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Background
Narrow-sense heritability ( h2 ) quantifies the relative importance of additive genetic vari-
ance for a trait. Genetic correlation ( ρG ) reflects the shared genetic architecture between 
two traits. Genomic-relatedness-based restricted maximum likelihood (GREML) esti-
mation [1–4] is widely used to estimate h2 and ρG using genome-wide single-nucleotide 
polymorphism (SNP) data for unrelated individuals [5]. As the heritability captured by 
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SNPs provides a reasonable lower bound for h2 [6, 7], the former is often referred to as 
SNP-based heritability and denoted by h2SNP [8].

We recently developed MGREML, a computationally and statistically efficient 
approach for multivariate GREML [9]. Importantly, MGREML resolves inconsistencies 
when combining bivariate estimates into a multivariate ρG matrix. By default, MGREML 
assumes the ρG matrix is shaped by a so-called saturated model [10], which can fit any 
conceivable proper correlation matrix.

Here, we derive an extension of the statistical framework of MGREML (1) to estimate 
user-specified genetic and environmental factor models (e.g., a model with just one 
genetic factor for all traits) and (2) to test whether the given factor model fits the data 
better than a nested model (also user-specified).

Whereas Genomic SEM [11], another method to estimate genetic factor models, relies 
on preexisting summary statistics from large-scale genome-wide association studies 
(GWAS) for all traits of interest, MGREML uses individual-level data, giving users (1) 
more statistical power for a fixed sample size [9] and (2) more direct control over model 
specification and estimation (e.g., being able to control for an additional covariate in the 
MGREML analysis itself, rather than having to obtain a new set of GWAS results).

In short, we enable MGREML to estimate genetic and environmental factor structures 
using individual-level data, and to test whether a given factor structure fits the data bet-
ter than a nested model. We validate this approach using simulations and an empirical 
application.

Implementation
Model

Consider a set of N unrelated individuals for whom we observe T traits, k covariates, and 
M SNPs. Let X denote the N × k matrix of covariates, G the N ×M matrix of standard-
ized SNPs, and Y the N × T  matrix of traits, for which column t corresponds to Trait t 
and is denoted by yt . Furthermore, let St denote a binary Kt × k matrix indicating which 
of the k covariates in X apply to Trait t. Now, the matrix of covariates for Trait t can be 
defined as Xt = XS⊤t .

When applying univariate GREML as implemented in GCTA [1] to Trait t, the fol-
lowing linear mixed model (LMM) is estimated using restricted maximum likelihood 
(REML) [12]:

In this model, βt is the Kt × 1 vector of fixed effects of the covariates that apply to Trait 
t and the N × N  matrix A is the so-called genomic-relatedness matrix (GRM) reflecting 
the subtle genetic similarities between unrelated individuals.

Typically, the GRM is calculated as A = M−1GG⊤ using tools such as GCTA or 
PLINK [1, 13]. Calculation of the GRM requires O(N 2M) time. However, as this calcula-
tion can be massively parallelized, it places little practical limitation on either N or M.

By giving standardized SNPs the same weight, the preceding definition of the GRM 
makes tacit assumptions about the relationship between allele frequency and linkage 
disequilibrium on the one hand and SNP effect sizes on the other. Other tools, such 
as LDAK [14], can be used to construct a GRM that assigns different weights to the 

yt ∼ N Xtβt ,AσGtt + IσEtt .
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SNPs, thereby incorporating different assumptions about SNP effect sizes. Importantly, 
MGREML can use any valid GRM in binary format as input, irrespective of its precise 
definition and irrespective of whether it is calculated using PLINK, GCTA, or LDAK.

The parameters of interest in the univariate model are σGtt and σEtt , where σGtt denotes 
the additive genetic variance of Trait t captured by the available SNPs and σEtt the 
remaining variance in Trait t. The latter quantity is sometimes referred to as the environ-
mental variance, even though this name can be somewhat misguiding, since σEtt simply 
reflects all variance in Trait t that is not tagged by the additive linear effects of the avail-
able SNPs and covariates [6]. In spite of the subtleties in its definition, we stick to the 
convention of calling this term the environmental variance.

In this model, h2SNP of Trait t can be defined as h2SNP(t) = σGtt

(
σGtt + σEtt

)−1 . In 
essence, univariate GREML quantifies the degree to which genetic similarity between 
individuals, as tagged by the SNPs used to construct the GRM, maps to trait similarity.

Notice here that REML does not estimate βt directly. Instead, REML controls for the 
fixed-effect covariates by considering so-called error contrasts [15, 16]. More specifi-
cally, REML estimation is equivalent to maximum-likelihood estimation applied to Ktyt , 
where the rows of matrix Kt form a basis of the left null space of Xt . However, once 
REML estimates of σGtt and σEtt are obtained, one can readily calculate the generalized 
least squares estimator of the fixed effects βt [1, 9]. This option is implemented in both 
GCTA and MGREML.

The univariate LMM can be generalized to a multivariate LMM [17, 18], which can be 
used to jointly estimate genetic covariance and environmental covariance between Traits 
t = 1, . . . ,T  and s = 1, . . . ,T  , denoted by σGts and σEts respectively. Using the same nota-
tion as seen in the original derivations of MGREML [9], this multivariate LMM can be 
written as follows:

where ‘ ⊗ ’ denotes the Kronecker product. In this model, VG is the T × T  genetic vari-
ance matrix and VE the T × T  environmental variance matrix. Now, the genetic correla-
tion between Traits t and s is defined as ρG(t, s) = σGts

(
σGttσGss

)−0.5 [2], where σGts is 
element t, s from VG.

Computational complexity

The variance matrix of the multivariate model (i.e., VG ⊗ A + VE ⊗ IN ) is dense, ren-
dering naïve REML estimation infeasible for large N and T, as mere evaluation of the 
log-likelihood function already requires O(N 3T 3) time. However, the time complexity 
can be drastically reduced by transforming the data using the eigenvalue decomposition 
(EVD) of the GRM [4, 9].

Let Q�Q⊤ denote the EVD of A . Here, Q denotes the matrix of eigenvectors and � 
the diagonal matrix of eigenvalues. MGREML defines matrix P as the n = N − L col-
umns from Q that correspond to the eigenvalues that are not among the L largest, and D 
as the diagonal matrix with corresponding eigenvalues, d1, . . . , dn.




y1
...
yT



 ∼ N








X1 0

. . .

0 XT








β1
...

βT



,VG ⊗ A + VE ⊗ IN



,
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Using this matrix P , MGREML transforms the data, and then reorders it such that 
(i) the variance matrix is block diagonal, enabling significant computational improve-
ments, and (ii) the contribution of the L leading principal components from the 
genetic data to the variance matrix are eliminated, thus, correcting for population 
stratification [19] without introducing any additional fixed-effect covariates [9]. By 
default L = 20 , causing MGREML to control for even quite subtle population strati-
fication. Users can specify a different value for L using the ––adjust-pcs option.

More specifically, the following model holds for Tn× 1 vector y = vec(Y⊤P) (where 
vec() denotes the vectorization operator):

where Z = (Z⊤
1 · · · Z⊤

n )
⊤ , Zj =

(
IT ⊗ x⊤j

)
S⊤ , x⊤j  is 1× k row j from P⊤X , and

Omitting the constant, the corresponding log-likelihood function is given by

where M = V−1 − V−1Z
(
Z⊤V−1Z

)−1
Z⊤V−1 [1]. This log-likelihood function depends 

on log|V| and quadratic forms of the type q = w⊤V−1w . Importantly, V is a highly 
sparse, block-diagonal matrix, where diagonal block j equals Vj = djVG + VE , with VG 
and VE being functions of the parameter vector θ.

As a result of this block-diagonal structure, these quadratic forms and log-determi-
nants can be written as a sum of n independent contributions, where each contribu-
tion comes from a T × T  block. MGREML can calculate the contribution of any given 
block in O(T 2) time. Concordantly, the log-likelihood function can be evaluated in 
O(NT 2) time. Similarly, the gradient (i.e., the vector of partial derivatives of the log-
likelihood function with respect to θ ) can also be calculated in O(NT 2) time.

MGREML retains its computational efficiency in case there are a limited number of 
fixed effects covariates. However, if the number of covariates grows large, MGREML 
will get slower. Nevertheless, as MGREML controls for population stratification with-
out having to introduce any fixed effects for that purpose, a limited number of fixed-
effect covariates suffices in a typical empirical application.

The average information (AI) algorithm, a variation on Newton’s method [1, 20], is 
ill-suited for MGREML estimation for large T, since that algorithm involves repeated 
calculation of the AI matrix, which requires O(NT 4) time per iteration for a saturated 
model [9]. Specifically, a saturated model has T (T − 1) free parameters. Thus, the AI 
matrix has T (T − 1)× T (T − 1) elements, where each element involves a calculation 
requiring O(N) time, placing overall complexity at O(NT 4).

To avoid having to calculate the AI matrix in every iteration, MGREML instead uses 
a Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [21] in combination with a 
golden-section line search to estimate θ . Importantly, a BFGS iteration has roughly 

y ∼ N (Zβ ,V)withV = D⊗ VG + In ⊗ VE,

S =




S1 0

. . .

0 ST



.

ℓ
(
y, θ

)
= −

1

2

(
log|V| + log

∣∣∣Z⊤V−1Z
∣∣∣+ y⊤My

)
,
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the same computational complexity as a gradient-descent iteration yet a higher rate of 
convergence across iterations. Thus, a BFGS algorithm balances computational com-
plexity per iteration and rate of convergence across iterations.

The BFGS algorithm is initialized such that the first iteration is equivalent to a gradient-
descent iteration with golden-section search. Evaluations of the log-likelihood function and 
its gradient suffice for application of the golden-section search and BFGS algorithm, put-
ting the overall time complexity of MGREML at O(NT 2) per iteration.

For large T, the BFGS algorithm can exhibit unstable behavior, in which case relevant 
quantities are reinitialized such that first next BFGS iteration is again equivalent to a gradi-
ent-descent iteration with golden-section search. If instability persists, MGREML switches 
to the AI algorithm for a single iteration. In our experience, such expensive ‘interventions’ 
are needed only sparingly and are effective in resolving numerical instabilities in MGREML 
estimation.

Once MGREML has converged, the variance matrix of θ̂  is estimated using the AI matrix 
[20]. In addition, a delta method is used to obtain the standard error (SE) of h2SNP and ρG 
estimates. Although calculation of the AI matrix, as indicated, is expensive, this calculation 
only needs to be carried out once. Moreover, MGREML users can specify the ––no-se 
option to forgo calculation of the AI matrix and SEs altogether after convergence of the 
BFGS algorithm.

Factor structures

By default, MGREML assumes a saturated model for both VG and VE . An example of such 
a saturated model for T = 3 traits is shown in Fig. 1. Letting γtf  (resp. εtf  ) denote the effect 
of genetic (environmental) Factor f on Trait t, the saturated model for T = 3 traits can be 
written as follows:

For T traits in general, a saturated model for VG (resp. VE ) can be described in terms 
of a lower triangular matrix of free genetic (environmental) coefficients CG ( CE ) where 
VG = CGC

⊤
G ( VE = CEC

⊤
E ).

VG = CGC
⊤
G and VE = CEC

⊤
E , where

CG =




γ11 0 0
γ21 γ22 0
γ31 γ32 γ33



 and CE =




ε11 0 0
ε21 ε22 0
ε31 ε32 ε33



.

Y1 Y2 Y3

G1 G2 G3

E1 E2 E3

Fig. 1  A saturated genetic and environmental factor model for three traits
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Here, we generalize this approach by allowing CG (resp. CE ) to be a T × FG ( T × FE ) 
matrix of which a pre-defined subset of the TFG ( TFE ) elements are free, while the other 
elements are constrained to zero, reflecting an arbitrary factor model with FG ( FE ) 
genetic (environmental) factors. Both factor models need to satisfy standard identifi-
cation requirements in structural equation modeling [22]. Under this framework, the 
implied genetic (resp. environmental) variance matrix VG ( VE ) is always at least posi-
tive (semi)-definite. In other words, provided the user-specified model is identified, 
MGREML always yields valid correlation matrices.

MGREML users can specify a main model, comprising a genetic factor model and an 
environmental factor model. In case a user also specifies a nested model, MGREML per-
forms a classical likelihood-ratio test (LRT) [23], to infer whether the fit of the main fac-
tor model is significantly better than that of the nested model.

In total, users can specify at most four factor models: (1A) the main genetic factor 
model, (1B) the main environmental factor model, (2A) the nested genetic factor model, 
and (2B) the nested environmental factor model. For example, a user can specify a main 
genetic factor model where there is only one genetic factor for all traits and a nested 
genetic factor model, where the traits have no genetic variance at all (i.e., there is no 
genetic factor), while the environmental factor model is saturated both in the main 
model as well as the nested model.

A factor model specification for MGREML is effectively a binary T × F  matrix stored 
as a plain text file, where F denotes the number of factors. More specifically, in a given 
model, for f = 1, . . . , F  and t = 1, . . . ,T  , if Factor f has a free path coefficient to Trait t, 
element t, f of the binary matrix equals one and otherwise that element equals zero.

Let CGA (resp. CEA ) denote the number of free coefficients in the main genetic (environ-
mental) factor model and let CG0 (resp. CE0 ) be defined analogously for the nested model. 
Finally, let ℓA (resp. ℓ0 ) denote the log-likelihood of the main (nested) model. Now, the 
LRT statistic is calculated by MGREML as LRT = 2(ℓA − ℓ0) , which under standard 
maximum likelihood estimation (MLE) assumptions [24] and nestedness of the models 
is χ2

(
(CGA + CEA)− (CG0 + CE0)

)
 distributed.

An example of a genetic factor model that MGREML users can specify is shown in 
Table  1. The corresponding structural equation model for VG which MGREML fits 
under that specification is shown in Fig. 2. The environmental factors shaping VE are not 

Table 1  Specification of a genetic factor model for height and body mass index (BMI) observed at 
five different points in time (denoted by subscripts indicating waves 7, 8, ..., 11)

Trait Gheight GBMI Gshared

height7 1 0 1

height8 1 0 1

height9 1 0 1

height10 1 0 1

height11 1 0 1

BMI7 0 1 1

BMI8 0 1 1

BMI9 0 1 1

BMI10 0 1 1

BMI11 0 1 1
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shown here, for clarity of the figure. We use this genetic factor model in our empirical 
application. In this example, the first genetic factor captures the genetic signal shared 
between all height measurements, the second genetic factor captures the genetic signal 
shared between all measurements of body mass index (BMI), and the third factor cap-
tures the genetic overlap between height and BMI (i.e., the genetic correlation).

Results
Simulation study

To test the validity of MGREML estimates of genetic correlations and underlying fac-
tor structures, we generated 100 independent datasets with N = 20, 000 individuals and 
T = 10 traits with SNP-based h2 = 50% . In Simulation 1, we set ρG to the same value 
across all combinations of traits. In Simulation 2, we simulate two clusters of five traits 
by setting ρG to random values within clusters and to zero between clusters. In Simu-
lation 3, we consider one additional dataset with N = 20, 000 individuals and T = 50 
traits with SNP-based h2 = 50% and ρG = 0 . The simulation design is fully described in 
the Supplementary Information [see Additional File 1].

As MGREML estimation is a specific form of MLE, we expect MGREML to yield con-
sistent estimates of the population parameters, provided standard MLE assumptions 
hold [24]. That is, as N increases, each parameter estimate converges to the true value. 
The results of Simulation 1 support the claim that MGREML yields consistent estimates 
of h2SNP and ρG across the full range of feasible values for ρG [see Additional File 1: Tables 
S1–S4]. The SEs of estimates also align with the standard deviations of estimates across 
the generated datasets. Estimates have lower SEs when interdependence across traits is 
higher (i.e., higher |ρG|).

The results of Simulation 2 show that MGREML also yields consistent estimates when 
the degrees of freedom in the model is larger than necessary [see Additional File 1: 
Table S5]. Estimates closely reflect the implied factor structure, as illustrated in Fig. 3 
which shows MGREML estimation results for the first dataset. When comparing the 
fit of the appropriate factor model and the saturated model using an LRT, we find that 

height7 height8 height9 height10 height11 BMI7 BMI8 BMI9 BMI10 BMI11

Gheight GBMI

Gshared

Fig. 2  A genetic factor model for height and body mass index (BMI) observed at five different points in time 
(denoted by subscripts indicating waves 7, 8, ..., 11)
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resulting p-values closely follow the correct theoretical distribution [see Additional File 
1: Figure S1].

The results of Simulation 3 show that MGREML can readily estimate and compare 
factor models for T = 50 traits observed in N = 20, 000 individuals, involving 50 fixed 
effects and including calculation of SEs, on a single notebook with two 2.7 GHz cores 
and 16 GB of RAM in less than one hour. In addition, on more powerful machines, 
MGREML estimation can handle at least up until T = 200 traits and N = 20, 000 indi-
viduals [9].

Empirical application

To illustrate the ability of MGREML to estimate a factor model and test whether it fits 
the data better than a nested model, we use data on N = 6, 425 unrelated individuals 
from the US Health and Retirement Study (HRS) [25], for whom we analyze repeated 
measures of height and BMI in five consecutive waves of data collection (Waves 7–11). 
The HRS is a longitudinal panel study that surveys a representative sample of approxi-
mately 20,000 individuals aged 51 years and older (and their spouses) in the United 
States. Further details (e.g., quality control filters and descriptive statistics) are provided 
in the Supplementary Information [see Additional File 1].

As a baseline model, we start by assuming height and BMI both have no genetic vari-
ance (Model I). Given that previous h2SNP estimates for height and BMI are considerably 
greater than zero [26, 27] (e.g., ĥ2SNP(height) = 43% with SE = 2% and ĥ2SNP(BMI) = 21% 
with SE = 2% [28]), we also consider an alternative model with one genetic factor for the 
height observations and one genetic factor for the BMI observations (Model II), which 
corresponds to the first two columns of the factor model shown in Table 1 labeled Gheight 
and GBMI.

Fig. 3  Typical MGREML estimate of a genetic correlation ( ρG ) matrix in Simulation 2. True genetic correlations 
( ρG’s) are shown above the diagonal. Estimated ρG ’s (standard error between parentheses) are shown below 
the diagonal
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Although we expect Model II to have a far better fit than Model I, Model II still assumes 
there is no genetic correlation between height and BMI. Yet, there is ample evidence that 
height and BMI are genetically correlated traits [9, 29] (e.g., ρ̂G(height, BMI) = −0.14 with 
SE = 0.04 [9]). Therefore, we also consider a third model in which we introduce a shared 
genetic factor that affects both the height and BMI observations (Model III), accounting 
for the genetic overlap between these two traits. Model III corresponds to the factor model 
shown in Table 1 (where the shared factor is labeled Gshared ) and equivalently in Fig. 2. In all 
three models, we assume a saturated environmental factor model.

With the HRS surveying a representative sample of individuals aged 51 years and older 
(and their spouses), it seems unlikely that the unique and the shared genetic architec-
ture of height and BMI will drastically change for individuals in our analysis sample 
between the biennial waves of data collection. Therefore, we a priori believe Model III to 
be most suitable for the data. That is, we expect this to be the most parsimonious model 
that is able to capture both the unique and the shared genetic component of height and 
BMI across waves. At the same time, taking aforementioned estimates of h2SNP and ρG 
for height and BMI at face value, and using the online GCTA-GREML power calcula-
tor [30], we find that the statistical power to detect ρG(height, BMI)  = 0 in this sample 
is only 21.8%. Hence, Model II might not be rejected in favor of Model III simply due to 
lack of statistical power. Details of this power calculation are described in the Supple-
mentary Information [see Additional File 1].

In the application to data on repeated measures of height and BMI, we first compare 
the fit of Model I and Model II. We find that Model II, as expected, fits the data bet-
ter than Model I (LRT=72.03, degrees of freedom=10, p-value=1.79× 10−11 ). Thus, 
the null model of no genetic variance is rejected in favor of a model in which (1) height 
has genetic variance, (2) BMI has genetic variance, yet (3) height and BMI have no 
genetic correlation. When we compare the fit of Model II and Model III, we do not find 
an improvement in fit (LRT=11.11, degrees of freedom=10, p-value=0.349). Thus, the 
model without genetic correlation between height and BMI is not rejected in favor of a 
model with genetic overlap, in line with our power calculation.

Conclusion
Accurate estimates of genetic correlations and genetic factor structures across multiple 
traits help to understand their shared etiology and aid in finding likely causal relation-
ships [29, 31]. As such, estimation and inference based on genetic and environmental 
factor models may contribute to the design of future genetic and functional studies.

Here, we derived a statistical framework (1) to model and estimate such factor models 
using individual-level SNP data and (2) to test hypotheses regarding these factor models. 
Using simulations and an empirical application, we confirmed the validity of this statisti-
cal framework.

This framework is implemented in our freely available command-line tool MGREML, 
which has simple input options for this purpose. MGREML accepts user-specified 
genetic and environmental factor models as input, and performs estimation and infer-
ence based thereon. Even on a single machine, this tool can readily be applied to data on 
20,000 individuals and 50 traits.
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