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Abstract 

Background: Biological data suffers from noise that is inherent in the measurements. 
This is particularly true for time-series gene expression measurements. Nevertheless, 
in order to to explore cellular dynamics, scientists employ such noisy measurements 
in predictive and clustering tools. However, noisy data can not only obscure the genes 
temporal patterns, but applying predictive and clustering tools on noisy data may yield 
inconsistent, and potentially incorrect, results.

Results: To reduce the noise of short-term (< 48 h) time-series expression data, we 
relied on the three basic temporal patterns of gene expression: waves, impulses and 
sustained responses. We constrained the estimation of the true signals to these pat-
terns by estimating the parameters of first and second-order Fourier functions and 
using the nonlinear least-squares trust-region optimization technique. Our approach 
lowered the noise in at least 85% of synthetic time-series expression data, significantly 
more than the spline method ( p < 10

−6 ). When the data contained a higher signal-to-
noise ratio, our method allowed downstream network component analyses to calcu-
late consistent and accurate predictions, particularly when the noise variance was high. 
Conversely, these tools led to erroneous results from untreated noisy data. Our results 
suggest that at least 5–7 time points are required to efficiently de-noise logarithmic 
scaled time-series expression data. Investing in sampling additional time points pro-
vides little benefit to clustering and prediction accuracy.

Conclusions: Our constrained Fourier de-noising method helps to cluster noisy gene 
expression and interpret dynamic gene networks more accurately. The benefit of noise 
reduction is large and can constitute the difference between a successful application 
and a failing one.
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Introduction
Any biological data we collect is corrupted to some extent by noise. Most scientists 
address this by using a variety of methods, all of which aim to reduce the noise in 
the signal and to increase the useful information stored in it. In molecular biology, 
reducing the noise of gene expression data requires the removal of some undesired 
elements that degrade the useful information stored in the measurements.

Time-series expression data has become important to the study of cellular network 
responses because the data contains both the gene expression levels and timings [1]. 
This data is also used with various techniques, such as gene clustering, principal com-
ponent analysis (PCA), and network component analysis (NCA), all of which facilitate 
network decryption by analyzing the temporal gene expression patterns. But time-
series expression data also contains noise, as each successive sample is subjected to 
variations in the cell culture/tissue, to genetic diversity, to different phases and ampli-
tudes in the intracellular processes we are trying to study, and varying regulatory 
networks [1–3]. The problem of noise intensifies when we attempt to analyze time-
series expression data. Due to restricted resources, we usually acquire only a limited 
number of time-variant samples. With few samples the noise can partially, or even 
completely, obscure the real signals. Thus, we run the risk of inferring wrong network 
dynamics from the fusion of noise and data. Nevertheless, noisy time-series data is 
often employed in clustering (e.g., k-means) and gene regulatory network analysis 
tools (e.g. NCA), without any form of a priori filtering, although these tools are noise-
sensitive [4–7].

Several authors in the past decade proposed solutions to reduce the noise of time-series 
data. References [8–10] first assign genes to different classes (using either previous knowl-
edge or clustering methods), then use cubic splines to model time-series data of one class 
with allowance for gene specific parameters. However, this method does not incorporate 
information about the temporal shape of the gene, and needs to estimate at least 5 param-
eters [11]. Huang and Sanguinetti [12] proposed the DICEseq, that explicitly models the 
correlations between different RNA-seq experiments, and transfers information between 
samples through a Gaussian process. It can enable an effective trade-off between sequenc-
ing depth (to improve the accuracy of each sample) and time points. Sloutsky et  al. [4] 
relies on multiple measurement replicates, an expensive and resource-consuming pro-
cedure. They also proposed to use array data from similar cell lines (but different experi-
ments) for clustering purposes, but this procedure introduces noise originating from other 
sources, such as genetic variation and different initial conditions. Zeisel et al. [13] proposed 
to reduce the number of replicates by introducing a noise model that detects differentially 
expressed genes (DEGs). Others suggested to incorporate robust noise models to array 
experiments [13, 14], but these models require normally distributed, independent noise 
among samples, conditions that are suitable for individual measurements but not always for 
time-series data. Many researchers attempted to reduce the noise for clustering purposes 
[7, 11, 15–17]. For instance, several authors explored Fourier expansion models combined 
with autocorrelation variance structures to increase the accuracy of gene clustering during 
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the cell cycle [7, 16, 17]. The authors assume known Fourier periods in the data [17] that are 
generally obscured. We previously showed [18] that unconstrained Fourier approximation 
can improve post-processing applications, but that model could also produce inadequate 
frequencies that caused overfitting.

More recently, different methods to reconstruct the original shape of the genes were 
presented. For instance, [19] developed a model for time-series data using linear mixed 
model splines. They also developed a corresponding R package lmms that can be used for 
both microarray and RNA-seq gene expression data. Another bioinformatic group [20] 
developed a statistical model for clustering time-series data, a model which combines a 
Dirichlet process model with a Gaussian process model (DPGP). More specifically, the 
Dirichlet process incorporates cluster number uncertainty, whereas the Gaussian process 
models time-series dependencies. The authors show that the DPGP algorithm could suc-
cessfully cluster noisy RNA-seq and microarray gene expression data. Other authors [21, 
22] used an impulse model to describe time-series gene expression data. More specifically, 
the R package ImpulseDE [21] can be used for any type of high-throughput gene expres-
sion data while ImpulseDE2 [22] was tailored for count data. A recent review paper [23] 
compares the performance of several recent algorithms including lmms and ImpulseDE2 
using synthetic and real RNA-seq data. In their comparison, ImpulseDE2 was overall the 
best performing tool.

The short-term temporal pattern of gene expression over a time scale of several hours 
appears to follow a few basic shapes, which we can exploit to reduce its noise [24, 25]: (1) 
short impulses represent genes that are up- or down-regulated for short time periods, (2) 
sustained responses yield a change in the transcript level of a gene for a long period, and 
(3) basic wave patterns of one or two peaks. Because we can accurately approximate any 
wave or impulse-like shape by Fourier series, we proposed a method that constrains the 
fit of each gene to a temporal pattern that belongs to one or a combination of these two 
basic patterns. We approximated the temporal data using an optimal least squares trust-
region method, a known optimization algorithm, and restricted the optimality search to 
frequencies that can construct these basic patterns. By doing so, we eliminated some of 
the noise in the data. We modeled noise in microarray data by a Gaussian model [13] and 
RNA sequencing (RNA-seq) data by negative binomial distribution [26, 27] (see In “Meth-
ods” section). We evaluated our algorithm using synthetically generated data with varying 
noise levels and showed that constrained Fourier approximation with single and second 
harmonics reconstructed 95% of the true signals accurately. We showed that downstream 
processing of our de-noised data becomes significantly more effective, including cluster-
ing and network analysis. Lastly, we demonstrated the efficiency of the noise reduction 
(NR) method on independent real datasets, each with two independent replicates. We 
showed that the downstream processing of our de-noised data with NCA yielded well cor-
related duplicates and produced results that are in accordance with current knowledge, 
in contrast to datasets with no noise treatment. Taken together, noise in time-series gene 
expression data must be reduced in order to exploit the full potential of genetic network 
analytical tools. We propose our constrained Fourier fit as a viable method to reduce the 
noise in gene expression data.
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Methods
Assumptions on the temporal patterns of genes

It was shown in several previous works that there are clear patterns of gene expres-
sion, both in response-to-stimulus experiments, developmental studies and cell cycle 
experiments. Bar-Joseph et  al. [1] show at least five families of clear temporal pat-
terns during several hours. This was later reinforced by the work of Yosef and Regev 
[25], showing similar temporal dynamics in gene expression, both in eukaryotes and 
prokaryotes. We therefore assume that short-term temporal patterns of gene expres-
sion follow a few basic shapes over a time scale of several hours (5–48 h) [9, 24, 25]: 
(1) short impulses represent genes that are up- or down-regulated for short peri-
ods, (2) sustained responses yield a change in the transcript level of a gene for a long 
period, and (3) basic wave patterns of one or two periods. Fourier transform with 
constraints on the frequency can approximate these patterns with high fidelity. This 
assumption is based on the fact that genes with cyclic behavior rarely have more than 
two periods during a short time span (up to 48 h [28]).

Assumptions on the noise

We assume that the noise of time-series gene expression data arises from [2, 29, 30] 
(1) the variability in biological samples taken from different tissues (in case of mam-
malian cells) or cultures (bacteria and yeasts), (2) the variability of cells in each tissue, 
(3) variations in processes and genes, such as varying phases and amplitude, differ-
ent responses to stimuli, feedback loops and networks, (4) that cells are not always 
arrested at the same time, (5) the handling of measurements, in which the samples 
are not obtained identically, and (6) some genes display a delay of more than 20 min 
between completing transcription and mRNA production [29]. Microarrays were par-
ticularly prone to measurement noise [13], but the RNA-seq techniques also suffer 
from noise inherited in biological samples [29]. The noise in microarray data was pre-
viously shown to be normally distributed (by Kolmogorov–Smirnov test) with both 
additive and intensity-dependent terms [13]. We therefore tested both proportional 
and additive random noise models in the following manner:

where yz are the measurements, z = 1, . . . ,m , vz are the corresponding real signals, c1(z) 
and c2(z) are normally distributed noise values with variance σ 2 and φ2 , respectively. 
This noise model accounts for noise that is proportional to the signal strength and an 
additive term, but does not account for phase shifts that may be present due to asyn-
chronous cells, mostly because we do not have information on phase shift in time-series 
experiments. We also tested additive noise (i.e. c1(z) = 0).

It was shown, that the variance of noisy RNA-seq data increases with the gene 
expression in a negative binomial distribution manner [26, 27]. We implemented this 
variance by approximating a negative binomial distribution for the RNAseq data with 
the following function:

(1)yz = vz[1 + c1(z)] + c2(z)
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with vz being the normalized real gene expression levels, κ1 , κ2 and ρ were estimated 
using the Matlab Fitting Toolbox from a negative binomial distribution [31]. Normaliza-
tion was conducted by dividing at each time sample, all the gene expression replicates by 
the library size at that time sample.

Fourier estimation with nonlinear least squares trust‑region

To fit the data points of each gene in an optimal manner, we use nonlinear least squares to 
estimate the parameters a0 , ai and bi for i = 1, 2, . . . n of a Fourier function of degree n,

where ω is the period of the signal, a0 is the constant term of the data and is associated 
with the i = 0 cosine term, and 1 ≤ n ≤ ∞ is the number of harmonics (order) in the 
series. x is the vector of parameters ω, ai, bi for i = 0, 1, . . . , n . Our objective is therefore 
to find the Fourier curve that minimizes the error between our data and the curve for 
each set of time-series expression. We stress that higher orders ( n ≥ 3 ) require estima-
tion of at least eight parameters (compared with five in spline methods) and may yield 
over-fitting for low number of samples (see In “ Discussion” section).

Let the observed expression values of the gene at time points t1, . . . , tm be y1, . . . , ym , 
where y has the form

where x ∈ R
n is the vector of parameters. We need to find the optimal parameter vector 

x∗ such that h best fits the data in the least squares sense

where r(x) are the residuals, so that x∗ is found by minimizing f(x).
In reality, our time-series expression data contains measurement error. We account for 

that by redefining f(x)

where τ = (τ1, . . . , τm) , and where r(x, τ ) , and e(τ ) are the m-vectors composed of 
rz(x, τ ) = h(x, τz) − yz and ez(τ ) = τz − tz , respectively. Here, we repeat the known 
trust-region method from optimization theory [32]. The gradient and the Hessian of f(x) 
are

(2)σ 2
z = ρ + κ1v

κ2
z

(3)h(x, t) = a0 +

n
∑

i=1

ai cos(2π it/ω) + bi sin(2π it/ω)

y = h(x, t)

(4)f (x) =

1

2

m
∑

z=1

[h(x, tz) − yz]
2

=

1

2
r(x)T r(x)

(5)f (x, τ ) =

1

2

m
∑

z=1

[(h(x, τz) − yz)
2
+ (τz − tz)

2
] =

1

2
[r(x, τ )T r(x, τ ) + e(τ )T e(τ )]

(6)g(x) = ∇f (x) = A(x)r(x)
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The idea is to adjust the Fourier coefficients in x such that f(x) decreases for each itera-
tion. At the iteration k, the step δ(x) is the solution to the system

for some µk ≥ 0.
Let δ(k) be the solution of the system. Then δ(k) solves the trust-region subproblem 

[32]:

with �k = �δ(k)
� , ωL

i  and ωu
i  are the lower and upper limit, respectively, on the Fourier 

frequencies. In the case of only one Fourier harmonic, i = 1 . The solution of δ(x) can be 
obtained by controlling the radius �k but the choice of this radius is not trivial. It should 
be large enough so convergence will be reasonably fast, but ensure that qk(δ) adequately 
approximates f(x). For this, we compare between the actual and predicted reduction by 
the following manner [32]:

and the quadratic model

If the step δ(k) is not acceptable, then we reduce �(k) to improve the accuracy and re-
compute the step δ(k) . The optimal nonlinear least squares approximation method that 
fits the curve to the time-series expression data can be summarized by the algorithm in 
the next section.

The algorithm

For every gene in the dataset, repeat the following conceptual algorithm:

(7)H(x) = ∇

2f (x)

(8)= A(x)A(x)T +

m
∑

z=1

rz(x)∇
2rz(x)

(9)(AkA
T
k + µk I)δ = −gk

(10)min qk(δ) = fk + gTk δ +

1

2
δTBkδ

(11)s.t. �δ� ≤�k

(12)ωL
i ≤ ωi ≤ ωu

i

(13)ared(δ(k)) = f (x(k)) − f (x(k)
+ δ(k))

(14)pred(δ(k)) = f (x(k)) − qk(δ
(k)) = −gTk δ(k)

−

1

2
δ(k)THkδ

(k)
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Several other improvements and strategies of the trust region are discussed in [32]. 
Unlike previous unconstrained Fourier approximations methods [18], and to comply 
with the assumptions on the temporal patterns of gene expression [9], we assume that 
the fitted function will consist of no more than two amplitudes (corresponding to wave) 
and at least 1/4 period (corresponding to sustained response). We therefore constrained 
the search of ωi in the iterative nonlinear least squares to the interval [0.25π/te, 4π/te] , 
where te is the time span of the experiments (hours). We used the optimization and 
curve fitting toolboxes in Matlab (Mathworks Inc., Massachusetts, U.S.A).

Synthetic data for comparison with other de‑noising methods

To evaluate our algorithm, we first compared the performance of the constrained Fourier 
estimation, to the performance of the common spline smoothing method on synthetic 
microarray data (normally distributed noise). For that, we analyzed the performance of 
algorithm 1–100 increasingly frequency ( ω ) values in Eqs. 3 and 12. For synthetic RNA-
seq data (negative binomially distributed noise), we compared the performance of the 
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constrained Fourier estimation to the R package ImpulseDE [21], another tool that was 
developed for both microarray and count data. ImpulseDE first groups genes into a lim-
ited number of clusters. Afterwards, an impulse model is fit to the mean expression pro-
file of each cluster which is then used as a starting point for fitting the impulse model to 
each single gene separately.

For the comparison, we calculated the discrepancy between the curves (Fourier vs. 
spline estimations and Fourier vs. ImpulseDE) by the sum of squared error (SSE) and the 
root mean squared error (RMSE). Our constrained Fourier estimation does not rely on 
SSE, it restricts the signals to certain frequencies and exits by the condition in Eqs. 13–
14. Because the true signals were known in the synthetic cases, we used the SSE for 
comparison.

Each experimental replicate provided a measurement matrix E of gene expression. We 
assume that replicates of real noisy data should produce similar principal components, 
must be clustered similarly, and should result in similar regulation patterns. For a simi-
larity of noisy genes (true signal is unknown) and the evaluation of post-processing, we 
used (1) correlation coefficient to evaluate whether genes can be grouped together [11], 
since the correlation consider the shape and phase of the genes, and not the amplitude. 
This measure is important because network component analysis is only accurate up to a 
scaling factor [33]. (2) Angle between vector subspaces provide a quantitative measure 
for asserting genome-wide similarities. Orthogonal angles when similarity is expected 
or claimed raise questions about the validity of the hypothesis under examination [34]. 
Generally, the angle between the subspaces of two experimental predictions provides a 
measure of the amount of new information that is introduced by the second experiment 
not associated with statistical errors of fluctuations [34]. Although obtained differently, 
the Pearson correlation and the angle between subspaces are closely related.

Synthetic data for downstream data processing

We created synthetic data to evaluate the performance of post-processing such as clus-
tering and network component analysis. In order to evaluate clustering performance, 
we first generated 6 non-correlated ( p < 0.2 ) signals with random frequencies between 
0.1π and 4π . We then applied the random noise of Eq. 1 to each signal (see Additional 
file 1: Fig. S2). It was shown that experimental design is important and the sampling fre-
quency has large implication on the true signal discovery [12]. To test the efficiency of 
noise reduction with increasing sampling frequency, we sampled the signals (1) linearly 
between 0 and 24 h and, (2) with a logarithmic scaled frequency, taken at 0, 1 min, 5 min, 
10 min, 20 min, 40 min, 1 h, 2 h, 4 h, 8 h, 12 h, 16 h, and 24 h. These sampling distribu-
tions are consistent with microarray and RNA-seq time-series experiments [28, 35, 36].

To measure the performance of the NCA, we first generated 1000 synthetic signals 
with random frequencies (between 0.1π and 4π , uniformly distributed) and with ran-
dom amplitude (normally distributed with mean zero and variance 0.5). We sampled 
these as described above. For each gene, we generated three replicas by introducing 
additive Gaussian noise. We also generated 100 random network topology matrices A0 
(with additive Gaussian noise). We then evaluated the ability of NCA to reconstruct the 
activity of the regulators P from the three E replicates by
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where Ŵ is the process noise. The full method is described in [33, 37, 38]. We hypoth-
esized that for any identical network topologies (matrix A), reconstruction of the regu-
lators (matrix P ∈ R

m×l , with m number of regulators and l number of time samples) 
should be identical up to a scaling factor (see [33]) for all the replicates. We used Pearson 
correlation for similarity measure.

To compare the performance of de-noising (smoothing) methods that first employ clus-
tering [2] to methods that estimate individual genes using Fourier optimization we pre-
sented, we used k-means++ clustering algorithm by matlab (Mathworks Inc.). It uses 
a two-phase iterative heuristic algorithm to find centroid seeds and to minimize the sum 
of the point-to-centroid distances. We randomly generated six clusters with low correla-
tion ( p < 0.4 ), and created at least 100 random signals for each cluster by adding white 
noise (mean zero, σ 2 > 0.1 ). We then compared the performance of two groups: (1) cluster 
the 600 signals to 6 groups with k-means, followed by denoising according to each clus-
ter’s mean (Additional file 1: Fig. S1, black arrows), with (2) de-noise individual genes with 
algorithm 1, and then cluster the treated signals with k-means into 6 groups (Additional 
file 1: Fig. S1, blue arrows). We evaluated the performance of the two approaches by (1) the 
discrepancy of mean shape at each cluster with the original cluster (see SSE below), and (2) 
mean correlation of the approximated signal to the true signal.

The k-means++ is a stochastic algorithm since it selects k random initial cluster centroid 
positions from all the signals. We therefore run Monte Carlo simulations ( n = 6000 ) and 
compared the error (SSE) of the raw data with the de-noised data by the following

with Si is the mean of all the noisy signals in a cluster i, and mi is the mean of the signals 
that were clustered by the k-means algorithm.

To calculate the accuracy of k-means clustering the real data, we used the silhouette 
measure, that indicates how similar a point is to points in its own cluster, when compared 
to points in other clusters. The silhouette value si for the i point is defined as

where ai is the average distance from the i point to the other points in the same cluster, 
and bi is the minimum average distance from the i point to points in a different cluster, 
minimized over clusters. The distance between each two points xj and yj is calculated by

where n is the number of points to consider. The values of the clustering accuracy and 
the centroid distances were averaged over the number of trials in our Monte Carlo 
simulations.

(15)E = AP + Ŵ

(16)SSE =

√

√

√

√

n
∑

i=1

(Si − mi)2

(17)si =

bi − ai

max(ai, bi)

(18)d =

n
∑

j=1

|xj − yj|
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All the significance tests were conducted with Welch’s two-sample t-tests for the sig-
nals ( n > 600 ) that were generated from a normal distribution. We tested the alternative 
hypothesis that the population means are not equal.

Testing the algorithm with real expression data

To test the algorithm with real expression data, we used a time-series RNA-seq data 
from the bacterium Listeria monocytogenes strain ScottA, induced with high pressure 
shock of 400 MPa during 8 min at 8 ◦ C. The data is available in the European Nucleo-
tide Archive (ENA) under accession code PRJEB34771 [39]. The data provides the gene 
expression level for 2953 differentially expressed genes (DEGs) of the ScottA strain with 
at least three replicates for each untreated/treated sample at 9 time points (0, 5, 10, 30, 
45 min, 1, 6, 24, and 48 h) post treatment.

Additionally, we used microarray data of mouse T cells treated with interleukin-2 (IL-
2) at 10 time points over a period of 0–24 h was downloaded from GEO database with 
accession number: GSE6085 [35]. The data was processed using limma package in R/
Bioconductor [40]. The expression values were averaged over replicate measurements. 
The DEGs were identified with fold change (FC) > 1.5 and adjusted p value < 0.05 at 
minimum two time points.

Results
Synthetic gene reconstruction

To compare between the Fourier and the spline approximations of the true signal, we 
generated a sequence of 100 noisy signals with variance σ 2

= φ2
= 0.5 and increasing 

frequency (see “Methods” section). Spline follows the noisy data and produces high cor-
relation, but does not reconstruct the true signal adequately (see Fig. 1A for two selected 
signals). In contrast, the constrained Fourier approximation was significantly more accu-
rate than spline (two sample t-test, p < 10−6 ), and managed to reconstruct the true 
signals accurately (RMSE < 0.1 ) for 80% of the frequencies we tested (Fig. 1B). In fact, 
Fourier fit with only one harmonic was superior to the other Fourier harmonics and the 
spline methods (Fig. 1C) for the signals and noise we tested. It was shown previously [18] 
that Fourier approximation of the data by two harmonics ( n = 2 ) yielded good results. In 
their results, the fit was unconstrained, not taking into account the intrinsic shape of the 
data (see “Methods” section). In fact, when we compared the reconstruction error of 
Fourier fits with several harmonics, we found that the first and second approximated the 
data accurately (85% of the trials, Fig. 1C). In contrast, the fourth and fifth harmonics 
failed to reconstruct the noisy data completely (Fig. 1C).

Fourier approximations with one or two harmonics accurately reconstructed the sig-
nals at low frequencies (we tested up to 4π , Fig.  1D), yielded low error (RMSE), but 
suffered from higher errors at frequencies higher than 3π . The constrained Fourier 
approximation yielded a better fit than the spline for almost all frequencies (Fig.  1D). 
The error (measured as ‖RMSE‖2 of all frequencies, see “Methods” section) of the con-
strained Fourier was two fold lower than the spline.
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We also studied and compared the performance of the two methods to increasing data 
noise (increased variance σ 2 and φ2 , see “Methods” section). We found that the approxi-
mations of both Fourier and spline tend to deteriorate as the variance increases, but the 
constrained Fourier consistently reconstructed the signals more accurately (Fig. 1E).

We also compared our constrained Fourier noise reduction method to a recent algo-
rithm ImpulseDE [21] using synthetic RNA-seq data. We found that both algorithms 
successfully created consistent clusters of genes from the noisy data (Additional file 1: 
Fig. S3). More importantly, as the noise level increased with the expression level, the 
constrained Fourier algorithm was significantly more consistent with better correla-
tion to the true signal and lower SSE (see also Table 1 and Additional file 1: Table S1). 
Interestingly, for the double top impulse expression shape (cluster 4 in Additional file 1: 
Fig. S3), the Fourier algorithm displayed low SSE ( 0.47 ± 0.06 ) and high mean correla-
tion ( ρ = 0.96 ± 0.01 ) whereas the ImpulseDE displayed poorer results (mean SSE = 
1.08 ± 0.04 and ρ = 0.65 ± 0.03 ). This was particularly more pronounced for “high 

Fig. 1 Constrained Fourier approximation fit the gene expression data accurately. A Two examples of 
true signals (dotted curve), noisy data (’*’), Fourier approximation (solid) and the spline approximation 
(red dashed) for frequencies of 4π (left) and π (right). Spline approximations follow the noise. B The root 
mean squared error (RMSE) is significantly (two-samples t-test, p < 10

−6 , n = 100 ) lower for the Fourier 
approximation than the spline. Furthermore, C 85% of the trials were accurately approximated (lowest RMSE) 
by Fourier with first and second harmonics. D Frequency analysis of the Fourier approximations: The error 
is low for frequencies < 3π , but increases with frequency. The spline approximation (red) is higher, with its 
mean (mean RMSE of all frequencies) significantly ( p < 10

−5 ) higher than the Fourier. A sustained stimulus, 
an impulse and a wave-like response with frequencies π/2 , 2π and 4π , respectively, are depicted above. E 
Deterioration of the noise reduction methods (expressed by the normalized sum of SSE) as the noise variance 
σ 2 of the gene expression measurements increases. Fourier algorithm performs better than its counterpart 
for all variances tested
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noise” time points (right columns of Table 1 and Additional file 1: Table S1) which dem-
onstrates that the Fourier performs particularly well when the noise in the data is high. 
This is also apparent in the low standard deviation resulted from the constrained Fourier 
of the 1000 synthetic genes (see right columns of Table 1).

Behavior of clustering and network prediction tools

We studied how our constrained Fourier method affects post processing of data. For 
this, we used random generated (synthetic) data to compare the performance of cluster-
ing and network component analysis (NCA, [33]) computed with noisy and treated data. 
These two post analysis tools are widely employed to study networks from expression 
data.

k‑means clustering

We tested and analyzed the accuracy of k-means clustering of raw data with de-noised 
data. The first analysis consisted of six selected, non-correlated ( r < 0.2 ) signals that 
are common in gene expression [1, 2, 9], i.e. sustainable response (Fig. 2A, B), impulse, 
double top impulse, inverse impulse and a wave. In the second analysis we randomly 
selected six composite signals (Fourier with one and two harmonics). In both analyses, 
we generated 100 signals for each of the clusters by adding white noise with variance 
σ 2 (see “Methods” section), and tested the ability of k-means algorithm to re-construct 
the original six clusters from the noisy and de-noised data. We found several important 
observations.

Not surprisingly, at low variance the overall clustering performance (in terms of SSE 
and correlation, see “Methods” section) with the de-noised data was similar to clus-
tering from raw signals (Fig. 2C, two sample t-test: p < 0.01 ). More important how-
ever, reconstruction of the six clusters from higher variance signals ( σ 2

= φ2
= 0.9 , 

Fig.  2D) showed that de-noised data performed better: The mean SSE for the 

Table 1 Comparison of mean correlation coefficients ρ between noisy gene profiles and de-noised 
gene profiles using ImulseDE or our constrained Fourier approximation

Standard deviation is shown in brackets.

All time points “High noise” time points

Noisy data ImpulseDE Constrained 
Fourier

Noisy data ImpulseDE Constrained 
Fourier

Cluster 1 0.97 0.99 0.99 0.68 0.82 0.91

(±0.02) (±0.02) (±0.01) (±0.22) (±0.22) (±0.18)

Cluster 2 0.94 0.98 0.99 0.73 0.90 0.97

(±0.04) (±0.02) (±0.02) (±0.17) (±0.13) (±0.08)

Cluster 3 0.97 0.99 1.00 0.80 0.95 0.99

(±0.03) (±0.01) (±0.00) (±0.16) (±0.05) (±0.01)

Cluster 4 0.97 0.65 0.96 0.79 0.32 0.90

(±0.03) (±0.03) (±0.01) (±0.19) (±0.13) (±0.05)

Cluster 5 0.93 0.98 0.99 0.58 0.82 0.91

(±0.04) (±0.02) (±0.01) (±0.19) (±0.12) (±0.08)

Cluster 6 0.98 0.99 0.95 0.92 0.96 0.98

(±0.02) (±0.01) (±0.00) (±0.10) (±0.05) (±0.03)
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de-noised data was significantly ( p < 0.01 ) lower than the mean SSE for the raw data. 
Correlation of the mean of the raw signals to the true clusters (depicted by solid lines 
in Fig. 2B) was particularly bad for the fourth cluster with two harmonics at higher 
variances. Additionally, large number of reconstructions (>100) from the raw-data 
resulted in a large SSE (>0.4), implying poor performance of k-clustering compared to 
the de-noised data.

This analysis of the correlation and the SSE error was consistent when we gradually 
increased the variance (Fig.  3). Correlation of the de-noised signals were consistently 
high, even as the variance increased (Fig. 3A). Similarly, the SSE of the de-noised signals 
were stable and low as the variance increased (Fig. 3B), indicating robustness to noise 
variance.

Moreover, we found that the sampling frequency and distribution influenced the clus-
tering performance. At low sampling (less than 7 time samples), k-means clustering of 
raw data outperformed (SSE and correlation) clustering Fourier de-noised genes at vari-
ance σ 2

= 0.5 . Over 8 samples, clustering Fourier approximated signals were indifferent 

Fig. 2 Results of k-means clustering of raw (gray) and de-noised (red) synthetic expression data. A, B Six 
synthetic clusters, from each we generated 1000 signals with random additive noise of variance σ 2

= 0.1 
(A) and σ 2

= 0.9 (B). Fourier approximation of de-noised data that was clustered (red dashed) and Fourier 
approximation of raw data that was clustered (gray dashed). C, D Monte Carlo of 1000 k-means simulations 
(see “Methods” section) on the de-noised and raw signals. The histograms describe the distribution of the 
SSEs for the raw (grey) and the de-noised (red) data. The mean error SSE of Fourier treated genes ( ¯SSE = 1.9 ) 
was significantly lower (t-test: p < 0.01 ) than the mean SSE of the untreated genes ( ¯SSE = 3.4).The difference 
in low noise signals (here shown σ 2

= 0.1 ) was also statistically significant (t-test: p < 0.01)
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(Fig. 3C, D). Moreover, when time samples were collected at a logarithmic scale, cluster-
ing performance was significantly improved for time-series with more than 5 samples 
(Fig. 3E, F).

Network component analysis

We tested two common NCA algorithms, the ROBNCA [41] and the GNCA-r [42]. 
Briefly, we generated three replicates of expression data using Gaussian noise, and tested 
the ability of NCA to reconstruct the regulator from the expression data in a consistent 
manner. We hypothesized that identical network topologies must reconstruct the signals 
identically for all replicates in the ideal case of noise filtration (see “Methods” section).

We found that the NCA algorithms consistently predicted similar TF signals from 
noisy replicates of data when the data was first treated by constrained Fourier (Fig. 4A–
C). Not surprisingly, we found that noise treatment is increasingly important with 
increasing variance in the data (Additional file 1: Fig. S5), and our simulations strongly 
indicate that the NCA we tested cannot predict the TF temporal activities consistently 
when the data is noisy. For instance, NCA that predicted exact (Pearson ≈ 1 ) tempo-
ral activity from three clean replicates (no noise), predicted unequal temporal activities 
(cross correlation elements p < 0.3 , Additional file 1: Fig. S5).

Study of real biological time‑series data

Firstly, we tested the ability of our algorithm to remove noise from bacterial gene expres-
sion data. The raw data provides a time-series mRNA counts of Listeria monocytogenes 
exposed to high pressure stress (400 MPa, 8 min, 8 ◦ C) [39]. Exposure to high pressure 

Fig. 3 Analysis of k-means clustering of raw (gray) and de-noised (red) synthetic expression data. A, B 
Total size (of all six clusters) of correlation and SSE between the raw signals to the true signals (gray) and 
de-noised signals to the true signals (red). C–F analyzes the performance of the clustering as a function of 
the number of data samples: C, D Total mean correlation and error (SSE) of expression signals from clusters of 
raw (gray) and de-noised (red) data, as a function of sampling frequency (linearly distributed). The difference 
is not statistically significant for over 7 sample points (two-sample t-test). E, F Mean correlation and SSE of 
clustering of raw (gray) and de-noised (red) data, as function of sampling frequency with a logarithmic time 
scale (see “Methods” section). The improvement in the clustering performance was significantly better over 
5–7 sample points. And most importantly, above 7–8 samples the improvement is not statistically significant
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can induce SOS response, a global response to DNA damage to arrest the cell cycle 
until a full DNA recovery is accomplished [43, 44]. It has been shown that the induc-
tion of the SOS response is in the first phase of the bacterial response to high pressure 
which likely contribute to survival [45]. We selected two main regulators (transcription 
factors) of the SOS response, i.e. LexA and RecA with well known dynamics [46, 47], 
and investigated the impact of the de-noising algorithm on the expression data for the 
genes encoding for these two regulators. Figure 5A shows the average of mRNA counts 
(for 7 time points 0, 5, 10, 30, 45 min, 1, and 6 h after pressure treatment) for the genes 

Fig. 4 Post-processing with NCA performs better when data was treated with NR. A When reconstructed 10 
transcription factor (TF) signals from 3 replicates of data, the correlation between the replicates was always 
higher when the data was first treated with our constrained Fourier estimation. Here we show noise variance 
σ 2

= 0.3 . Other variances and the GNCA-r are shown is Additional file 1: Fig. S5. Numbers besides column 
are the correlation of 3 replicates from treated data. B, C GNCA-r reconstructed the 3 replicates from the 
pre-treated (solid) data significantly better ( p < 10

−10 ) than the noisy data (dashed). Here we show temporal 
reconstruction of two arbitrary TFs

Fig. 5 Noise reduction of Listeria monocytogenes RNA-sequencing differentially expressed data. A The 
variation in the mRNA counts between five replicates of the important early-active regulator genes lexA and 
recA was significantly reduced for the first 1 h after exposure to stimuli, reflected by the low variance B of 
the same genes at these early samples. Black triangles and red stars represent mean values for untreated and 
de-noised data, respectively. Shaded areas around mean values represent standard deviation
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lexA and recA before and after applying the de-noising algorithm with black triangles 
and red stars, respectively. The gray and red shaded area illustrate the standard devia-
tion from the average count at each time point. According to the analysis, the de-noising 
algorithm could remove large noise associated with these early time points (0, 5, 10, 30, 
45 min, and 1 h) such that the maximum standard deviation of the counts at these points 
decreased from 90 counts to no more than 15 counts by de-noising, both for the genes 
lexA and recA. The removal of noise especially in early time points was confirmed when 
comparing the variance of the untreated and the denoised data (Fig. 5B).

Secondly, we evaluated the de-noising effect on 3 replicates of real mice T-cells time-
series microarray data, and estimated the true signal with two-harmonics Fourier func-
tion (see “Methods” section). We found low variance between the frequencies of the 
three replicates (Fig. 6A): At least 98% (2095/2142) of the gene signals exhibited variance 
less than 0.01, with an average of 0.004 Hz. The NCA predicted similar TF activities from 
the three replicates data that were treated with the Fourier approximation (Fig. 6B–D). 
Comparison of four selected TF activities shows high cross correlation between the 3 
replicates after de-noising (Table 2), in contrast to predictions with noisy data. In fact, 
less than 10% (3/32) of the TFs activity predictions exhibited worse correlations in the 

Fig. 6 Post-analysis of mouse T cell expression data. A The algorithm estimated the data with 2-harmonics 
Fourier approximation. The mean variance of the estimated frequency ω between 3-replicates of each gene 
(log scale). 98% of the distribution had variance less than 0.01, indicating similar estimated frequencies 
between experiment replicates. B Selected TF activity predictions (using NCA) of noisy data (dashed) and 
Fourier de-noised data (solid). Replicates of Fourier estimated data are closely correlated (data on min 
and max cross correlation is given in Table 1). C Over 90% (29/32) of the TF activities had closer correlation 
(percent) with Fourier de-noised data than with noisy data. D Noisy data had exclusively higher mean angle 
between the replicates than the de-noised data, indicating that replicates of NCA predictions with de-noised 
data are more linearly dependent, and are closely related

Table 2 Cross correlation between three replicates of predictions of four TFs activities

TF Treated data Noisy data

Max Min Max Min

MYB 0.86 0.48 0.68 0.29

YBX1 0.92 0.88 0.78 0.52

TP53 0.91 0.61 0.66 0.52

FOXA1 0.80 0.38 0.78 0.15
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de-noised data, and even then, they performed no more than 3% worse (red columns, 
Fig. 6C). We also measured the similarity by the angle between the vectors, and found 
that the de-noised data yielded more similar predictions that the noise data, with lower 
mean angle between the replicates vectors (Fig. 6D).

We evaluated the k-means clustering performance of the de-noised real data by test-
ing increasing cluster numbers from 10 to 50. The k-means clustering of de-noised data 
produced more accurate clusters (in terms of silhouette, see “Methods” section) for each 
trial we tested, compared to clustering the raw expression data (Fig. 7A, B), with a sig-
nificant ( p < 10−10 ) improvement. The average distance to centroids within clusters (see 
“Methods” section) was significantly smaller (Fig. 7C, D) when clustered de-noised data, 
indicating more centered clusters.

Discussion
Taken together, our results demonstrate an algorithm that eliminates some of the 
noise in time-series gene expression data. Our model exploits well documented com-
mon temporal gene expression patterns [1, 2, 9] to approximate the real signal shapes of 

Fig. 7 Post-analysis (k-means clustering) of mouse T cell expression data. A k-means clustering accuracy 
(Silhouette, see “Methods” section) of de-noised data (red) and raw data (gray) as a function of number of 
clusters tested from the real data. Difference was statistically significant ( p < 10

−10 ). B % improvement 
of k-mean clustering the de-noised data and the raw data. C The distance to centroids within clusters 
(calculated by within-cluster sums of point-to-centroid distances, see “Methods” section) of the de-noised 
data (red) and the raw data (gray) as a function the number of clusters. The de-noised data produced more 
centered clusters (results significantly different p < 10

−10 . D % improvement of the distance to centroids by 
using de-noised data
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individual genes with relatively high fidelity. The model relies on two key components: 
(1) The model solves nonlinear least squares optimization problem using trust-region 
method, that can account for constraints on the frequency and shape, and (2) the search 
for the original frequency is constrained by upper and lower bounds, i.e. π/4 and ω = 4π 
during 24 h, an empirical evidence from large number of data [28]. These constrain the 
temporal shapes to sustained response, impulse shape and wave patterns.

Our results revealed several important issues: (1) Constrained Fourier accurately esti-
mates cellular response to stimuli of the three temporal shapes we examined, and not 
only periodic (cyclic) signals as was suggested previously [7, 16, 17]. (2) Our method 
does not require knowledge of the periods, in contrast to previous methods [7]. (3) Con-
strained Fourier with one and two harmonics sufficiently estimated noisy data (similarly 
to [17]), and (4) we do not recommend to replace Fourier approximation with spline 
when the periods are unknown (suggested by [7]), because this and similar methods do 
not use a-priori information of the gene expression and are likely to over-fit noisy data.

Most importantly, our results imply that analysis by network component analysis (NCA) 
and k-means clustering of untreated, noisy data do not produce reliable predictions. Similar 
results were shown previously for PCA [38]. Our Monte Carlo simulations indicated that: 
(1) The NCA could predict consistently from replicates of de-noised data. (2) The informa-
tion of the original signals is better preserved when de-noising individual noisy signals with 
constrained Fourier before clustering. This was consistent as the noise variance increased 
(Fig. 3). k-means clustering of expression signals with high noise variance formed often dif-
ferent cluster shapes than the original (see examples in Additional file 1: Fig. S4). This implies 
that smoothing the gene expression signals using cross correlation information from clusters 
generated by highly noisy data (suggested by [7, 16, 17]) may produce inaccurate approxima-
tion. At low variance however, our analysis did not reveal any significant difference between 
clustering individually de-noised genes and clustering noisy genes. Based on these results, 
we suggest applying Fourier de-noising of individual genes prior to clustering algorithms 
(for instance k-means) for noisy genes. In contrast, at low noise values the information from 
k-means clusters of raw data can be valuable to our constrained Fourier and can be used to 
re-evaluate the estimated functions of individual genes post clustering.

We showed that our Fourier approximation is sensitive to the sampling frequency. 
Because gene expression measurements demand resources, there is often a trade-off 
between exploring temporal behavior (many time points) and improving the accuracy 
at each time point (many replicates and sequencing depth, [12]). Here we showed that 
fewer than 7 time samples (particularly uniformly distributed sampling frequencies) 
generated poor Fourier approximations (Fig.  2E, F). Because logarithmic time scale is 
a common practice in time-series gene expression measurements [28], we suggest to 
measure at least 5–7 time samples to improve the clustering performance. Importantly, 
there was little gain in noise reduction efficiency beyond 8 time samples, suggesting we 
can optimize our resources elsewhere (e.g. more replicates).

The limitations of real data analysis stem mostly from the unknown noise model, 
which is often difficult to predict. Unlike synthetic data, real measurements often con-
tain colored noise that emerges among other things from correlations between sample 
acquisition, biased during the sample preparation, and most importantly the effect of 
time on the samples and the transcriptome. Stochastic fluctuations in gene expression 
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are often assumed to be Gaussian white noise in nature but the zero correlation time 
for white noise assumes an infinite relaxation time [48]. For instance, following environ-
mental cues on the cells (e.g. heat shock or pressure shock), the gene expression pattern 
responding to the stimuli with time is diluted by many factors, such as deteriorating state 
of the cells and their membrane [45], cell differentiation, cellular metabolism and other 
functions that are not directly measured but are affected by time [49, 50]. To decrease 
the effect of colored noise, it is recommended to have a large set of control samples to 
account for this variability. Another option is to measure an increasing level of the same 
stimuli in an attempt to capture its dynamic effect, and even model the effect of finite 
correlation time of noise into the study of stochastic fluctuations [48].

Lastly, an extension of the algorithm (under development) clusters the genes using 
functional PCA [51], and re-estimate individual genes that increase the Rand index error 
of the cluster space, with different Fourier harmonics and initial conditions. It then tests 
the cluster’s accuracy and iterates to minimize the error.

Conclusions
The algorithm and results presented here can provide a robust technique to de-noise 
time-series gene expression data and have the potential to improve gene expression post 
processing methods such as PCA and clustering. This increases our chance to discover 
important network features from the large time-series data generated in the last decade.
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