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Introduction
In recent years, the binary data matrix has been used in a variety of fields, including 
bioinformatics [1, 2], data mining [3–5], data analysis [6], etc. A binary dataset is a data 
matrix about the relationship between a set of objects[7]. Only two elements in a binary 
matrix are 0 and 1. For the biclustering algorithm that processes the binary data matrix 
converted from gene expression data, we call it binary biclustering algorithm for con-
venience. The biclusters obtained by binary biclustering algorithms are considered to be 
submatrices with all 1. And a bicluster is considered statistically significant when the 
number of 1’s in it is large enough [8]. Noteworthy, the meaning of 0 and 1 in the binary 
matrix could be known by combining the context. In this paper, the values of 1 and 0 
indicate, respectively, whether the gene reacts under certain conditions. So far, a host of 
binary biclustering algorithms have been investigated by researchers. For example, the 
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Biclustering algorithm is an effective tool for processing gene expression datasets. 
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processed by biclustering method. A binary matrix is usually converted from pre-pro‑
cessed gene expression data, which can effectively reduce the interference from noise 
and abnormal data, and is then processed using a biclustering algorithm. However, 
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called the Adjacency Difference Matrix Binary Biclustering algorithm (AMBB) for dealing 
with binary data to address the drawback. The AMBB algorithm constructs the adja‑
cency matrix based on the adjacency difference values, and the submatrix obtained 
by continuously updating the adjacency difference matrix is called a bicluster. The 
adjacency matrix allows for clustering of gene that undergo similar reactions under 
different conditions into clusters, which is important for subsequent genes analysis. 
Meanwhile, experiments on synthetic and real datasets visually demonstrate that the 
AMBB algorithm has high practicability.
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Bimax algorithm, proposed by Prelić et  al. [9], is a divide-and-conquer algorithm that 
yields a maximal binary submatrix in which important information represents 1 or 0. 
The BiBit algorithm proposed by Domingo et al. [7] is to obtain biclusters by row cod-
ing. In binary matrices, the element values have the same meaning as Bimax. It uses the 
parameters minr and minc to obtain the final bicluster, and both minr and minc are equal 
to 2. Furthermore, the BiBinAlter algorithm proposed by Saber et  al. [10], the Binary 
Matrix Factorization (BMF) proposed by Zhang et al. [11], the QUBIC2 algorithm pro-
posed by Xie et  al. [12] are excellent binary biclustering algorithms. In particular, the 
QUBIC2 algorithm use various preprocessing methods to convert gene expression data 
into a binary data matrix and obtain biclustering. Noteworthy, columns with value of 1 
in binary matrix represents the same properties.

Biclustering methods are proved to be NP-hard problem [13]. Therefore, according to 
the solution of the algorithm, the biclustering algorithms can be classified into various 
types [14, 15]. Nevertheless, two major categories can be classified from the data, binary 
biclustering and non-binary biclustering algorithms. Comparing the binary biclus-
tering algorithm with the non-binary biclustering algorithm, it can be found that two 
kinds of biclustering algorithm deal with different datasets. The non-binary biclustering 
algorithms can process gene expression data directly, such as Local Search Algorithms 
(LSM) [16], while binary biclustering algorithms convert gene expression data into a 
binary data matrix before processing the expression dataset. For the binary biclustering 
algorithm, one of the termination conditions of the Bimax algorithm is that the result-
ing submatrix no longer contains 0 elements. In addition, the BiBit algorithm eventually 
obtains biclusters by selecting columns with a value of 1 in the encoding. The non-binary 
biclustering algorithm will obtain the biclusters directly according to its algorithmic 
steps. Cheng and Church algorithm (CC) is the first biclustering algorithm to be applied 
to gene expression data [17]. It adds or removes data from the seed according to the 
Mean Squared Residue (MSR) function. When the MSR value of an added element is 
greater than the threshold value, it means that the element cannot be added to the seed 
set. The Scaling Mean Squared Residue (SMSR) method similar to the CC algorithm is 
proposed by Mukhopadhyay et al. [18]. The algorithm is also based on MSR values to 
obtain biclusters. Direct clustering (DC) proposed by Hartigan et al. [19] is among the 
first published biclustering algorithms applied to data matrices. The Flexible Overlapped 
biclustering (FLOC) algorithm proposed by Yang et  al. [20] is a stochastic iterative 
greedy algorithm. It initializes k biclustered and adds rows and columns to the biclusters 
according to the given probability.

The binary biclustering algorithm belongs to the special biclustering algorithm, which 
mainly processes the binary matrix to obtain the optimal biclusters. Nevertheless, to 
obtain the co-expression cluster, binary biclustering algorithms fail to make the suit-
able balance between performance and running time. For example, in large expression 
data, Bimax algorithm has fast speed but lost better performance, while the BiBit algo-
rithm has outperformance but slow running speed. To balance between running time 
and performance, in this paper, a new binary biclustering algorithm based on construct-
ing adjacency difference matrices is proposed, called the Adjacency Difference Matrix 
Binary Biclustering (AMBB) algorithm. In addition, the AMBB algorithm does not 
require to encode and traverse all rows for continuous seed acquisition. And based on 
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the adjacency difference matrix, the AMBB algorithm solves the problem of clustering 
genes with similar responses under certain conditions. Moreover, the performance of 
the AMBB algorithm is tested using synthetic and real datasets. The experimental results 
show that the AMBB algorithm outperforms BiBit, QUBIC and Bimax algorithms in the 
synthetic dataset, and the AMBB algorithm can obtain a large number of valid genes in 
real dataset, which is very important for further analysis of gene expression data.

Methods
The AMBB algorithm uses the row with the highest number of 1’s in the binary matrix 
as the seed, and iterates the row and column elements continuously according to the 
adjacency difference matrix to obtain a bicluster. Significantly, the adjacency difference 
matrix is constructed based on the seed.

The parameters for the AMBB algorithm are row adjacency difference matrix thresh-
old δ and column adjacency difference matrix threshold � , in which  δ is used to control 
the selection of rows and � is used to control the selection of columns.

Declaration

An input pre-processed binary data matrix is defined as E = (I , J ) , where I and J  are 
two finite sets, denoting the set of rows and the set of columns, respectively. For gene 
expression data, we define rows to represent genes and columns to represent conditions. 
Furthermore, when the gene i ∈ I reacts under condition j ∈ J  , element xij in the binary 
matrix has a value of 1, otherwise it is 0.

The binary data matrix E = (I , J ) , with n = |I | and m = |J | , can be constructed as a 
n ∗ n row difference matrix and a m ∗m column difference matrix. The element of the 
row performs ⊕(OR) operation on the seed element, and these values obtained are 
summed up. The result is called the row difference value ηii′ . Where i′ represents the i-th 
row. The column difference value ηjj′ is calculated in the same way. And as same as the 
row difference value, j′ represents the j-th column.

In the row difference value matrix, each row represents the vector of value differences 
between the seed and all rows in the binary matrix. Similarly, the rows and columns of 
the column difference value matrix are expressed in terms of the same meaning as the 
row difference value matrix. For an instance, there is a binary matrix E = (1, 1, 0, 0; 1, 1, 
1, 0). The row difference matrix is r = (0, 1; 1, 0). Therefore, two rows in E are be selected 
and the column difference matrix is c = (0, 0, 1, 2; 0, 0, 1, 2; 1, 1, 0, 1; 2, 2, 1, 0).

The submatrix E′ is called the maximum bicluster if there are no elements with value 0 
in this submatrix. For above case, E’ = (1, 1; 1, 1).

Parameter

We argue that a large number of biclusters can effectively identify biclusters of different 
patterns. Therefore, we take the number of biclusters as the basis for the determination 
of parameters. In the AMBB algorithm, there are two parameters, that is, row difference 
threshold δ and the column difference threshold � . The row difference value matrix was 
constructed based on i-th ( 1 ≤ i ≤ n ) row. When the ηii′ (i < i′ ≤ n) is smaller than the 
row threshold δ , i th row as seed and i′ row is added into it. Then the column difference 
value matrix was constructed based on j th ( 1 ≤ j ≤ m ) column. When ηjj′(j < j′ ≤ m) is 
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smaller than the column threshold � , j th column is can be seen bicluster and j′ is added 
into it. Therefore, it is very important to choose a suitable threshold value. When an 
algorithm is able to get the best threshold automatically, then it will be easier to get the 
best cluster for the operation of this algorithm.

To select the optimal threshold, we propose a new method for semi-automatic selec-
tion of threshold values. This is binary search. For example, one dataset contains 10,000 
genes. And according to the adjacency difference matrix, the difference value range is 
[500, 1000]. First, the threshold δ is set to 750 ± 50 (1%*r) where r represents the num-
ber of the currently gross genes. And then set δ are 625 ± 12 (1%*r) and 875 ± 12(1%*r). 
Assuming that in this dataset, the parameter δ selection range is 750 ± 50(1%*r). It 
means that if the value of δ is smaller than this range, the number of co-expression clus-
ters is relatively less, and on the contrary, the number of clusters does not change much. 
At this time, the selection range of parameters is changed from (500,1000) to (625,875). 
Within the new range, the binary search continues until the final threshold value is 
determined. This approach solves the problem of selecting the optimal threshold for the 
AMBB algorithm.

Considering that the sizes of binary data matrix are not the same, the density of 1 is 
also different. In a synthetic binary data matrix, the 1’density represents noise level. A 
threshold range is given to AMBB, and the algorithm is run once for each threshold, 
keeping the optimal bicluster obtained by this algorithm. When the AMBB algorithm 
runs all the thresholds, the one of them best is selected according to the number of 
biclusters. The threshold that obtained the largest number of biclusters is the optimal. 
To get the similar columns, the threshold of columns is initially set to ⌈r/2⌉ where r rep-
resents the number of rows in current set. Each iteration of the column threshold in 
the same submatrix starts from 0 and automatically incremented one until the threshold 
value is equal to ⌈r/2⌉ or a bicluster is obtained. The selection of row thresholds is illus-
trated in Fig. 1. Noteworthily, the 1’s density in the synthetic dataset is set at 50%. And 
the implanted biclusters are shift pattern and the number is 10. Three different sizes of 

Fig. 1  A schematic of the biclustered clusters obtained for each row threshold. a The number of biclusters 
result of the synthetic dataset of 50*50. b The number of biclusters result of 100*100 synthetic dataset. c The 
number of biclusters result of 200*200 synthetic dataset
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synthetic data were used to select the optimal threshold and each dataset was run 100 
times. The threshold that generates the largest number of biclusters is most likely to be 
the optimal row threshold, and use the threshold as a benchmark to find the optimal 
threshold.

In Fig. 1, the ordinate a to c and a (1) to c (1) represent the number of biclusters and 
the Relevance value, respectively. Horizontal axes represents the row threshold for six 
graphs. For the Relevance score, it has detailed description in “Evaluation Metric” of sec-
tion “RESULTS”. a (1) and a show the result of 50*50 synthetic dataset and the optimal 
row threshold is 19. b (1) and b show the result of 100*100 synthetic dataset and the 
optimal row threshold is 40. In 200*200 synthetic dataset, c (1) shows the optimal row 
threshold is 85.

Noteworthily, running ten times for each dataset, the Max-score represents maximum 
score and the Mean-score represents mean score. To summarize the selection of row 
thresholds, we simply enter a threshold range within which the AMBB algorithm finds 
the threshold that yields the maximum number of biclusters, and then uses this thresh-
old as a benchmark to find the optimal parameter for the current data.

Algorithm

The first step of the AMBB algorithm converts the gene expression data into a binary 
matrix. Data conversion using the preprocessing method proposed by the Bimax algo-
rithm. A threshold is calculated based on the expression value of the gene in all samples. 
The calculation formula is xmin + (xmax + xmin)/2 . Where xmin and xmax represent the 
minimum and maximum expression value in data matrix respectively. If xij , the expres-
sion value of the i th row and j th column, is greater than the current threshold, the cor-
responding position value in the binary matrix is 1, otherwise 0.

The schematic diagram of the algorithm is shown in Fig. 2. The main steps of the 
algorithm are to select the seed and construct the adjacency difference matrix. There 

Fig. 2  A brief schematic of the AMBB algorithm. a shows the pre-processing matrix. b shows the selection of 
seeds. c shows the construction of the difference matrix, and  (d) shows the acquisition of biclusters
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are two ways to obtain seeds. The first way is to use each row as a seed to construct a 
row difference matrix. The other is to use the row with the highest number of 1’s in it 
as a seed first. Figure 3 shows two methods in detail. To find the optimal method, we 
compared the two approaches and present detailed results are presented in the next 
section.

Figure 2a represents the input binary matrix. Figure 2b shows the selection of seeds, 
which is simply the selection of the row with the highest number of 1 from the binary 
matrix. Five rectangles exist in Fig. 2c contains five rectangles representing five differ-
ence matrices from five seeds, each containing a row difference matrix and a column 
difference matrix. Figure  2d shows three biclusters. Therefore, a seed may not have 
biclusters according to the threshold value.

Once the seeds are selected, the AMBB algorithm then constructs a row difference 
matrix and a column difference matrix. Figure  3 depicts two obtained seed meth-
ods obtained from AMBB algorithm, denoted as method a (a-AMBB) and method b 
(b-AMBB). Method b selects the row with the largest row value as the seed, and then 
constructs a row difference matrix based on that row, where the matrix dimension is 
1 ∗m . The difference value (DV) is defined as follows:

where DVsi denotes the difference value between seed s and row i . xij denotes the j-th 
column of the i-th row, and xsj denotes the j-th column of the seed.

If the DV  value is less than the threshold δ , the i-th row is put into the row cluster. 
When all the rows have been computed, a cluster of rows expanded by seeds is then 
obtained. The seed in Fig.  3 is the fourth row of the binary matrix, and the differ-
ence value matrix is 1 ∗ 10 . Note that in this example, we set a row threshold δ of 5. 
Put rows with difference value less than 5 together to form a row cluster. The column 

(1)DVsi =

m

j=1

(xij ⊕ xsj),

Fig. 3  The diagram of two methods for two obtained seed methods of AMBB. Methods a and method b 
show two methods of obtaining seeds
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values are calculated for each column in the row cluster, and the column values are 
calculated as follows:

where CVj denotes the column value of the j-th column. I ′ indicates row cluster. The 
column with the largest column value in I ′ is given priority as the column seed, and the 
column difference matrix is constructed. Normally the column threshold � is set to 1 
for better acquisition of biclusters. In the example of Fig. 3, the second column does not 
have a matching column, so no submatrix can be obtained. However, the fifth column 
and the tenth column could construct a column cluster. When the obtained submatrix 
contains element 0, repeat the above steps for that submatrix until all the elements are 1.

Method a differs from method b in that method a uses all rows as seeds once to obtain 
clusters. Thus method a is able to obtain more biclusters. Through experimental com-
parison, the performance of these two methods does not differ significantly, but the 
operation speed of method b is much lower than that of method a , and detailed com-
parison results will be given in the next section. In this thesis, Table 1 shows the step 
code of method b.

The low time complexity is one of the characteristics of excellent biclustering algo-
rithms. Given a matrix Mn×m , we analyze the time complexity of the AMBB algorithm 
under optimal and worst cases respectively. First, the time complexity of constructing 
the adjacency difference matrix is O(n(n− 1)) ~ O(n2) . The optimal case is when each 
seed only needs to be run once to get the cluster. At this time, the time complexity is 
O(nm) . There are a total of n seeds, and each seed runs m columns, of which the m is 
the number of data columns. Therefore, the time complexity of the AMBB algorithm 

(2)CVj =
∑

i∈I ′,j∈J

xij ,

Table 1  AMBB biclustering algorithm
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is O(max(n2, nm)) in optimal case. However, each seed needs to be run r/2 times in 
the worst case. Where r represents the number of rows in a row set. And its time com-
plexity is O(nm⌈r/2⌉) . In the worst case, the time complexity of the AMBB algorithm 
is O(max(n2, nm⌈r/2⌉)) . In other words, in the worst case, the time complexity of the 
algorithm may be O(n2) . Notably, when the row threshold δ is determined to be a value, 
it is one run of the algorithm. When δ can be taken t times, the time complexity of the 
algorithm is O(tmax(n2, nm⌈r/2⌉)).

Results
In this section, the performance of the AMBB algorithm is evaluated from two aspects. 
The first part illustrates AMBB method a and b from the synthetic dataset and selects 
the best method from the two methods to compare with the Bimax and BiBit algorithms. 
For synthetic dataset, the performance of the AMBB algorithm is analyzed according to 
the different densities of synthetic binary matrix. The second part the real datasets are 
used to illustrate the utility of the AMBB algorithm according to the GO enrichment 
analysis.

Evaluation metric

For the binary biclustering algorithm, the commonly used evaluation metric is the 
match score. The details of the method are described in [9]. The Match Score is defined 
as follows:

where E1 and E2 are two sets of biclusters. E1 represents the implanted biclusters and E2 
represents the output biclusters by biclustering algorithm. G1 is the row (gene) set of E1 . 
C1 is the column (condition) set of E1 . Match score reflects the average of the maximum 
match scores between E1 and E2 . When the value of S is 1, this means that the biclus-
tered E1 is consistent with the biclustered E2 . Recovery and Relevance score are defined 
as S(E1,E2) and S(E2,E1) , respectively.

Synthetic dataset

Synthetic datasets are used to test the performance of AMBB. In addition, the results 
obtained by these two methods of AMBB are compared with the Bimax and BiBit algo-
rithms. The synthetic dataset is divided into three sizes, namely 50*50, 100*100 and 
200*200, where the density of 1’s in these three synthetic datasets ranges from 5 to 50%, 
increasing by 5% each time. In contrast to the experiments with synthetic datasets in [7], 
in this experiment, the density of 1’s is randomly distributed to simulate the uncertainty 
of the dataset.

The background matrix is a binary matrix, and an arbitrarily distributed value 1 
indicates that the gene has important expression significance under this condition. 
Then we construct an all-1 matrix of size 10*10 as a bicluster. The placement rule 
is to allow implant in non-consecutive rows, but must be in contiguous columns. 

(3)S(E1,E2) =
1

|E1|

∑

(G1,C1)∈E1

max
(G2,C2)∈E2

|G1 ∩ G2|

|G1 ∪ G2|
,
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We implanted 5 biclusters in 50*50 binary background matrix and 10 biclusters in 
100*100 and 200*200 binary matrix.

Since the binary synthetic datasets are all similar, we experiment with the opti-
mal parameters set by the BiBit algorithm, minr = 2 and minc = 2. Through extensive 
experiments with the Bimax algorithm and ended up with the parameters minr = 2 
and minc = 2 for the 50*50 and 100*100 datasets and 200*200 data sets minr = 5, 
minc = 5. Both of these algorithms are implemented in R.

First, Fig.  4a, b and c show the performance of two ways of AMBB algorithm in 
synthetic dataset. Although the difference in match score is not larger, the scores of 
b-AMBB method are higher than a-AMBB method at low density. Furthermore, the 
performance of the three methods is compared. Detailed results are shown in Fig. 4d 
to f. For the 50*50 dataset, the results of Bimax have a poor at high density, neverthe-
less, the AMBB algorithm has the best performance overall. While the AMBB algo-
rithm has a similar trend to the BiBit algorithm, the match scores of AMBB are higher 
than of the BiBit algorithm. In the 100*100 and 200*200 datasets, it is known that 
the Bimax algorithm has the lowest results, while the AMBB and BiBit performed 
similarly.

Figure 5 shows the running times of these four methods. The size of the synthetic 
dataset used is 100*100. In Fig. 5, the vertical coordinates indicate the running time 
of biclustering algorithms and the horizontal coordinates indicate the density of 1’s in 
the dataset. The two algorithms used by AMBB consume more time than the Bimax 
algorithm. At the same time, we can also see that the time of b-AMBB is shorter than 
the time of the a-AMBB algorithm. Therefore, the AMBB algorithm in this thesis 
mainly refers to b-AMBB method.

Figure 6 shows the comparison results of the four biclustering algorithms, which 
are AMBB, Bimax, BiBit and QUBIC in three types of synthetic datasets. And the 
parameters of four biclustering algorithms are detailed in Table  2 in detail. Where 

Fig. 4  Comparison of methods for synthetic datasets. a–c show the comparison of two AMBB methods. d–f 
show the comparison with four biclustering algorithms
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m represents the minimum number of rows and columns in Bimax and BiBit algo-
rithms and c represents the consistency level of biclusters.

From Fig.  6a and b, the QUBIC algorithm is effectively at finding the implanted 
biclusters in a non-noise dataset, whereas the three binary biclustering algorithms 
are not. The major reason is that some information is lost when the data matrix is 
converted to a binary matrix. In dealing with noisy dataset, the score value of binary 
biclustering algorithm is higher than QUBIC algorithm. The reason is that the pre-
processing method of binary biclustering algorithm can effectively distinguish infor-
mation from noise. For the scale pattern and shift-scale pattern of biclusters shown 
in Fig.  6c to d, all algorithms can accurately find the implanted biclusters without 
noise. With the increase of noise, the scores of four biclustering algorithms are 
reduced. Of the four algorithms, the scores of Bimax and BiBit significantly lower. 
Among the biclusters obtained by the QUBIC algorithm, the amount of data belong-
ing to the implanted biclusters is the largest among the four algorithms.. However, 
the biclusters obtained by the AMBB algorithm contains the least noise.

We test the performance of four algorithms in overlapping biclusters. Figure  7a 
and b show the score values of the four algorithms in biclusters of 2*5 with overlap-
ping sizes. The performance of the QUBIC algorithm is the best in the noise dataset, 
and the suboptimal method is the AMBB algorithm. In noisy datasets, the scores 
of the QUBIC algorithm decreased significantly. And the Relevance score of AMBB 
algorithm is always the highest among the four algorithms. In Fig.  7c and d, the 
biclusters overlapping size is 5*5. Similarly, the Relevance score of the AMBB algo-
rithm is optimal. Compared with the QUBIC algorithm, the amount of data in the 
biclusters obtained by the AMBB algorithm belongs to the implanted biclusters is 
not much, but the noise in the obtained bicluster is very small. A part of information 
is lost when a data matrix is converted to a binary matrix. Therefore, the Recovery 
value of the AMBB algorithm is lower than the QUBIC algorithm and the Relevance 
value is higher than QUBIC.

Fig. 5  Time comparisons of the four methods are available
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By analyzing the match scores of the four biclustering algorithms in above syn-
thetic datasets, it can be concluded that the AMBB algorithm is able to obtain 
the shortest running time and has the best performance compared with other 
algorithms.

Fig. 6  Three bicluster patterns: a Shift pattern with non-noise. b Shift pattern with noise. c Scale pattern with 
non-noise. d Scale pattern with noise. e Shift-scale pattern with non-noise. f Shift-scale with noise

Table 2  The value of parameters in synthetic dataset for four biclustering algorithm

Pattern Type AMBB Bimax BiBit QUBIC

Shift-pattern Non-noise δ = 6 m = 5 m = 5 c = 0.55

Noise δ = 9 m = 5 m = 5 c = 0.55

Scale-pattern Non-noise δ = 4 m = 4 m = 4 c = 0.85

Noise δ = 13 m = 6 m = 10 c = 0.55

Shift-scale pattern Non-noise δ = 4 m = 4 m = 4 c = 0.85

Noise δ = 20 m = 7 m = 10 c = 0.45

Overlapping Non-noise (2 × 5) δ = 5 m = 6 m = 2 c = 0.85

Noise (2 × 5) δ = 9 m = 2 m = 6 c = 0.75

Non-noise (5 × 5) δ = 14 m = 7 m = 10 c = 0.75

Noise (5 × 5) δ = 19 m = 4 m = 2 c = 0.65
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Real dataset

To study the utility of the AMBB algorithm, a human gene expression dataset known as 
Pollen [21] and a mouse gene expression dataset, namely Buettner [22] are analyzed. The 
homo sapiens dataset also includes GDS3715 [23] and GSE7904 [24]. And we process all 
datasets to remove one-mapping multiple and duplicate genes. In accordance with the 
preprocessing method of the Bimax algorithm [9], the dataset will first be transformed 
into a binary matrix before the biclustering algorithm can process it. The purpose of our 
analysis is to find biclusters in the dataset and to investigate the biological relevance of 
these genes. Table 3 exhibits the detailed information of these four datasets. To analyze 
real datasets, we use GO enrichment analysis [25]. This is because genes in biclustered 
cells are involved in biological processes. A number of methods are now available for 
GO enrichment analysis. We choose to use the David website because it was updated 
several years ago and has a lot of features and simple operations.

In this experiment, we compared four algorithms, the AMBB algorithm, QUBIC algo-
rithm, Plaid algorithm [26] and Bimax algorithm, respectively. The QUBIC algorithm is 
run by the software in [27], and the Bimax algorithm is used for the package bicluster in 
version 4.1.2 of R. The detailed step is proposed by S. Kaiser [28]. It is worth noting that 

Fig. 7  The results of overlapping bicluster experiments: a Non-noise data matrix with overlapping biclusters 
of size 2 × 5. b Noise data matrix with overlapping biclusters of size 2 × 5. c Non-noise data matrix with 
overlapping biclusters of size 5 × 5. d Noise data matrix with overlapping biclusters of size 5 × 5

Table 3  The information of datasets

Dataset Number of gene Number of condition Specie

Pollen 14,805 80 Homo

Buettner 8989 182 Mouse

GDS3715 4697 94 Homo

GSE7904 21,653 62 Homo
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the running time of the b-AMBB method is shorter than that of the a -AMBB method. 
In the real data we default the AMBB algorithm to the b-AMBB method. Valid genes are 
used as the evaluation criteria, and genes are considered valid when the p-value is less 
than 0.05 [29]. The p-value is calculated as a hypergeometric distribution with the fol-
lowing formula:

In this formula, O denotes the acquired genes and T  denotes the total genes in the 
database.

There exists a comparison result for Proportion of Genes Number. The metric is calcu-
lated as shown below:

where proportionGN represents the enrich proportion, and RG represents the number of 
identified GO items that the p-value is less than 0.05, and TG represents the total num-
ber of GO items. Higher values indicate more items based on the GO enrichment analy-
sis in a bicluster and the greater the performance of the algorithm. We used David for 
GO enrichment analysis [30]. Table 4 shows the enrichment results of four algorithms in 
five datasets. The first column shows the dataset name. The second column represents 
biclustering algorithm, and the third column represents the enrichment ratio obtained 
by Eq.  (5). The next column then represents the number of terms and differentially 
expressed terms obtained by GO enrichment analysis. And the last three columns show 
the p-value and items with the largest differential expression values in Biological Pro-
cess (BP), Cellular Components (CC) and Molecular Function (MF). For the best results, 
we show them in bold. A high Ratio value does not mean that the difference expression 
is strong, it reflects the validity of the obtained gene cluster. In these five datasets, the 
ratio of the AMBB algorithm is always stable at around 0.77. Although the ratio value of 
the AMBB algorithm is sometimes lower than other algorithms, the p-values for terms 
obtained by enrichment analysis showed that the bicluster derived from the AMBB algo-
rithm were more studing meaningful.

Conclusion
In this paper, we propose a new binary biclustering algorithm for gene expression data. 
It uses the construction of a neighbor-joining difference matrix to obtain similar genes. 
This approach has better time complexity than compared algorithms, and also has high 
practical, which will be useful for subsequent analyses. Although the AMBB algorithm 
has two thresholds, the row difference threshold and the column difference threshold, 
at runtime for the row threshold we only give a range, and the algorithm will automati-
cally select the optimal biclusters. For each iteration of column clustering, the column 
threshold is automatically increased by one until the value is ⌈r/2⌉ . After analyzing the 
comparison of the synthetic and real datasets, the performance of our method has been 

(4)p− value =

N
∑

o=n

(

O

o

)(

T − O

t − o

)

(

T

t

) .

(5)proportionGN =
RG

TG
.
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also visually demonstrated. It can be seen that the AMBB algorithm is affected by the 
preprocessing method from the synthetic dataset experiments. When some informa-
tion is lost, the AMBB algorithm cannot obtain the optimal bicluster. Owing to the fact 
that the binary matrix can only show valid and non-valid genes and cannot identify the 

Table 4  The enrichment results of the four algorithms in the four real datasets

Dataset Method Ratio Count BP CC MF
Term (P-value) Term (P-value) Term (P-value)

Pollen AMBB 0.7629 621/814 cytoplasmic transla-
tion (1.10E-65)

Cytoplasm (3.00E-
74)

structural constituent 
of ribosome
(3.10E-49)

Bimax 0.75 108/144 integrin-mediated 
signaling pathway 
(1.50E-05)

Membrane (1.00E-07) ATP binding (1.50E-15)

Plaid 0.9444 34/36 cellular lipid 
metabolic process 
(1.60E-06)

Membrane (1.30E-06) ATPase activity, 
coupled to transmem‑
brane movement of 
substances (3.70E-18)

QUBIC 0.8378 124/148 acyl-CoA metabolic 
process (9.40E-15)

mitochondrial matrix 
(1.30E-07)

metalloendopeptidase 
activity (1.10E-18)

Buettner AMBB 0.7358 518/704 cell division (1.70E-
28)

Nucleoplasm 
(6.70E-76)

RNA binding (2.40E-
60)

Bimax 0.6222 28/45 Ossification (1.50E-04) Nucleus (2.00E-04) transmembrane 
transporter activity 
(9.50E-03)

Plaid 0.4848 16/33 Ossification (4.90E-03) Nucleus (1.90E-03) nucleotidyltransferase 
activity (3.00E-02)

QUBIC 0.7321 46/51 negative regulation 
of apoptotic process 
(2.70E-03)

cytoplasmic vesicle 
(1.50E-03)

double-stranded RNA 
binding (8.00E-03)

GDS3715 AMBB 0.735 294/400 cytoplasmic transla-
tion (9.60E-21)

Cytosol (3.70E-28) protein binding 
(1.00E-25)

Bimax 0.7769 94/121 inorganic anion trans‑
port (2.10E-08)

Membrane (3.40E-07) ATPase activity, 
coupled to transmem‑
brane movement of 
substances (9.10E-22)

Plaid 0.7736 41/53 transmembrane 
transport (8.60E-11)

ATP-binding cassette 
(ABC) transporter 
complex (1.50E-05)

ATPase activity, 
coupled to transmem‑
brane movement of 
substances (9.70E-16)

QUBIC 0.8088 55/68 transmembrane 
transport (2.20E-11)

ATP-binding cassette 
(ABC) transporter 
complex (2.25E-05)

ATPase activity, 
coupled to transmem‑
brane movement of 
substances (5.90E-17)

GSE3904 AMBB 0.8723 41/47 structural constitu-
ent of ribosome 
(1.70E-38)

cytosolic ribosome 
(8.40E-46)

structural constituent 
of ribosome (1.70E-38)

Bimax 0.9474 54/57 transmembrane 
transport (2.60E-13)

intracellular 
membrane-bounded 
organelle (3.00E-04)

ATPase activity, 
coupled to transmem‑
brane movement of 
substances (7.50E-25)

Plaid 0.9091 30/33 transmembrane 
transport (8.20E-22)

integral component 
of membrane (1.40E-
05)

ATPase activity, 
coupled to transmem‑
brane movement of 
substances (8.70E-29)

QUBIC 0.828 77/93 transmembrane 
transport (2.10E-33)

integral component 
of membrane (1.60E-
07)

ATPase activity, cou-
pled to transmem-
brane movement of 
substances (1.50E-44)
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importance of valid genes. Therefore, in future studies, we will try to fuse the weights to 
ensure that information is not lost and cluster similar genes. Theoretically, this might 
produce satisfactory results.
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