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Background
Probabilistic functional integrated networks (PFINs) are an automated method that 
combines multiple sources of functional interaction data to produce a single network 
of interactions each annotated with confidence scores. PFINs allow false positive inter-
actions to be identified by their low confidence scores, avoiding the need for work-
intensive manual pre-integration data cleaning. These scores are often calculated by 
comparison with a high quality “Gold Standard” dataset [1–5]. The performance of any 
PFIN is dependent upon its component datasets and on the Gold Standard(s) chosen 
to evaluate them [6]. Integrated network theory relies on the principle that the whole 
network is greater than the sum of its dataset parts, so as more interaction data are pro-
duced, network performance should increase [7]; a PFIN integrated using data from 

Abstract 

Background:  Probabilistic functional integrated networks (PFINs) are designed to aid 
our understanding of cellular biology and can be used to generate testable hypotheses 
about protein function. PFINs are generally created by scoring the quality of interaction 
datasets against a Gold Standard dataset, usually chosen from a separate high-quality 
data source, prior to their integration. Use of an external Gold Standard has several 
drawbacks, including data redundancy, data loss and the need for identifier mapping, 
which can complicate the network build and impact on PFIN performance. Addition-
ally, there typically are no Gold Standard data for non-model organisms.

Results:  We describe the development of an integration technique, ssNet, that scores 
and integrates both high-throughput and low-throughout data from a single source 
database in a consistent manner without the need for an external Gold Standard data-
set. Using data from Saccharomyces cerevisiae we show that ssNet is easier and faster, 
overcoming the challenges of data redundancy, Gold Standard bias and ID mapping. In 
addition ssNet results in less loss of data and produces a more complete network.

Conclusions:  The ssNet method allows PFINs to be built successfully from a single 
database, while producing comparable network performance to networks scored 
using an external Gold Standard source and with reduced data loss.

Keywords:  Network integration, Bioinformatics, Gold Standards, Probabilistic 
functional integrated networks, Protein function prediction, Interactome

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

James et al. BMC Bioinformatics          (2022) 23:302  
https://doi.org/10.1186/s12859-022-04834-4

BMC Bioinformatics

*Correspondence:   
katherine.james@newcastle.ac.uk

1 Department of Applied 
Sciences, Northumbria University, 
Sandyford Rd, Newcastle upon 
Tyne NE1 8ST, UK
2 Interdisciplinary Computing 
and Complex BioSystems 
Group, Newcastle University, 
Science Square, Newcastle upon 
Tyne NE4 5TG, UK
3 Saudi Electronic University, 
Abi Bakr As Siddiq Branch Rd, 
Riyadh 1332, Saudi Arabia
4 School of Biomedical, 
Nutritional and Sports 
Science, Faculty of Medical 
Sciences, Newcastle University, 
Framlington Place, Newcastle 
upon Tyne NE2 4HH, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04834-4&domain=pdf


Page 2 of 18James et al. BMC Bioinformatics          (2022) 23:302 

2010 is expected to perform better than one using data from 2006. However, our previ-
ous 2012 study, which investigated PFINs integrated using data from 2006 to 2010, dem-
onstrated that the network performance fluctuated and that careful selection of data and 
Gold Standard is vital [8], particularly if the network is integrated to study a specific area 
of biology.

Since 2012 the volume of functional interaction data has increased considerably [9]. 
While high-throughput (HTP) data produced from largescale screenings have been esti-
mated to have high false positive and false negative rates (up to 91% and 96%, respec-
tively) [1, 10–15], the effect of this noise should be mitigated by an increase in less 
error-prone, targeted low-throughput (LTP) studies. Curated databases are constantly 
evolving in both content and structure to reflect current biological knowledge [16]. 
Manual curation has improved the quality of available data by editing or removal when 
errors and inconsistencies have been identified, and when data are found to be incorrect 
in light of new studies [17, 18].

Gold Standard data are chosen from a separate high-quality database, commonly 
manually-curated metabolic pathways [1, 19, 20], for example KEGG [21], or shared bio-
logical process [10, 22, 23], for example Gene Ontology [24]. The difference in database 
source between datasets and Gold Standard presents several challenges to scoring and 
integration. The Gold Standard may have poor overlap with the datasets to be scored 
since its focus differs, for instance a metabolic pathway database vs a protein-protein 
interaction (PPI) database; many PPI datasets may not score at all. Conversely, data 
redundancy can occur since separate databases may include the same studies, leading to 
overlap between Gold Standard and datasets, and biased scoring. Identifier format may 
also differ, requiring potentially error prone mapping between the two sources prior to 
scoring [25]. In Gold Standards derived from hierarchical annotation schemas, such as 
Gene Ontology, the choice of which annotation terms to include in the Gold Standard 
can vastly change the final scores and these schemas are known to have large biases [26].

With the increase in volume of high quality LTP data, for both model and non-model 
organisms, we hypothesise that these data can be used as a Gold Standard to score the 
larger HTP studies. Therefore, using functional interaction data from a single curated 
database, datasets can be scored and integrated without the requirement for an external 
Gold Standard dataset. Less data will be lost and the challenges of identifier mapping 
and data redundancy will be removed. Furthermore, since the Gold Standard is consid-
ered the highest-quality data, we propose that these data may be integrated into the final 
network using iterative scoring.

BioGRID1 [27] is one of the most comprehensive manually-curated interaction data-
bases, with excellent coverage of model organisms, including Saccharomyces cerevisiae. 
It benefits from a clear data format that facilitates integration of other interaction data-
sets into analysis pipelines. Here, we extend our 2012 study by analysing the changes 
in Saccharomyces cerevisiae functional interaction data contained in BioGRID and 
evaluating the performance of PFINs scored using an LTP Gold Standard. We find that 
the quantity of interaction data has increased to the extent whereby both scoring and 

1  https://​thebi​ogrid.​org.

https://thebiogrid.org
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integration can be achieved from the data contained in BioGRID alone without the need 
for an external GoldStandard. We propose a new integration method, ssNET, that incor-
porates both LTP and HTP data in a consistent manner, and evaluate it using functional 
prediction.

The network produced in this study is available at https://​figsh​are.​com/​proje​cts/​Yeast_​
ssNet/​114366 and the code for ssNet network generation at https://​github.​com/​kj-​
intbio/​ssnet/.

Methods
Data sources

BioGRID archive datasets [27] were downloaded for a fifteen year period at six month 
intervals2 from the first available version (V17, 2006) to the latest version (V186, 2020). 
Entrez ID lists for each species were downloaded from the NCBI database3 [28] (S. cer-
evisiae 5th June 2020), BioSystems Gold Standard data was downloaded from the NCBI’s 
FTP server4 (version 20170421). Gene Ontology Gold Standard data and annotation 
information for evaluation were downloaded from the Gene Ontology Resource5 [24, 
29]: the Gene Ontology obo format (23rd March 2020) and annotation mapping files (S. 
cerevisiae 23rd March 2020) [30].

Fig. 1  The ssNet scoring and integration method. A BioGRID data are split into high throughput (HTP) and 
low throughput (LTP) data based on study size threshold. B The HTP datasets are scored using the LTP data 
as Gold Standard. C LTP data is then split into datasets by experimental type. D Each LTP data type is scored 
using the remaining LTP data types as Gold Standard. E The scored HTP and LTP datasets are then integrated 
into the final network

2  https://​downl​oads.​thebi​ogrid.​org/​BioGR​ID/​Relea​se-​Archi​ve/.
3  https://​www.​ncbi.​nlm.​nih.​gov/.
4  https://​ftp.​ncbi.​nih.​gov/​pub/​biosy​stems/.
5  http://​www.​geneo​ntolo​gy.​org/.

https://figshare.com/projects/Yeast_ssNet/114366
https://figshare.com/projects/Yeast_ssNet/114366
https://github.com/kj-intbio/ssnet/
https://github.com/kj-intbio/ssnet/
https://downloads.thebiogrid.org/BioGRID/Release-Archive/
https://www.ncbi.nlm.nih.gov/
https://ftp.ncbi.nih.gov/pub/biosystems/
http://www.geneontology.org/
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Dataset scoring and integration

The ssNet method involves a five step scoring and integration (Fig.  1). BioGRID data 
were first split by PubMed ID into HTP and LTP data based on study size threshold (100 
throughout unless otherwise stated) and HTP datasets were treated as separate stud-
ies. For consistency dataset names are standardised throughtout the results as [Author].
[PubMed ID]. These datasets were then scored using the LTP data as Gold Standard. 
LTP data were then split into datasets by data type based on the BioGRID experimental 
code6. Each LTP dataset was scored using the remaining LTP data types as Gold Stand-
ard. Finally, the HTP and LTP datasets were integrated.

For comparison both LTP and HTP datasets were scored against three Gold Standards:

•	 BioSystems molecular pathway-dervived Gold Standard in which proteins in the 
same pathway were considered Gold Standard pairs (MP_GS).

•	 A Gene Ontology biological process-derived Gold Standard in which proteins 
belonging to processes covering <10% of the genome were considered Gold Standard 
pairs (BP10_GS).

•	 A Gene Ontology biological process-derived Gold Standard in which proteins 
belonging to processes with <100 annotations in the yeast genome were considered 
Gold Standard pairs (BP100_GS).

Confidence scores were calculated using the methods developed by Lee and colleagues 
[1], which calculates a log-likelihood score for each dataset:

where, P(L|E) and ¬P(L|E) represent the frequencies of linkages L observed in a dataset 
E between genes that are linked and not not linked in the Gold Standard, respectively, 
and, P(L) and ¬P(L) represent the prior expectation of linkages between genes that are 
linked and not not linked in the Gold Standard, respectively. A score greater than zero 
indicates that the dataset links pairs of genes present in the Gold Standard with higher 
scores indicating greater confidence in the data. Datasets that did not have a positive 
score or that did not score (P(L|E) = 0) were discarded. Datasets scoring infinity due 
to perfect overlap with the Gold Standard ( ¬P(L|E) = 0) were given a score of h + 1 , 
where h is the set of dataset scores.

Scores were then integrated using the Lee method [1]:

where L1 is the highest confidence score and Ln the lowest confidence score of a set of 
n datasets. The D parameter provides a non-parametric weighting of datasets by their 
confidence score rankings. At D = 1, dataset are given equal weight regardless of their 
confidence scores. As D increases above 1, datasets with higher relative confidence are 

(1)llsL(E) = ln

(

P(L|E)/¬P(L|E)

P(L)/¬P(L)

)

(2)WS =

n
∑

i=1

Li

D(i−1)

6  https://​wiki.​thebi​ogrid.​org/​doku.​php/​exper​iment​al_​syste​ms.

https://wiki.thebiogrid.org/doku.php/experimental_systems
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up-weighted. A D-value of 1 was chosen for our initial network builds, while higher 
D-values were chosen where stated to investigate the effect of D-value choice on net-
work performance. In the resulting network, interactions with multiple lines of high 
quality evidence have higher scores, while those with little/low quality evidence have 
lower scores. In HTP-only networks only the scored HTP datasets were integrated.

Evaluation

Networks were clustered using the Markov Clustering Algorithm (MCL) version 14-137 
with default inflation value [31]. Networks were visualised in Cytoscape Version 3.7.2 
[32] and the Network Analyser plugin version 3.3.2 was used to calculate topological sta-
tistics [33]. Functional prediction was carried out using the Maximum Weight decision 
rule [34] in which annotations were propagated along the highest weighted edge sur-
rounding a protein. Leave-one-out cross-validation of known annotations was carried 
out for all GO biological process with at least 100 and no more than 1000 annotations in 
the genome. Automated annotations with the code Inferred from Electronic Annotation 
(IEA) were excluded from evaluation. The performance of the networks was evaluated 
using the area under curve (AUC) of Receiver Operator Characteristic curves for each 
term [35] using the BioConductor ROC package (v 1.62.0) [36].

The error of the AUC was calculated using the standard error of the Wilcoxon statistic 
SE(W) [35, 37]:

where, θ is the AUC, Cp is the number of positive examples, Cn is the number of nega-
tive examples and Q1 and Q2 are the probabilities of incorrect annotation assignment as 
defined by:

Results
LTP data can be used as a Gold Standard to score HTP data quality

PFINs are traditionally integrated after datasets have been scored against an external 
Gold Standard dataset [1, 19, 20, 22]. Since the use of external data has several draw-
backs, we investigated whether the less error-prone low-throughput (LTP) studies 
are suitable to be used as an internal Gold Standard. We first assessed the changes in 
BioGRID data for the yeast Saccharomyces cerevisiae from the first available version 
(V17, 2006) to the latest available version (V186, 2020). HTP interaction data (defined 
here as studies ≥ 100 interactions; see "Methods") have increased considerably since 
our earlier study [8] both in terms of unique proteins and unique interactions between 
them (Fig. 2A, B). The overlap between HTP and LTP interactions remains relatively low, 
increasing from 3382 (7.1% of total interactions) at V17 to 16724 interactions at V186 

(3)SE(W ) =

√

θ(1− θ)+ (Cp − 1)(Q1 − θ2)+ (Cn − 1)(Q2 − θ2)/CpCn

(4)Q1 =
θ

2− θ

(5)Q2 =
2θ2

1+ θ
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(3.1% of total interactions). While the number of unique proteins fluctuated in earlier 
versions of BioGRID, their numbers have steadily increased in later years. Protein over-
lap between HTP and LTP data has also increased from 3377 at V17 to 5016 at V186: 
63.8% and 81.5% of total proteins, respectively. Increasing the size threshold for the LTP 
datasets from 100 interactions had little effect on the percentage overlap between HTP 
and LTP datasets (Fig. 2C, D).

We constructed an LTP-derived Gold Standard (LTP_GS) and three Gold Standards 
derived from the metabolic pathways of the BioSystems database [38] (MP_GS) and 
biological processes of the Gene Ontology [24] (BP10_GS and BP100_GS) for compari-
son (see "Methods"). An LTP dataset size threshold of < 100 interactions was chosen to 
maximise the number of unique proteins and unique interactions in the LTP_GS, while 
minimising the its overall size (Fig. 2C, D). The LTP_GS had greater overlap with HTP 
data in terms of individual proteins, with ~83% of the total proteins shared (Table 1), in 
comparison to ~42% for MP_GS, ~81% for BP10_GS and ~73% for BP100_GS. These 
results suggest that while overlap between LTP and HTP data is low, LTP data has bet-
ter overlap than an external Gold Standard in terms of nodes, and therefore may pro-
vide an improved scoring. The LTP_GS had higher overlap with the HTP datasets than 

Fig. 2  The BioGRID Saccharomyces cerevisiae data increase. A High-throughput (HTP) interaction data has 
increased since our earlier study [8] (yellow box; dashed line), with two large increases in 2010 and 2016 (grey 
boxes). By contrast, low-throughput (LTP) data has increased to a lesser extent, with the overlap between HTP 
and LTP also increasing slightly. B The fluctuation in representation of unique proteins that was observed in 
our earlier study [8] (yellow box; dashed line) is not evident in the following years. Unique protein number 
has increased steadily for both HTP and LTP data and the large increases in interaction data (grey boxes) only 
affect this increase slightly. Version 186 LTP data contains ~1/3 of the total unique proteins in BioGRID, with 
LTP data almost completely overlapping with the HTP dataset. C The size and overlap of interactions in V186 
HTP datasets and LTP Gold Standard data as the Gold Standard size threshold is increased. D The size and 
overlap of proteins in V186 HTP datasets and LTP Gold Standard data as the Gold Standard size threshold is 
increased. An LTP dataset size threshold of 100 interactions (dashed line) was chosen for subsequent analyses 
to maximise both the number of the LTP Gold Standard’s unique proteins and unique interactions, while 
minimising its overall size
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MP_GS in terms of interactions with 3.3% in comparison to 0.2%, but lower overlap than 
BP10_GS (34.5%) and BP100_GS (7.73%). While the largest Gold Standard, BP10_GS 
has the highest overlap with the HTP datasets, it’s size—2,947,156 vs 9924 and 384,450 
for MP_GS and BP100_GS, respectively—is likely to adversely affect scoring since the 
prior expectation (P(L); see "Methods") will contain a large number of linkages between 
proteins with shared biological process that are less likely to directly interact.

When these Gold Standards were used in dataset scoring the majority of scores were 
higher using the LTP_GS standard in all three cases. The scores also had greater spread, 
indicating that the LTP_GS provides wider scope to score more diverse datasets (Fig. 3). 
Datasets may score infinity if they have perfect overlap with the Gold Standard ( ¬P(L|E) 
= 0, see "Methods"). No datasets scored infinity using the LTP_GS, in comparison to 10 
datasets using MP_GS, 2 using BP10_GS and 1 using BP100_GS (shown in Fig. 3 as a 
score of 7.0 on the right of the plot).

Datasets may also be lost during scoring if they do not have any overlap with the Gold 
Standard data (P(L|E) = 0, see "Methods"), or have negative scores. Fewer datasets were 
lost when scored against the LTP_GS (8 with LTP_GS, 96 with MP_GS, 18 with BP100_
GS and 23 with BP10_GS; shown as score 0 in Fig. 3). Since the most recent BioSystems 
dataset available was April 2017, we also confirmed the difference between LTP_GS and 

Table 1  Gold Standard overlap. The overlap in terms of proteins and interactions of the high-
throughput datasets (HTP) with the low-throughout Gold Standard (LTP_GS), the BioSystems-
derived Gold Standard (MP_GS) and Gene Ontology biological process-derived Gold Standards 
(BP10_GS and BP100_GS) (highest overlaps are shown in bold).

Total numbers differ slightly from Fig. 2 since only those identifiers that could be mapped between BioSystems and BioGrid 
are included

LTP_GS MP_GS BP10_GS BP100_GS

Proteins Gold Standard 5510 2551 5071 4551

(6,018 HTP) Overlap 5016 2549 4868 4369

Overlap % 83.3 42.4 80.9 72.6

Interactions Gold Standard 50,491 9924 2,947,156 384,450

(507,352 HTP) Overlap 16,724 1045 174,934 39,200

Overlap % 3.3 0.2 34.5 7.73

Fig. 3  Dataset scoring. The log likelihood scores (LLS) comparison for V186 BioGRID datasets scored 
against the low throughput (LTP_GS). Datasets that had perfect overlap with Gold Standard ( ¬P(L|E) 
= 0) so are shown as score 7.0. Datasets shown as 0 were lost due scoring <0 or no score (P(L|E) = 0). A 
BioSystems-derived (MP_GS) Gold Standard (5 datasets score 0 for both Gold Standards). B Gene ontology 
biological process terms annotating <10% of the genome (BP10_GS) Gold Standard. C Gene ontology 
biological process terms annotating annotation <100 genes (BP100_GS) Gold Standard (2 datasets score 0 for 
both Gold Standards)
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MP_GS using equivalent BioGRID data from 2017 (V150, data not shown). The use of 
LTP data as for scoring therefore results in less loss of data than using the external Gold 
Standards.

Four networks were integrated from the V186 HTP datasets scored against the LTP_
GS and the MP_GS, BP10_GS and BP100_GS Gold Standards for comparison. The net-
works were all formed of one connected component, with the LTP_GS network being 
larger than MP_GS and BP100_GS and having the largest average degree (168 compared 
to 155 for MP_GS, 167 for BP10_GS and 166 for BP100_GS) (Table 2). The networks all 
had moderate correlation with the power law [39], possibly a reflection of their content 
being solely derived from noisy HTP data. The high connectivity of the LTP_GS network 
was reflected in the clustering output with the network being split into 87 clusters, com-
pared to 220 clusters for the MP_GS-scored network and 169 for BP100_GS. BP10_GS 
gave the fewest clusters with just 31.

We compared the performance of the networks in prediction of 398 Gene Ontology 
(GO) biological process terms using leave one out prediction of known annotations 
measured using area under curve (AUC) of receiver operator characteristic (ROC) 
plots. The LTP_GS network had improved performance for the majority of GO terms 
in comparison to MP_GS (Fig.  4A) with 327 terms improved compared to 71. Of the 
AUC changes 227 were statistically significant with 209 (92%) improved using LTP_GS. 
Performance was also improved over BP10_GS with 230 terms improved compared to 
168 (Fig 4B). Of the changes 114 were significant with 64 (56%) improved using LTP_GS. 
LTP_GS and BP100_GS had the most similar performance with 105 terms improved for 
LTP_GS compared to 293 (Fig. 4C). However, only 85 changes were statistically signifi-
cant and with just 3 (4%) were improved using LTP_GS.

Incorporation of Gold Standard data improves network performance

Since the LTP_GS data are considered the highest-quality, their inclusion in the final 
network is desirable. We therefore investigated how LTP data could be scored and incor-
porated into the final integrated network. Since LTP data can be further divided by 
experimental type [19], we employed an iterative LTP scoring method, ssNet, in which 

Table 2  Network topology. Network statistics for the low throughput (LTP_GS), BioSystems (MP_GS) 
and Gene Ontology (BP10_GS and BP100_GS) scored networks. [31]

Statistics were calculated using the Cytoscape NetworkAnalyser [33] plugin and clustering was carried out using the Markov 
Clustering Algorithm (MCL)

LTP_GS MP_GS BP10_GS BP100_GS

Proteins 5960 5919 5960 5958

Interactions 501,299 458,778 498,385 495,007

Average degree 168 155 167 166

Connected components 1 1 1 1

Diameter 4 5 4 4

Characteristic path length 2.07 2.15 2.07 2.07

Centralization 0.57 0.33 0.58 0.57

Correlation Power law 0.41 0.46 0.41 0.43

R
2 Power law 0.74 0.75 0.74 0.74

Clusters 87 220 31 169
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each LTP data type is scored as a single dataset using the remaining LTP types as Gold 
Standard, before integration of the LTP and HTP dataset scores (see "Methods"). Scores 
for the 28 LTP datasets were in a higher but overlapping range to those of the HTP data-
sets (Fig. 5A), while LTP scores using the MP_GS, BP10_GS and BP100_GS Gold Stand-
ards did not reflect the higher quality of these datasets (Fig. 5B–D). LTP ssNet scores 
where also higher in comparison to scores using a the other three Gold Standards (Fig. 6; 
five LTP datasets that did not score using MP_GS are shown as score 0). Overall, ssNET 
resulted in less loss of data than the use of external Gold Standards, particularly in terms 
of dataset loss (Table 3).

We integrated four networks of V186 LTP and HTP data scored using the ssNet, MP_
GS , BP10_GS and BP100_GS Gold Standards, for comparison. The ssNet, BP10_GS and 

Fig. 4  Network evaluation. The functional prediction performance of the low throughput (LTP_GS), 
BioSystems and Gene Ontology-scored networks as measured by area under curve (AUC) of receiver 
operator characteristic plots. The error of the AUC was calculated using the standard error of the Wilcoxon 
statistic SE(W): not statistically significant (NSS); statistically significant (SS). A. BioSystems-derived (MP_GS) 
Gold Standard. Of 398 Gene Ontology biological processes, 327 had improved prediction using the LTP_GS 
network, and 71 using the MP_GS network. Of these changes 227 were statistically significant with 209 
(92%) improved using LTP_GS. B. Gene ontology biological process terms annotating <10% of the genome 
(BP10_GS) Gold Standard. Of 398 Gene Ontology biological processes, 230 had improved prediction using 
the LTP_GS network, compared to 168 using BP10_GS. Of the changes 114 were significant with 64 (56%) 
improved using LTP_GS. C. Gene ontology biological process terms annotating annotation <100 genes 
(BP100_GS) Gold Standard. Of 398 Gene Ontology biological processes, 105 had improved prediction using 
the LTP_GS network, compared to 293 using BP100_GS. Of the changes just 85 were significant with 3 (4%) 
improved using LTP_GS
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Table 3  Data loss. Percentage loss of BioGRID proteins, interactions and datasets in the ssNet, 
BioSystems (MP_GS) and Gene Ontology (BP10_GS and BP100_GS) scored networks.

The lowest data loss are shown in bold

Proteins Interactions Datasets

ssNet 16.5 28.9 2.8
MP_GS 17.6 34.6 34.9

BP10_GS 16.5 29.3 6.2

BP100_GS 16.5 29.7 8.0

Fig. 5  LTP and HTP scores. A. Comparison of log-likelihood (LLS) score range for low-throughput (LTP) 
and high-throughput (HTP) datasets scored using ssNet. B. Comparison of log-likelihood (LLS) score range 
for low-throughput (LTP) and high-throughput (HTP) datasets scored using MP_GS. C. Comparison of 
log-likelihood (LLS) score range for low-throughput (LTP) and high-throughput (HTP) datasets scored using 
BP10_GS. D. Comparison of log-likelihood (LLS) score range for low-throughput (LTP) and high-throughput 
(HTP) datasets scored using BP100_GS

Fig. 6  ssNet scoring. A. Comparison of LTP dataset scores using ssNet and the BioSystems-derived 
Gold Standard (MP_GS). Datasets which were lost due scoring <0 or no score (P(L|E) = 0) are shown as 
0. B. Comparison of LTP dataset scores using ssNet and the Gene Ontology Gold Standard BP10_GS. C. 
Comparison of LTP dataset scores using ssNet and the Gene Ontology Gold Standard BP100_GS
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BP100_GS networks were formed of one connected component, while MP_GS had a 
second small component consisting of three proteins. The ssNet network was larger and 
more tightly connected (Table 4) with >535,000 interactions and all networks had higher 
correlation with the power law than those based on HTP data alone (Table 2).

We compared the performance of the networks in prediction of 398 Gene Ontology 
(GO) biological process terms as before. The results were similar to the HTP-only net-
works with ssNet having improved performance for the majority of GO terms in com-
parison to MP_GS (Fig. 7A): 325 terms improved compared to 73. Of the AUC changes 
127 were statistically significant with 124 (98%) improved using LTP_GS. Performance 
was not improved over BP10_GS with 128 terms improved compared to 270 and of these 
changes just 20 were significant with 2 (10%) improved using LTP_GS (Fig. 7B). LTP_GS 
and BP100_GS had the most similar performance with 102 terms improved for LTP_GS 
compared to 296. However, only 2 changes were statistically significant both of which 
were improved using BP100_GS (Fig. 7C).

Finally, we investigated the ssNet network’s performance when integrated using differ-
ent D-values [see "Methods", Eq. (2)]. In general network performance is better at lower 
D-values, corresponding to lower up-weighting of higher-scoring datasets (Fig.  8A). 
However, individual Gene Ontology biological processes have variation in performance 
with differing optimal D-values (Fig. 8B).

Discussion
Since PFINS are generally created in order to support or derive new biological 
hypotheses, it is important to generate networks which are as complete and unbiased 
as possible [22]. Previous PFIN integration techniques have had several drawbacks 
due to their reliance on an external Gold Standard for dataset scoring, which may 
not be available for some species. Experimental datasets will also score differently 
depending upon the Gold Standard chosen [26, 40]. One popular Gold Standard is 
the Gene Ontology (GO) [10, 22, 23, 41–43]. The use of GO as a Gold Standard pre-
sents some problems due to the hierarchical directed acyclic graph (DAG) nature of 
the database; terms are connected to one another in a parent to child hierarchy, with 
annotation to a child term automatically implying annotation to all parent terms of 

Table 4  Network statistics. Topological characteristics for the ssNet, BioSystems (MP_GS) and Gene 
Ontology (BP10_GS and BP100_GS) scored networks (including the LTP datasets).

Statistics are calculated for the larger (6036 proteins) component of the BioSystems network

ssNet MP_GS BP10_GS BP100_GS

Proteins 6119 6039 6119 6118

Interactions 535,183 492,424 532,349 529,036

Average degree 175 163 174 173

Connected components 1 2 1 1

Diameter 6 5 6 6

Characteristic path length 2.11 2.16 2.11 2.11

Centralization 0.56 0.33 0.56 0.56

Correlation Power law 0.61 0.58 0.60 0.61

R2 Power law 0.74 0.76 0.74 0.74

Clusters 308 394 263 359
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that term. Many high level terms, for instance metabolic process (GO:0008152), are 
too general to imply a realistic functional association [26, 44]. Assuming a functional 
link based on this term would add noise to the Gold Standard by linking many pro-
tein pairs which do not participate in the same cellular process. This problem may be 
overcome to some extent by ignoring the high-level terms [22, 45]. However, despite 
GO’s hierarchical nature, the level of a term in the DAG is not necessarily indicative 
of a term’s specificity [46, 47].

In addition, GO has a number of evidence types with some GO annotations con-
sidered more reliable than others [48]. Annotations with the IEA (inferred from elec-
tronic annotation) evidence code are considered the least reliable since they are not 
manually-curated. While the remaining GO annotations are manually-curated, the 

Fig. 7  ssNet evaluation. The functional prediction performance of ssNet, BioSystems and Gene 
Ontology-scored networks as measured by area under curve of AUC of receiver operator characteristic 
(ROC) plots. The error of the AUC was calculated using the standard error of the Wilcoxon statistic SE(W): not 
statistically significant (NSS); statistically significant (SS). A. BioSystems-derived (MP_GS) Gold Standard. Of 298 
Gene Ontology biological processes, 325 had improved prediction using the ssNet network, and 73 using the 
MP_GS network. Of these changes 127 were statistically significant with 124 (98%) improved using LTP_GS. 
B. Gene ontology biological process terms annotating <10% of the genome (BP10_GS) Gold Standard. Of 
398 Gene Ontology biological processes, 128 had improved prediction using the LTP_GS network, compared 
to 270 using BP10_GS. Of the changes just 20 were significant with 2 (10%) improved using LTP_GS. C. Gene 
ontology biological process terms annotating annotation <100 genes (BP100_GS) Gold Standard. Of 398 
Gene Ontology biological processes, 102 had improved prediction using the LTP_GS network, compared to 
296 using BP100_GS. Of the changes only 2 were significant, both of which were improved using BP100_GS
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different evidence types are also thought to differ in their accuracy. In particular, com-
putational evidence codes are generally considered to be less accurate than the exper-
imental codes, and the codes ISS (inferred from sequence or structural similarity), 
IEP( inferred from expression pattern) and NAS (non-traceable author statement) 
are considered lower reliability than the other codes of this class [49]. Therefore, the 
choice of what data to include in a GO-based Gold Standard is highly complex and 
can affect the final network. In our study we chose two different thresholds based on 
annotation number which resulted in a similar number of proteins but vastly differ-
ent number of interactions in the Gold Standard datasets. While these may not be 
the optimal datasets derived from GO, it is clear from our results that ssNet produces 
comparable performance to a GO-derived Gold Standard.

Gold Standards from metabolic pathway databases are also commonly used [1, 19, 20]. 
However, finding a suitable up-to-date metabolic dataset, that has no redundancy with 
the data to be scored, is hard. Our 2012 study was able to use monthly updates of the 
KEGG dataset for comparison with monthly updates of BioGRID [8]. However, KEGG is 
no longer freely-available and, while BioSystems represents a comprehensive collection 
of metabolic pathways that includes KEGG, it has not been updated since 2017.

Fig. 8  The D-value integration parameter. A Area under curve (AUC) of receiver operator characteristic plots 
for 298 Gene Ontology biological processes at different D-values. B Variation of AUC for 298 Gene Ontology 
biological processes at different D-values. Eight individual processes are highlighted as exemplars
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While it was not possible to find an ideal metabolic Gold Standard for comparison, 
it is clear from our results that using a dataset with a different focus than the data to 
be scored, in this case primary metabolic interactions versus experimental interactions, 
can result in loss of data. Notably, the four LTP yeast data types that did not score using 
BioSystems (Fig. 6 B)—Positive Genetic, Protein-RNA, Synthetic Haploinsufficiency and 
Affinity Capture-RNA—were genetic/RNA data types. Similarly, many of the HTP data-
sets lost due to not scoring against BioSystems (Fig. 3) were genetic interaction types. 
Of those lost that were physical interaction data, the vast majority had a non-metabolic 
focus and four were large-scale >2000 interaction datasets [50–53].

If a network study’s focus is non-metabolic, then a metabolic Gold Standard may not 
be suitable as relevant datasets may be lost. There were far fewer datasets with no score 
using ssNET and so fewer potentially-relevant datasets were discarded. Scoring and inte-
gration from a single data source in this way gives a far more complete network without 
bias towards specific data types. Importantly, since the data can be spilt into individual 
source studies, this method also ensures no redundancy between data and Gold Stand-
ard, which may bias the network.

A metabolic-focused Gold Standard may be desirable if metabolic pathways are the 
area of interest for downstream analyses, and this is reflected in some of the individ-
ual dataset scores. Several datasets scored higher using the metabolic Gold Standard 
[54–56]. However these were relatively small changes, and while some biological process 
terms also had better prediction using BioSystems, ssNet had comparable performance 
for all, in addition to the advantages of the computational ease of using a single source. 
Furthermore, since key external Gold Standards, such as BioSystems, are no longer 
being maintained, at some point they will no longer be sufficiently up-to-date for use as 
a Gold Standard.

The single source method also overcomes any need for potentially error prone identi-
fier mapping [25]. Identifier mapping required significant effort during creation of our 
BioSystems scored networks; although mapping tools were used, some redundancy of 
identifiers remained that needed time-consuming manual curation. In this case we only 
counted entrez IDs that could be mapped to gene symbols, however, it should be noted 
that there were approximately 300 proteins and 1000 interactions that were in the Bio-
Systems dataset and could not be mapped, the majority of which did not overlap with 
V186 BioGRID data when manually checked. Therefore if ID mapping could have been 
fully achieved, it would not have improved scoring results. This discrepancy is reflected 
in the lack of overlap between BioSystems and our source network data.

Yeast remains by far the most complete interaction dataset with data covering almost 
all of its ~6600 genes7 [57]. Data coverage in yeast has levelled off since our initial study 
[8], in particular the fluctuations in protein coverage seen prior to 2010 are no longer 
observed, reflecting BioGRID’s efforts to improve and standardise curation methods [9, 
58]. Although the overlap in terms of interactions between HTP and LTP data remains 
relatively low, it still provides enough overlap to allow scoring. While several datasets 
scored infinity against the BioSystems and GO-derived Gold Standards, very few did so 

7  79% verified; https://​www.​yeast​genome.​org/​genom​esnap​shot on 15th July 2020.

https://www.yeastgenome.org/genomesnapshot
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using the LTP data. Infinity scores are hard to deal with since they must be assigned 
an arbitrary high score (see "Methods"). However, this is not ideal as demonstrated by 
the scores of the nine datasets in Fig. 3, which have a range of scores using LTP data. 
By reducing or removing entirely both zero and infinity scores, an LTP-derived Gold 
Standard produces more accurate scoring and better coverage of the data. Moreover, as 
network-based analyses move beyond model organisms to non-models [59], which often 
lack traditional Gold Standard data, an LTP-derived dataset provides the means to inter-
grate PFINs in more diverse species.

The main disadvantage of many PFINs is that the data considered highest quality 
is used in scoring and not included in the final network [1, 22]. We used an iterative 
method to score the LTP data by type, before integration with the HTP datasets. While 
the LTP scores were generally higher than HTP (Fig.  5A), they are in an overlapping 
range indicating a difference in quality between the data types, and that they can be inte-
grated without introducing significant bias towards the LTP data.

Interestingly, the functional prediction performance of the ssNet networks did not 
differ from that of the HTP-only networks to any great extent. However, assessing and 
comparing networks is not straightforward. Here, we measured the quality of networks 
by prediction of known annotations to produce a numeric measure of network perfor-
mance for each biological process. While the network performance at functional pre-
diction was similar, PFIN analyses are often performed in an exploratory manner. The 
increased connectivity provided by inclusion of the LTP data is likely to be beneficial 
for other network-based analysis, for instance in clustering and subnetwork analysis 
[60–62].

We chose thresholds based on our previous studies in yeast [8, 19] but it is possible 
that different values will be more appropriate in other species, in particular the LTP 
threshold of 100 interactions. There are also other ways to split the data than by Pub-
Med ID; some studies contain both HTP and LTP data and/or more than one data type. 
For instance large-scale HTP screens may also include LTP confirmation of some inter-
actions [63] and studies may combine different data types [64]. However, the focus of 
many studies is in itself something that can be harnessed during integration [19], and we 
believe keeping each study as a single dataset and assessing it as a whole is preferable. 
Importantly, due to BioGRIDs standardised format other data sources, including unpub-
lished data, can easily be added to the integration as described on the ssNET repository8.

While the ssNET integration method could be applied using any quality scoring met-
ric, we chose that of Lee and colleagues [1] since it has been used extensively in multiple 
species [22, 65–71]. A D-value of 1.0 was used in our yeast network during integration 
(see "Methods", Equation  2), which produces a sum of the dataset confidence scores. 
Higher D-values increase the contribution of highest quality datasets to the network, 
and the optimal D-value is dependent on the area of biology being studied. Producing 
networks and evaluations at all possible values would produce a vast amount of data, 
and is future work for further study in yeast and other species. However, we have pro-
vided networks, dataset scores and AUCs at multiple D-values (Fig. 8), in order to allow 

8  https://​github.​com/​kj-​intbio/​ssnet/.

https://github.com/kj-intbio/ssnet/
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selection of the most appropriate data, method and parameters depending on area of 
study.

Conclusions
The ssNet method provides a computationally amenable one-step PFIN integration 
method for functional interaction data which has a number of benefits:

•	 PFINs are generated from a single data source without using an external Gold Stand-
ard.

•	 The ssNet PFINs are of a quality that is comparable to that of the external Gold 
Standard PFINs, and exceeds it by some metrics.

•	 The ssNet PFINs incorporate more information from the data source into the final 
network than the Gold Standard PFINs, increasing over-all network coverage.

•	 Integration is easier and faster, overcoming the challenges of data redundancy, Gold 
Standard bias and ID mapping.

•	 The highest quality Gold Standard data can be consistently integrated into the net-
work adding to its quality.
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