Human Protein References Database (HPRD) [45] (http://www.
hprd.org/, release 7_20070901). Pan et al. [46] used this dataset for PPI prediction, where 
all positive PPI relationships and negative PPI relationships are confirmed using wet lab 
experiments.



Page 5 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

The dataset further contains information on four species [46], namely, (1) Caenorhab-
ditis elegans (nematode worm) dataset; (2) Drosophila melanogaster (fruit fly) dataset; 
(3) Escherichia coli dataset; and (4) Homo sapiens (Human) dataset. The negative set of 
the dataset is generated based on the hypothesis that two proteins in different cellular 
compartments do not have any interaction. More details on the criteria are described in 
Yang [43]. Therefore, the negative set of the dataset [46] is regarded as “strictly negative 
samples” in the field. The number of proteins, positive samples, and negative samples for 
each of the four species in the dataset are shown in Table 1.

In this work, we used 10-way cross-validation. The data with the positive samples and 
negative samples are randomly divided into training set and testing set with ratio of 9 : 1. 
The adopted measurements are the average of the test runs from the 10-way cross vali-
dation. For an input protein pair, A and B, when A is used to generate an ontic code, B 
will be used to generate a query code. And then, the roles are reversed in the next input, 
protein A is used to generate query code and protein B is used to generate an ontic code. 
An example is shown in Fig. 1. Thus, the used samples are doubled in all four species.

Evaluation criteria

In this work, we use measurements derived from confusion matrix to evaluate our mod-
els. These measurements are precision, recall, F1, specificity, accuracy, and Mathews 
correlation coefficient (MCC). Their definitions are presented as follows respectively:

Table 1 Description of the dataset on the four species used in our experiments

Dataset Number of proteins Number of positive samples Number of 
negative 
samples

C. elegans dataset 1734 2877 1670

Drosophila dataset 5624 19712 14900

E. coli dataset 1528 5576 4031

Human dataset 7803 31761 25203

Fig. 1 An example for input a pair of protein A and protein B



Page 6 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

where TP stands for True Positive; FP denotes False Positive; FN denotes False Negative; 
and TN stands for true negative.

In this study, sensitivity and recall are the same, given that this is a binary classifica-
tion problem.

Experimental results and analysis

In this section, we evaluated the performance of DHL-PPI over the above introduced 
dataset by using recall, precision, F1, specificity, accuracy, and MCC score.

The experimental results on the dataset [46] are shown in Table 2. From the table, 
we can observe that, in general, these results are all very good.

DHL-PPI is tested on the dataset for each of the four species. The data contains 
the strictly negative examples. In order to compare the other state-of-the-art meth-
ods, we only list recall, precision, and F1 which were reported by the authors in their 
own work. Table 3 shows the comparative results with the state-of-the-art methods 
by Yang et al’s work [43] and Hang et al’s DNN-PPI [37] on the four species.

At first glance of Table 3, one can observe that all the methods produced relatively 
good results. In these four species, the smallest value is 0.942 which is the recall value 
of DNN-PPI method in Table   3. Neverthless, the performance of this recall value 
(0.942) is still very good in general.

The experimental results show that the performance of our proposed DHL-PPI 
method is competitive with that of Yang et al approach [43], but better than the DNN-
PPI method proposed by Hang et al in each of the four species datasets  [37]. These 
results show that our proposed DHL-PPI is suitable to predict PPI in this benchmark 
data set.

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 =
2× precision× recall

precision+ recall

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FP + FN + TN

MCC =
(TP × TN )− (FP × FN )

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Table 2 Performance of DHL-PPI on the the different species in the dataset

Dataset Recall Precision F1 Accuracy MCC Specificity

C. elegans dataset 0.981 1.000 0.990 0.988 0.975 1.000

Drosophila dataset 0.981 0.998 0.990 0.988 0.976 0.997

E. coli dataset 0.962 0.987 0.975 0.971 0.940 0.982

Human dataset 0.963 0.984 0.973 0.971 0.941 0.980



Page 7 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

Discussion
More effective computational methods for analyzing all-against-all protein–protein inter-
action (PPI) relationships are needed to reduce the cost and effort of wet-lab experiments. 
We proposed an effective and feasible method, deep hash learning PPI prediction (DHL-
PPI) to predict PPI. Our experimental results suggest that DHL-PPI is not only an effective, 
but also (at least theoretically) faster than the other state-of-the-arts methods.

On a benchmark dataset with strictly (i.e., experimentally verified) negative and positive 
PPI examples from four species data, DHL-PPI was shown to be superior to, or competitive 
with, other state-of-the-art methods.

One might argue that it is hard to draw conclusions based on only one data. However, 
there are four species inside this dataset, with the smallest having 1528 proteins, while the 
largest has 7803 samples. Thus, the number of potential all-against-all PPI pairs that may 
require verification in the four data sets range from 1.166× 106 (for E. coli) to 3.044 × 106 
(for humans). Furthermore, we mention that this data set is a benchmark data set in the 
field.

The proposed encoding scheme of DHL-PPI converts the protein sequence into a binary 
hash code, thus transforming a complicated sequence matching problem into a much sim-
pler and faster problem of finding a number in an array. This process quickly eliminates the 
irrelevant proteins from further consideration at the pre-screening stage. This suggests that 
DHL-PPI can serve as a potential encoding scheme to cope with the rapidly increasing vol-
umes of available protein datasets.

The proposed DHL-PPI turns a complex sequence matching problem with time complex-
ity of O(M2) into a a problem with much lower time complexity O(M logM) . This means 
that the proposed DHL-PPI is feasible in a database with a large volume of data.

Together, the experimental results suggests that DHL-PPI is feasible and effective in pre-
dicting all-against-all PPI relationships in a protein dataset in a faster time.

Conclusion
In this paper, we proposed a protein–protein interaction prediction model, called DHL-
PPI (Deep hash learning protein to protein interaction). DHL-PPI prediction includes 
an encoding scheme that transforms a protein sequence into a binary hash code and a 

Table 3 Performance comparison of different proposed methods on the dataset

Dataset Method Recall Precision F1

C. elegans DHL-PPI 0.981 1 0.99

C. elegans Yang [43] 0.992 0.993 0.993

C. elegans DNN-PPI [37] 0.981 0.992 0.986

Drosophila DHL-PPI 0.981 0.998 0.99

Drosophila Yang 0.996 1 0.998

Drosophila DNN-PPI 0.9686 0.9995 0.9837

E. coli DHL-PPI 0.962 0.987 0.975

E. coli Yang 0.984 0.994 0.989

E. coli DNN-PPI 0.942 0.975 0.958

Human DHL-PPI 0.963 0.984 0.973

Human Yang 0.98 0.995 0.988

Human DNN-PPI – – –



Page 8 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

prediction scheme that predicts potential PPIs using the hash code. Firstly, we encoded 
a protein sequence into an integer sequence. Secondly, a deep learning technique is 
applied to generate a better embedding representation for each amino acid. Thirdly, 
the embedding representation is turned into binary hash codes, namely, ontic hash and 
query hash codes respectively. At the stage of pre-screening for PPI discrimination, the 
string matching problem is turned into a much more faster and simpler problem of find-
ing a number inside an array of numbers. For a given query protein, this pre-screen-
ing process filters out irrelevant proteins in the dataset that cannot form a PPI with the 
query protein, resulting a much smaller candidate set for further confirmation. In the 
final step of PPI discrimination, DHL-PPI uses the Hamming distance between query 
hash code and ontic hash codes to determine the final PPI relationship set.

We verify the proposed DHL-PPI on a benchmark data set with strictly negative and 
strictly positive examples from four species. The experimental results confirmed that 
DHL-PPI is an effective method to predict PPI relationships. Furthermore, at the pre-
diction stage, the proposed DHL-PPI reduce the usual time compexity of O(M2) to 
O(MlogM) for predicting all-against-all pairs of PPI relationships for a database with M 
proteins. DHL-PPI encoding can be applied to a protein dataset with the results stored 
for later search for potential PPI relationships against a new or unknown query protein.

Methods
We proposed a protein–protein interaction relationship prediction model, deep hash 
learning PPI (DHL-PPI), which uses an encoding scheme and a prediction scheme. There 
are three main stages in the method: preprocessing (“Data preprocessing” section), DHL 
encoding model (“The DHL encoding model” section), and PPI prediction model and 
related search algorithms (“PPI prediction model” section). Beside these three steps, in 
this section, we also explain other important elements of the DHL-PPI model, namely, 
the loss functions (“Loss functions of the DHL-PPI model” section), and the analysis of 
the PPI search algorithms (“PPI prediction model” section).

Data preprocessing

Data preprocessing in DHL-PPI has two key steps. First, each amino acid in a given 
protein sequence is assigned an interger code by using the Tokenizer API available in 
Keras  [47]. The corresponding code assignments used are shown in Table  4. Then, a 
sequence consisting of integers is processed by zero-pad method  [47] into a sequence 
with fixed length. This padding step is needed since the neural convolution in the next 
stage only accepts sequences with fixed length. In this study, the protein sequences with 
less than 5000 amino acids in the dataset are zero-padded into 5000 amino acids. These 
sequences are fed into the convolutional neural network (CNN) in the next stage of the 
DHL model.

The DHL encoding model

The DHL-PPI contains two main parts: DHL encoding model and PPI prediction 
model. The goal of the DHL encoding model is to encode a pair of proteins, say A and 



Page 9 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

B, into a query code and an ontic code, respectively. Then the PPI prediction model 
uses the encoding to determine whether there is PPI relationship between theses two 
proteins A and B.

In turn, the DHL encoding model has four components: the embedding layer, 
convolution blocks, random projection, and the range control module, as shown in 
Fig. 2. The proposed DHL model makes an improvement over a basic network pro-
posed in  [48]. First, the embedding layer encodes a protein sequence into a vector. 
Second, the convolution blocks contain four CNN blocks with pairwise inputs. Each 
CNN contains an embedding layer which tries to generate a better representation for 
protein sequences. Third, a random projection module is used to transform the vec-
tor representations of an ontic sequence and query sequence into an ontic code and 
a query code, respectively. These two random projections for input proteins A and B 
are untrainable and they do not share any same parameters. Last, the range control 
block is implemented as a sigmoid function which limits the output bits into a range 
of [0,1]. The first two parts and the last part use Siamese networks which share the 
same network parameters for input proteins A and B.

After these four steps, the protein sequences (A and B) are converted into two 
respective codes, query binarized hash code and ontic binarized hash code, respec-
tively. Our DHL model is implemented by using Keras API in the Tensorflow2.0 
framework.

The embedding layer for amino acids

The goal of the embedding layer is to learn a better vector representation of an amino 
acid, that provides an improved way to encode a protein sequence. This embedding layer 

Table 4 Integer encoding of the amino acids used in the DHL-PPI model

Ala Gly VaL Ile Leu Phe Pro Tyr Met Thr
(A) (G) (V) (I) (L) (F) (P) (Y) (M) (T)

1 2 3 4 5 6 7 8 9 10

Ser His Asn Gln Trp Arg Lys Asp Glu E Cys
(S) (H) (N) (Q) (W) (R) (K) (D) (E) (C)

11 12 13 14 15 16 17 18 19 20

Fig. 2 The architecture of DHL-PPI



Page 10 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

maps each protein sequence into a L ∗ dim matrix, where L denotes the length of the 
sequence and dim is the number of dimensions for the embedding representation. Each 
row of the matrix indicates the embedding representation of each amino acid. Before 
training, L is initialized to the length of a protein sequence, and the embedding repre-
sentation of each amino acid is initialized randomly. In the experiment, L is initialized 
to 5000. In the training process, the embedding layer and convolution blocks are trained 
together to generate an effective vector to represent a protein sequence. The final value 
of embedded representation for each amino acid in a given sequence is determined auto-
matically by the model.

Convolution blocks

DHL uses four sequential CNN blocks with pairwise inputs. Each CNN contains an 
embedding layer that tries to generate a better representation for the protein sequence.

Each CNN block operates in four steps. First, it carries out one-dimensional convolutions. 
Second, it activates the output through ReLU function. Third, it uses batch normalization 
to reduce the training difficulty. And the final part is pooling. The first three convolution 
blocks adopt one-dimensional average pooling, while the last convolution block uses global 
average pooling. The parameters and settings of each block are shown in Table 5.

Random projection module

The DHL model contains two different random projection modules. These two random 
projections are untrainable and they do not share parameters. One random projection 
module transforms a sequence into an ontic code. The other random projection module 
transforms the same sequence into a query code. Each random projection module con-
tains a sub-network of fully connected layer with 64 neurons. These two random projec-
tion modules accept the same input from the previous convolution module. And then 
this same input are mapped into an ontic code and a query code, respectively. The ontic 
and query codes are respective 64-dimensional vectors. In order to do this, the weights 
of these two random projection modules are set to be different and untrainable. These 
untrainable characteristics reduce the number of trained parameters and further speed 
up the training process to avoid the risk of over-fitting.

Range control module

The range control module, which is the last part of DHL, uses a sigmoid function 
on the 64-dimensional vector representations from the previous step. The sigmoid 

Table 5 The parameters and settings for the convolution blocks in DHL

Block Number of 
convolution kernels

Kernel size Pooling Stride

ConvBlock1 64 5 1D Average Pooling 1

ConvBlock2 128 7 1D Average Pooling 1

ConvBlock3 256 9 1D AveragePooling 1

ConvBlock4 512 15 1D Global Average Pooling 1



Page 11 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

function is used to force the output into the range of [0,1]. It combines with the hash 
constraint loss to minimize the quantization loss x − sign(x) . The final output is bina-
rized using the sign function (Eq. 1), that is, the sigmoid is used to approximate the 
sign function.

Loss functions of the DHL‑PPI model

The DHL-PPI model has three types of losses, namely, discrimination error loss ( Ld ), 
hash constraint loss ( Lh ), and bit balance loss ( Lb).

Discrimination error loss occurs when using the query hash code to search against 
candidate ontic hash codes to determine whether there is interaction relationship 
between two proteins. Hash constraint loss occurs during the stage of binarization 
of hash codes. Bit balance loss occurs during the stage of optimizing the generalized 
hash codes to obtain a balance between 0 and 1 distribution.

Discrimination error loss

If there is an interaction between two proteins, the distance between their corre-
sponding hash codes should be closer, otherwise, the distance should be larger. Spe-
cifically, when training the DHL-PPI model, if two proteins have a known interaction, 
the distance threshold indist between them is set to 2 or smaller (in the range of [0, 2] 
). If two proteins do not have any known interaction (or strictly no interaction is con-
firmed), the distance threshold unindist should be greater or equal to 12. The defini-
tion of the discrimination error loss function is shown in Eq. 2:

where N represents the dimension of the hash code, HCX
i  is the i-th bit position in the 

hash code representation of sequence X, and label is the label of a protein pair. If there 
is interaction between two proteins, then label = 1 , otherwise label = 0 . The indist and 
unindist represent the respective minimum and the maximum distance between protein 
hash codes, which is set to 2 and 12, respectively. Equation 3 shows a way to calculate 
the distance, dist used in Eq. 2. In Eq. 3, the dist is the Manhattan distance between hash 
codes from two proteins, query code and ontic code. When each bit in the hash code is 
close to 0 or 1, dist will be close to the Hamming distance. The hash bit values HCont

i  and 
HC

que
i  are the i-th bit of the ontic code corresponding to protein A and the query code 

corresponding to protein B before binarization, respectively. In this study, N is set to 64, 
thus each hash code is just a simple integer on a 64-bit machine.

(1)sign(x) = 1 if x ≥ 0.5
0 otherwise

(2)Ld = label ×max(dist − indist , 0)+ (1− label)×max(12− unindist , 0)

(3)dist =
N
∑

i=1

|HCont
i −HC

que
i |



Page 12 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

Hash constraint loss

Hash constraint loss occurs in the stage of binarization of hash codes. In some related 
study  [49–51], the tahn (tangent) function is used to binarize the hash code in train-
ing phase. See also [52] for other approaches to hash code generation. The proposed 
DHL-PPI uses the sigmoid function to limit the model output to [0,1] first. And then it 
introduces the hash constraint loss shown in Eq. 4 to minimize the constraint loss. Spe-
cifically, it makes each hash code as close as possible to 0 or 1 before binarization. In this 
way, the total hash code loss function is minimized.

where Lont
h  and Lque

h  denote the hash constraint loss of ontic code and query code, 
respectively. The total hash constraint loss Lh is the sum of these two quantities. 
quanthresh is the quantization threshold, which is set to 0.5 in this case. When each bit of 
the hash code is close to 0 or 1, the loss is smaller. Otherwise, when each bit is 0.5, the 
loss will be the largest.

Bit balance loss

When encoding a protein sequence into a binary hash code in DHL-PPI, the ideal situa-
tion is that the probability for each bit to be 0 or 1 should be the same. However, in prac-
tice, this ideal is not always the case. The bit balance loss is used to capture the difference 
between the ideal and real situation. The bit balance loss function is defined in Eq. 5.

where Lont
b  and Lque

b  represent the bit balance loss of ontic code and query code respec-
tively; HCont and HCque represent a binary hash ontic code and a binary hash query code 
respectively. The total bit balance loss is the sum of these two values. When the average 
of the hash code is 0+1

2 = 0.5 , the bit balance loss is the minimum. Accordingly, when 
the generated binary hash codes are balanced (that is, the possibility of binarized hash 
code being 1 or 0 is the same), the total bit loss is minimal. Otherwise, when the average 
is far away from 0.5, the loss will be the largest.

Total loss Function

The total loss is the sum of the above three mentioned loss functions, namely, the dis-
crimination loss, the hash constraint loss and the bit balance loss, which is shown in 
Equation  6. This loss function is incorporated into DHL-PPI to train the model itera-
tively to optimize the final output, binarized hash codes.

(4)

Lh = L
ont
h + L

que
h

L
ont
h = max(quan2thresh × N −

N
∑

i=1

(HCont
i − quanthresh)

2, 0)

L
que
h = max(quan2thresh × N −

N
∑

i=1

(HC
que
i − quanthresh)

2, 0)

(5)

Lb = L
ont
b + L

que
b

L
ont
b = (mean(HCont)− 0.5)2

L
que
b = (mean(HCque)− 0.5)2



Page 13 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

where Ld is the discrimination error loss, Lh is the hash constraint loss and Lb is the bit 
balance loss; and �d , �h , and �b , are corresponding weights for each type of loss.

The sigmoid function is given as f (z) = 1
1+exp(−z) . Its derivative is 

f ′(z) = f (z)(1− f (z)) . When f(z) is close to 0 or 1, its derivative tends to 0. The design 
objective in DHL-PPI is to minimize the total error during training. Ideally, the output of 
f(z) should be close to 0 or 1. This would lead to the disappearance of the gradient. 
Therefore, in this study, we set the weights as follows: �d = �h = 1 , and �b = 2/N  , where 
N is the dimension of the hash code, set at N = 64 in this study. In the earlier stage of 
the training, the discrimination loss and bit balance loss play more important roles in 
model fitting. In the later training stage, with the decreasing of the discrimination loss, 
the hash constraint loss comes into play and constraints the hash code to 0 or 1.

PPI prediction model

Here, we describe our approach to PPI prediction (sometimes also referred as PPI dis-
crimination or PPI identification). The state-of-the-art deep learning methods usually 
contain two parts, one is encoding and the other is discriminating. The proposed DHL-
PPI only utilizes the encoding part and does not use the traditional discrimination stage 
in the deep learning model. That is, the deep learning techniques in DHL-PPI are only 
used to generate the required binary hash codes (query code and ontic code) for the 
given protein sequence. In the prediction phase, DHL-PPI first conducts a pre-screening 
process to narrow down the whole database. And then it compares a query code to an 
ontic code by calculating the Hamming distance between them.

In the pre-screening stage, the proposed DHL-PPI searches a binarized hash query 
code against all binarized hash ontic codes in a database. Because they are all binarized 
codes, these digital bits can be regarded as a binary number. The problem of searching a 
protein sequence against all proteins (i.e, M number of protein sequences) in a database 
is turned into a problem of finding a binary number (an integer) inside an array of size 
M. This pre-screening process significantly narrows down the subset of the database that 
need to be further analyzed to verify the hypothesised PPIs.

In the final step of PPI prediction, DHL-PPI will compare the binarized hash query 
code against an ontic code using the Hamming distance. This Hamming distance meas-
urement is used as criteria to determine whether there is a relationship between two 
proteins. This is another advantage of the proposed DHL-PPI which is faster and simpler 
than the other methods. Generally, computing the Hamming distance is much faster 
than using a traditional discriminator in deep learning model.

Let us examine the Hamming distance comparison and the threshold used in this study. 
In the information theory, the Hamming distance between two equal-length strings is the 
number of different symbols at corresponding positions of the strings. That is, the number 
of symbols needed to be replaced by converting one string to another string. In this step, an 
important parameter is the distance threshold, d, which determines whether there is inter-
action between two proteins or not. Specifically, if the Hamming distance is greater than d, 
it is assumed that there is no interaction between these two proteins, otherwise, there is. In 
this study, we set the distance threshold d = 4.

(6)L = �dLd + �hLh + �bLb



Page 14 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

Given a protein sequence P and a protein database D which contain M number of pro-
teins. The problem is to determine whether the given P has any interaction (relationship) 
with any other protein inside the database D. The intuitive way is to compare a given pro-
tein sequence P with all proteins inside the database D one by one which requires M num-
ber of comparisons (the number of proteins inside D). If one wishes to determine whether 
there is any interaction between every pair of proteins in the database D, (the all-against-all 
PPI problem), we need to perform M(M − 1) sequence comparisons, since each of the M 
proteins in the database D will need to be compared against the other M − 1 proteins.

In the pre-screening stage of PPI prediction, we convert the sequence comparison prob-
lem into a much simpler problem of finding a number in an array. Next, a binary query code 
of a protein P is used to search on the binary ontic codes by calculating the Hamming dis-
tance. Using the proposed DHL-PPI prediction method, the comparison time is reduced sig-
nificantly. In the proposed DHL-PPI prediction method, this can be done in O(M log2M) 
comparison operations. The detailed implementation is explained in the next subsection.

The PPI prediction algorithms

Here, we introduce the PPI prediction algorithms. Algorithm  1 is the overall process of PPI 
prediction. There are three input parameters in the algorithm. One is the Hamming distance 
threshold, d, which determines whether there is a relationship between two proteins. The sec-
ond one is the ontic codes of a protein database, D, which are generated in the previous DHL 
model. The third is the query code of a protein database, Q, which is also generated in the 
previous DHL model. The output parameter PPIset contains the predicted PPI relationships.

Let’s examine the algorithm line by line. In Line 1, set PPIset is initialized to empty. And 
M is assigned to the number of proteins in the query codes of database Q. In Line 2, the 
indexes of ontic codes of database D are built. There are total of Cd

2d different indexes given 
a known Hamming distance threshold, d. Please see more detailed information in the fol-
lowing indexing step. The for loop from Line 3 to Line 7 checks each protein’s query code 
in Q. In Line 4, it takes a query code q = Q[i] from database Q. In Line 5, it calls the binary 
code searching algorithm (BCSA) to obtain the predicted results T. In Line 6, the relation-
ship of query q and the predicted results T is added into the output set PPIset. After all 
members inside database Q are checked throughout, the final result is returned in Line 8.

Two key steps in Algorithm  1 require further explanation. One is in Line 2, the pro-
cess to build indexes for an ontic codes of database D. The other is the binary code 



Page 15 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

searching algorithm (BCSA) called in Line 5. Both of these are discussed in the following 
subsection. Before that, we first introduce the Pigeonhole principle, a key concept used 
in this work.

The Pigeonhole principle

Given two sequences each with length of N, if the Hamming distance between them 
is less than or equal to d, after dividing these two sequences into 2d fragments evenly, 
inside these 2d fragments (hence, each fragment will be of size N/2d), there are at most d 
number of fragments which are different, that is, the remaining d fragments would have 
the same exact sequences.

The Pigeohole principle is utilized in the pre-screening step. According to the Pigeon-
hole principle, in 2d fragments, if one finds that d fragments are the same, then we can 
claim that the distance between these compared sequences is less than or equal to d. To 
choose d parts from 2d, there are Cd

2d combinations. In this study, we have d = 4 . Then, 
the possible number of combinations in choosing d from 2d fragments will be: Cd

2d = 70.
In the pre-screening step, the algorithm searches all these Cd

2d situations to identify 
possible protein candidates whose distance are less than or equal to d. For example, in 
this study, if the distance between two sequences is less than or equal to 4, then at least 
four out of the eight parts have the same exact bit patterns, that is, at least half of the 64 
bits (32 bits) in the hash codes are the same. These 32 bits can be regarded as numbers. 
In this way, we can turn the sequence comparison problem to a much simpler problem 
of searching a number inside an array. This operation greatly improves the pre-screening 
process and narrows down the candidate set.

The indexing process

The goal of indexing process is to build indexes which are binary numbers, and then turn 
sequence comparison problem into a much simpler problem of finding a number inside 
an array.

The indexing process are conducted as follows. First, the protein binarized hash codes 
are divided into 2d fragments. And then, d fragments are randomly selected from these 
2d fragments. The exact same d fragments are chosen from all ontic codes in a database. 
Finally, these d fragments are connected together serving as an index code for a protein.

Remembering that, the ontic binary hash codes and query binary hash codes are 
binary numbers, an index by concatenating random d fragments from 2d fragments 
together is still a binary number. There are a total of Cd

2d indexes.
For a database containing M proteins, it takes O(M log2M) time to build all indexes and 

sort an array with length M in order. Totally, the time requirement is O(Cd
2dM log2M) . 

When d = 4 (the distance threshold value used in this work), Cd
2d = 70 , this value can be 

regarded as a constant value. Thus, the time complexity of index building is O(M log2M). 

BCSA: binary hash code searching algorithm

The binary hash code searching algorithm (BCSA) is a nearest-neighbor filtering algo-
rithm based on the binarized bash code. This is shown in Algorithm 2. There are four 



Page 16 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

input parameters in the algorithm: (1) the distance threshold, d, where d = 4 in this 
work; (2) The ontic hash codes of protein database, called D here; (3) the corresponding 
index of ontic hash codes, called idx, which is constructed during the indexing process; 
(4) a query hash code of the queried protein, called q.

In Algorithm 2, in Line 1, the candidate set S is set to empty, the output PPI relation-
ship set T is also set to empty. In Line 2, the query hash codes q are divided into 2d 
fragments evenly. From Line 3 to Line 8, there is a for loop which goes through each 
possible combinations ( Cd

2d ) in the query codes q. Inside the for loop, in Line 4, the cor-
responding ith-index inside D is chosen, called Di . Note that, Di is an array containing 
M = |D| number of binary integers here. That is, Di is an sorted array with M numbers 
inside. The same d fragments from binary hash query code are chosen from query pro-
tein, called qi , which is one binary number (Line 5). In line 6, it compares the number 
qi against sorted array Di by using binary search algorithm. That is, it tries to find all 
numbers inside array Di which are equal to qi . In this way, the string matching problem 
of searching a sequence against a database is turned into a simpler problem of finding an 
exact number in an array. Thus, all proteins whose indexes which have the exact value as 
qi are saved into Candidate Set S (Line 7).

When all indexes are processed, the Candidate Set S contains all proteins who at least 
have one of their Di equal to qi. Note that the number of proteins in Set S is much less than 
the number of proteins in the original dataset D. From Line 9 to Line 13, the algorithm fur-
ther uses Hamming distance to compare the query code q to each ontic code whose protein 
ID is in the Candidate Set S. The protein who has the distance which is less than and equal 
to the threshold d ( d = 4 in this study) is selected as a potential PPI and placed in set T.

Analysis of the algorithms

We examine the time complexity of the PPI prediction algorithms here.
Let’s first check Algorithm  2. In Line 1, the Candidate Set S and T is set to empty, 

which done in O(1) constant time. In Line 2, dividing a query code q into 2d fragments 
evenly requires time O(Cd

2d) . Taking d parts out of 2d fragments, there are O(Cd
2d) 



Page 17 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

possible combinations. From Line 3 to Line 8, the for loop checks each possible com-
bination one by one. In Line 4 and Line 5, it takes d parts out of 2d parts from ontic 
codes D and the query code q respectively. The time complexity for Line 4 and Line 5 
are O(1). In Line 6, it uses the binary hash code for qi (a number) to search against a 
sorted array Di by using the binary search algorithm. The time complexity for Line 6 is 
O(log2M) , where M is the number of protein sequences inside database D. Thus, using 
binary search, all the sequences in the database D whose Di are equal to qi are saved into 
the Candidate set S (Line 7). Let the number of search results be denoted Ki . The time 
complexity for Line 7 is O(Ki) . Together, the time complexity of the for loop from Line 3 
to Line 8 is: O(Cd

2d(log2M +
∑

Ki)) . From Line 9 to Line 13, all sequences inside Candi-
date Set S is verified by using Hamming distance. Pairs of sequences with distances less 
than or equal to the threshold d are then added to the final output set T. The time com-
plexity for Line 9 to Line 13 is O(

∑

Ki).
Together, the time complexity for Algorithm  2 is 

O(Cd
2d(log2M +

∑Cd
2d

i=1 Ki)+
∑Cd

2d
i=1 Ki) = O(Cd

2d(log2M +
∑Cd

2d
i=1 Ki)) . For example, in 

this study, d = 4 and Cd
2d = 70 , both of them can be regarded as constant, then the time 

complexity is O(log2M +
∑Cd

2d
i=1 Ki).

Let’s consider the average situation for 
∑Cd

2d
i=1 Ki . Here, Ki is the number of exact 

matches found during each search inside the for loop. With M proteins in the database D, 
Ki is in the range of [0, M]. The ontic code and the query code are binary sequences each 
of length 64. Then, in each index search, there are d2d × 64 = 32 bits to be checked. On 
average, the possibility of exact match is 1

232
 . For a database D with M proteins, since the 

hash codes are generally balanced, the probability of an exact match is : M
232

 . The expected 
value for one loop (one search) is : O(log2M +

∑Cd
2d

i=1
M
232

) . In this study, M < 40,000 (this 
covers the number of human genes). For simplicity, let’s assume M is equal to a larger 
value, say 40,000 here. Then, we have 

∑Cd
2d

i=1
M
232

= Cd
2d

M
232

= 70∗40,000
232

< 2,800,000
109

<< 1 . 
Thus, this value can be regarded to be 1. Then, the time complexity for the above for-
mula O(log2M +

∑Cd
2d

i=1
M
232

) can be rewritten to be: O(log2M + 1) = O(log2M) . This is 
the time complexity for Algorithm 2.

Now, let’s consider the time complexity of Algorithm 1. Line 1 runs in O(1). In Line 
2, the time complexity of constructing indexes for database D is O(Cd

2dM log2M) . From 
Line 3 to Line 7, the loop traverses all the query codes of the protein database Q which 
has M protein sequences. Both Line 4 and Line 6 run in O(1). Line 5 calls Algorithm 2 
which runs in O(log2M) . The time complexity of the for loop is O(M log2M) . Then, the 
total time complexity of Algorithm 1 is O(Cd

2dM log2M +M ∗ log2M) . In this study, the 
distance threshold d is set to 4 and Cd

2d = 70 , and both of them are constant. Thus, the 
time complexity is O(Mlog2M) . That is, we can claim that the PPI prediction algorithm 
runs in O(Mlog2M) time complexity, where M is the number of proteins inside a data-
base. This is a big improvement over the state-of-the-art O(M2).

Acknowledgements
We are thankful to the anonymous reviewers and editors. Their suggests and advices have resulted in a significant 
improvement of this manuscript.

Author contributions
ZL, DA, YJ, and JL contributed the idea, designed the study and revised the manuscript. LS and YW implemented and 
performed most of the experiments. LS, DA, JL and YJ wrote the manuscript. All authors read and approved the final 
manuscript.



Page 18 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266 

Funding
This work is supported in part by grants from the Chinese National Natural Science Foundation (Grant No. 61472082), 
Natural Science Foundation of Fujian Province of China (Grant No. 2014J01220), and from the US National Science Foun-
dation (Awards #1816005, #1920920).

Availability of data and materials
Our source codes and data can be found in URL:https:// github. com/ labSA lin/ DPPI. The Protein–Protein Interactions 
(PPI) dataset is from the article, entitled, “Large-scale prediction of human protein–protein interactions from amino acid 
sequence based on latent topic features” [46]. The dataset is available at the author’s website, URL:http:// www. csbio. sjtu. 
edu. cn/ bioinf/ LR_ PPI/ Data. htm.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent to publish
All authors consent this publication.

Competing interests
The authors declared that they have no competing interests.

Received: 3 August 2021   Accepted: 17 June 2022

References
 1. Jones S, Thornton JM. Principles of protein–protein interactions. Proc Natl Acad Sci. 1996;93(1):13–20.
 2. Herce HD, Deng W, Helma J, Leonhardt H, Cardoso MC. Visualization and targeted disruption of protein interactions 

in living cells. Nat Commun. 2013. https:// doi. org/ 10. 1038/ ncomm s3660.
 3. Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein–protein interactions: technological strate-

gies and opportunities. Mass Spectrom Rev. 2019;38(1):79–111. https:// doi. org/ 10. 1002/ mas. 21574.
 4. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast 

protein interactome. Proc Natl Acad Sci USA. 2001;98(8):4569–74.
 5. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, et al. Systematic identification of protein complexes in 

Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415(6868):180–3.
 6. Foltman M, Sanchez-Diaz A. Studying protein–protein interactions in budding yeast using co-immunoprecipitation. 

Methods Mol Biol. 2016;1369:239–56.
 7. Huang H, Alvarez S, Nusinow DA. Data on the identification of protein interactors with the Evening Complex and 

PCH1 in Arabidopsis using tandem affinity purification and mass spectrometry (TAP-MS). Data Brief. 2016;8:56–60.
 8. Mrowka R. Is there a bias in proteome research? Genome Res. 2001;11(12):1971.
 9. Koike A, Kobayashi Y, Takagi T. Kinase pathway database: an integrated protein-kinase and NLP-based protein-inter-

action resource. Genome Res. 2003;13(6A):1231–43.
 10. Bunescu RR. Integrating co-occurrence statistics with information extraction for robust retrieval of protein interac-

tions from Medline. In: LNLBioNLP ’06: proceedings of the HLT-NAACL BioNLP workshop on linking natural language 
and biology; 2006. p. 49–56.

 11. Grimes GR, Wen TQ, Mewissen M, Baxter RM, Moodie S, Beattie JS, et al. PDQ Wizard: automated prioritization and 
characterization of gene and protein lists using biomedical literature. Bioinformatics. 2006;22(16):2055–7.

 12. Küffner R, Zimmer R, Fundel K. RelEx-relation extraction using dependency parse trees. Bioinformatics. 
2007;23(3):365–71.

 13. Temkin JM, Gilder MR. Extraction of protein interaction information from unstructured text using a context-free 
grammar. Bioinformatics. 2003;19(16):2046–53.

 14. Ananiadou S, Kell DB, Tsujii JI. Text mining and its potential applications in systems biology. Trends Biotechnol. 
2006;24(12):571–9.

 15. Adjeroh D, Bell T, Mukherjee A. The Burrows–Wheeler transform: data compression, suffix arrays, and pattern match-
ing. Berlin: Springer; 2008.

 16. Haussler D. Convolution kernels on discrete structures. Technical Report; 1999.
 17. Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C. Text classification using string kernels. J Mach Learn 

Res. 2002;2(3):419–44.
 18. Sarkar D, Saha S. Machine-learning techniques for the prediction of protein–protein interactions. J Biosci. 

2019;44(4):1–12.
 19. Maheshwari S, Brylinski M. Across-proteome modeling of dimer structures for the bottom-up assembly of protein–

protein interaction networks. BMC Bioinform. 2017;18(1):1–14.
 20. Sikandar A, Anwar W, Bajwa UI, Wang X, Sikandar M, Yao L, et al. Decision tree based approaches for detecting protein 

complex in protein protein interaction network (PPI) via link and sequence analysis. IEEE Access. 2018;6:22108–20.
 21. Debasree S, Tanmoy J, Sudipto S, Manuela HC. LMDIPred: a web-server for prediction of linear peptide sequences 

binding to SH3, WW and PDZ domains. PLoS ONE. 2018;13(7): e0200430.
 22. Romero-Molina S, Ruiz-Blanco YB, Harms M, Münch J, Sanchez-Garcia E. PPI-Detect: a support vector machine 

model for sequence-based prediction of protein–protein interactions. J Comput Chem. 2019;40(11):1233–42.

https://github.com/labSAlin/DPPI
http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm
http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm
https://doi.org/10.1038/ncomms3660
https://doi.org/10.1002/mas.21574


Page 19 of 19Jiang et al. BMC Bioinformatics          (2022) 23:266  

 23. Zhang SW, Hao LY, Zhang TH. Prediction of protein–protein interaction with pairwise kernel support vector 
machine. Int J Mol Sci. 2014;15(2):3220–33.

 24. Ruan P, Hayashida M, Akutsu T, Vert JP. Improving prediction of heterodimeric protein complexes using combination 
with pairwise kernel. BMC Bioinform. 2018;19(S1):39.

 25. Gui Y, Wang R, Wei Y, Wang X. DNN-PPI: a large-scale prediction of protein-protein interactions based on deep neural 
networks. J Biol Syst. 2019;27(1):1–18.

 26. Wang YB, You ZH, Xiao L, Jiang TH, Chen X, Zhoua X, et al. Predicting protein–protein interactions from protein 
sequences by a stacked sparse autoencoder deep neural network. Mol BioSyst. 2017;13(7):1336–44.

 27. Long Z, Yu G, Xia D, Wang J. Protein–protein interactions prediction based on ensemble deep neural networks. 
Neurocomputing. 2018;324(9):10–9.

 28. Browne F, Wang H, Zheng H, Azuaje F. Supervised statistical and machine learning approaches to inferring pairwise 
and module-based protein interaction networks. In: IEEE international conference on bioinformatics & bioengineer-
ing; 2007. p. 1365–1369.

 29. Lin X, Chen Xw. Heterogeneous data integration by tree-augmented naïve Bayes for protein–protein interactions 
prediction. Proteomics. 2012;13(2):261–8.

 30. Ngamsuriyaroj S, Thepsutum K. Identifying dominant amino acid pairs of known protein-protein interactions via 
K-means clustering. In: 2017 IEEE 19th international conference on high performance computing and communi-
cations; IEEE 15th international conference on Smart City; IEEE 3rd international conference on data science and 
systems (HPCC/SmartCity/DSS); 2017. p. 286–291.

 31. Liu P, Lei Y, Shi D, Tang X. Prediction of protein–protein interactions related to protein complexes based on protein 
interaction networks. Biomed Res Int. 2015;2015:1–9.

 32. Adjeroh D, Allaga M, Tan J, Lin J, Jiang Y, Abbasi A, et al. Feature-based and string-based models for predicting RNA-
protein interaction. Molecules. 2018;23(3):697.

 33. Suresh V, Liu L, Adjeroh D, Zhou X. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural 
information. Nucleic Acids Res. 2015;43(3):1370–9.

 34. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
 35. Zhao Z, Gong X. Protein-protein interaction interface residue pair prediction based on deep learning architecture. 

IEEE/ACM Trans Comput Biol Bioinform. 2017;16(5):1753–9.
 36. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. https:// doi. org/ 10. 1162/ 

neco. 1997.9. 8. 1735.
 37. Hang L, Gong XJ, Yu H, Zhou C. Deep neural network based predictions of protein interactions using primary 

sequences. Molecules. 2018;23(8):1923.
 38. Somaye H, Behnam N, Khan AA, Xu J. Predicting protein–protein interactions through sequence-based deep learn-

ing. Bioinformatics. 2018;17(34):802–10.
 39. Sun T, Bo Z, Lai L, Pei J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. 

BMC Bioinform. 2017;18(1):277.
 40. Du X, Sun S, Hu C, Yao Y, Yan Y, Zhang Y. DeepPPI: boosting prediction of protein–protein interactions with deep 

neural networks. J Chem Inf Model. 2017;57(6):1499–510.
 41. Patel S, Tripathi R, Kumari V, Varadwaj P. DeepInteract: deep neural network based protein–protein interaction 

prediction tool. Curr Bioinform. 2017;12(6):551–7.
 42. Huang L, Liao L, Wu CH. Completing sparse and disconnected protein–protein network by deep learning. BMC 

Bioinform. 2018;19(1):103.
 43. Yang F, Fan K, Song D, Lin H. Graph-based prediction of protein–protein interactions with attributed signed graph 

embedding. BMC Bioinform. 2020;21(1):1–16.
 44. Huang L, Liao L, Wu CH. Inference of protein–protein interaction networks from multiple heterogeneous data. 

Eurasip J Bioinform Syst Biol. 2016;2016(1):8.
 45. Suraj P, Daniel NJ, Kristiansen TZ, Ramars A, Vineeth S, Babylakshmi M, et al. Human protein reference database as a 

discovery resource for proteomics. Nucleic Acids Res. 2004;32(Database Issue):D497–501.
 46. Pan X, Zhang Y, Shen H. Large-scale prediction of human protein–protein interactions from amino acid sequence 

based on latent topic features. J Proteome Res. 2010;9(10):4992–5001.
 47. Chollet F. Deep learning with python. Shelter Island: Manning Publications; 2017.
 48. Elabd H, Bromberg Y, Hoarfrost A, Lenz T, Wendorff M. Amino acid encoding for deep learning applications. BMC 

Bioinform. 2020;21(1):1–14.
 49. Zhang R, Lin L, Zhang R, Zuo W, Zhang L. Bit-scalable deep hashing with regularized similarity learning for image 

retrieval and person re-identification. IEEE Trans Image Process. 2015;24(12):4766–79.
 50. Chen Z, Cai R, Lu J, Feng J, Jie Z. Order-sensitive deep hashing for multimorbidity medical image retrieval:. In: 21st 

international conference, Granada, Spain, September 16–20, 2018, Proceedings, Part I; 2018. p. 620–628.
 51. Wang Hl, Yu J, Xiao Cb. Deep non-relaxation hashing based on point pair similarity. ACTA Autom Sin. 2021;47(5):1077–86.
 52. Pidhorskyi S, Jones Q, Motiian S, Adjeroh D, Doretto G. Deep supervised hashing with spherical embedding. In: 

Asian conference on computer vision. Springer; 2018. p. 417–434.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

	Identification of all-against-all protein–protein interactions based on deep hash learning
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Experiments and results
	Dataset
	Evaluation criteria
	Experimental results and analysis

	Discussion
	Conclusion
	Methods
	Data preprocessing
	The DHL encoding model
	The embedding layer for amino acids
	Convolution blocks
	Random projection module
	Range control module

	Loss functions of the DHL-PPI model
	Discrimination error loss
	Hash constraint loss
	Bit balance loss
	Total loss Function

	PPI prediction model
	The PPI prediction algorithms
	The Pigeonhole principle
	The indexing process
	BCSA: binary hash code searching algorithm
	Analysis of the algorithms


	Acknowledgements
	References


