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Background
Single-cell RNA sequencing (scRNA-seq) provides transcriptome-wide gene expression 
profiles at single-cell resolution. This technology has been transformative for unsuper-
vised investigation of heterogeneous cell populations [1, 2], identification of novel cell 
states and cell types [3], discovery of novel markers [4] and reconstruction of develop-
mental lineages [5].

The rapid developments of single-cell capture and sequencing technologies ena-
ble researchers to profile tens to hundreds of thousands of single cells [6–9]. This 
high throughput provides unprecedented opportunities to explore the heterogene-
ity of complex tissues [6, 10]. For instance, even very rare cell types can be detected by 
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unsupervised clustering [11–13]. However, the large number of cells that need to be 
profiled from biological tissues in order to capture their complete heterogeneity is an 
important hurdle for downstream analyses.

Several approaches to streamline the analysis of large scRNA-seq data have focused on 
improving bioinformatics pipelines to scale with more cells [14–17] and adapt them to 
computational infrastructures that can cope with large memory requirements [18, 19]. 
These developments often require the use of dedicated platforms, which are less user-
friendly and not necessarily available to researchers without in-depth training in bioin-
formatics. As an alternative, cell subsampling approaches have been developed [20, 21]. 
However, subsampling does not capitalize on the full information present in the initial 
scRNA-seq data, which is likely sub-optimal, for instance to reduce the noise inherent to 
scRNA-seq data due to dropout [22].

High-throughput single-cell transcriptomic profiling of biological samples typically 
leads to the repetitive sampling of highly similar and possibly biologically redundant 
cells. Initial attempts to simplify scRNA-seq data by merging such highly similar cells 
into metacells have been proposed, including the MetaCell algorithm [23, 24]. MetaCell 
has been successfully used for visualization and exploratory purposes [25–27], but does 
not scale well with very large numbers of cells. Moreover, it remains unclear whether 
metacells can be used for quantitative and robust downstream analyses, and how much 
biological information may be gained or lost when analyzing such simplified data [28].

Here, we developed a framework to simplify scRNA-seq data by merging highly simi-
lar cells into metacells and analyze them. We also provide the first systematic bench-
marking of the use of metacells for the robust downstream analysis of scRNA-seq data. 
In particular, we demonstrate that metacells (i) preserve the global structure of the initial 
data, (ii) enable efficient and robust downstream analyses, as demonstrated by the iden-
tification of genes specifically expressed in tumor-infiltrating dendritic cell subtypes, 
(iii) significantly reduce noise from single-cell gene expression measurements and (iv) 
lead to ten- to 100-fold reduction of the size of the data and the computational time and 
memory requirements.

Results
Simplifying scRNA‑seq data with metacells

To facilitate the analysis of scRNA-seq data, we developed a computational coarse-grain-
ing framework, called SuperCell, based on the idea of grouping highly similar cells into 
metacells (Fig. 1a). First, scRNA-seq data are modeled as a single-cell k-nearest neigh-
bor (kNN) graph with nodes representing cells and edges connecting cells with high 
transcriptomic similarity [29, 30] (see “Methods”). Next, metacells are built by merg-
ing single cells with very high internal connectivity. To this end, we used the walktrap 
algorithm [31], which allows users to predefine the number of metacells, although other 
algorithms may be used. Unlike standard clustering, the aim of metacells is not to iden-
tify cell populations that can be mapped to distinct biological cell types, but rather to 
merge cells that contain highly similar and likely repetitive transcriptomic information. 
The graining level ( γ ) is defined as the ratio between the number of cells and the number 
of metacells. Finally, a metacell gene expression matrix is computed by averaging gene 
expression within metacells (Fig. 1a).
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To study whether and how metacells can be used for standard scRNA-seq data anal-
ysis, we first applied SuperCell to four scRNA-seq datasets and compared the results 
of the analysis at the single-cell and metacell levels. The first dataset consists of five 
human adenocarcinoma cell lines (cell_lines, N = 3918 ) [32] (Fig. 1b). The second one 
consists of tumor-infiltrating immune cells from murine KP1.9 lung adenocarcinoma 
(TIICs, N = 15, 939 ) [4] (Fig. 1c). The third one consists of purified T cells from healthy 
donors (Tcells, N = 40, 560 ) [9] (Fig. 1d). The fourth one consists of tumor-infiltrating 

Fig. 1  Simplifying single-cell RNA-seq data with SuperCell. a Overview of the SuperCell coarse-graining 
pipeline, including the following steps. (1) A single-cell network is constructed from the single-cell gene 
expression matrix using k-nearest neighbors (kNN) algorithm. (2) Densely connected cells are merged into 
metacells at a user-defined graining level ( γ ). (3) A gene expression matrix of metacells is computed by 
averaging gene expression within each metacell. (4) The metacell gene expression matrix can be used for 
visualization and downstream analyses such as clustering, differential expression, cell type annotation, gene 
correlation, imputation, RNA velocity and data integration. b–e Examples of metacell networks at several 
graining levels. For comparison, the network of clusters is shown on the right. b Five cancer cell lines (cell_
lines, N = 3918 ) shown with different colors. c Tumor-infiltrating immune cells (TIICs, N = 15, 939 ). d T cells 
sorted from PBMC (Tcells, N = 40, 560 ). e Tumor-infiltrating CD8 T lymphocytes (Cd8_TILs, N = 3574)
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CD8 T lymphocytes (Cd8_TILs, N = 3574 ) [33] (Fig. 1e). The cell_lines dataset repre-
sents a gold standard for clustering where the ground truth corresponds to the different 
cell lines. The other three datasets represent more biologically relevant cases, spanning 
different levels of heterogeneity from CD45+ cells, to T cells to subsets of CD8 T cells. 
Colors in Fig. 1b-c correspond to the cell type annotations retrieved in the original stud-
ies. Colors in Fig. 1d-e represent clusters in single cells since cell type annotation was not 
unambiguously known. In Fig. 1d (Tcells), the three clusters could be mapped to CD4, 
naïve CD8 and cytotoxic CD8 T cells. In Fig. 1e (Cd8_TILs), the three clusters corre-
spond to naïve, effector memory-like, and exhausted/progenitor-exhausted CD8 T cells.

The metacells at different graining levels preserve the global structure of the single-cell 
data and are compatible with different types of visualization techniques based on net-
works (Fig. 1b–e) or dimensionality reduction (Additional file 1: Fig. S1). As expected, 
the size of metacells increases with higher graining levels (Additional file  1: Fig.  S2a). 
The average fraction of genes detected in each metacell also increases with γ , indicating 
that metacells are less prone to the high dropout typically observed in single cells (Addi-
tional file 1: Fig. S2b).

To further assess how much metacells preserve the structure of the single-cell data, 
we checked whether metacells contain cells originating from the same cell type. To this 
end, we used the purity, defined as the proportion of the most abundant cell type in a 
metacell (see Method). Figure  2a shows that metacells have purity close to 1 , indicat-
ing that they consist mainly of cells of the same cell type. This high purity allowed us 
to annotate metacells according to the most abundant cell type in each metacell (colors 
in Fig. 1b–e). As a negative control (i.e., lower bound), random grouping of cells would 
result in much lower purity (Fig. 2a). We further compared our results to those obtained 
with MetaCell [23]. We used either the default mode (MetaCell_def ) or a SuperCell-like 
mode (MetaCell_SC) which uses the same set of genes and the same way of averaging 
gene expression as in SuperCell (see “Methods”). The purity obtained with both versions 
of MetaCell is either equivalent or lower than with SuperCell (Fig. 2a).

To confirm that the overall high purity also applies to rare cell types, we took advan-
tage of the TIICs dataset which contains two rare cell populations: plasmacytoid den-
dritic cells (representing < 0.5% of the cells) and basophils (representing < 0.2% of the 
cells). We observed that both the proportion of single cells from these rare cell types that 
are mapped to metacells of the same cell type, as well as the purity of these metacells are 
high across multiple graining levels (see “Methods” and Additional file 1: Fig. S3).

Metacells preserve clustering results

Beyond visualization, an important step in scRNA-seq data analysis is to identify dis-
tinct cell types or cell states by clustering. To check the consistency of the clustering 
of metacells with the clustering of single cells, we used the adjusted Rand index (ARI) 
(see “Methods”). Our results shows that ARI values are high across different granular-
ity levels and better than subsampling for large γ (Fig. 2b). This applies especially to the 
gold standard cell_lines dataset where single-cell clusters represent each a distinct cell 
line. To further investigate the consistency between the clustering at the single-cell and 
metacell levels, we compared it to the consistency of clusters obtained when using dif-
ferent algorithms on the single-cell data. We observed that ARI values for clustering of 
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the metacells are within the same range as ARI values for the clustering of single cells 
using different clustering algorithms (Fig. 2b, blue vertical line). These results indicate 
that metacells can be used for clustering, and the differences with the clustering at the 
single-cell level are within the expected fluctuations observed with different choices of 

Fig. 2  Metacells preserve clustering and differential expression results, and reveal genes specifically 
expressed in dendritic cell subtypes. a Median purity of metacells computed with SuperCell, MetaCell_def 
and MetaCell_SC at different graining levels for the four datasets shown in Fig. 1b–e (cell_lines, TIICs, Tcells, 
Cd8_TILs). As a lower bound, the purity after random grouping of cells is shown in gray. b Consistency 
between the hierarchical clustering of metacells or after subsampling and the one of single cells (see 
Additional file 1: Fig. S4a for results with other clustering algorithms). The blue line shows the range of 
ARI values when other clustering algorithms are applied to the single-cell data (median shown with “X”). 
c Proportion of the cluster-specific DE genes (based on weighted t-test) found at the single-cell level and 
recovered at the metacell level or after subsampling. d Proportion of the condition-specific DE genes 
found in bulk RNA-seq and recovered at the metacell level or after subsampling in the Mouse_DE dataset. e 
Expression of genes coding for trans-membrane proteins in single cells (top) and metacells (bottom) that are 
more differentially expressed (i.e., better ranking) between cDCs and pDCs at the metacell level. The number 
following the ‘#’ sign indicates the ranking of each gene among the top differentially expressed ones. f Flow 
cytometry analysis of DCs from murine KP1.9 lung adenocarcinoma ( N = 7 ). g Median fluorescence intensity 
of proteins coded by the genes from (e). All comparison shown in e and g pass statistical significance based 
on two-tailed unpaired Student’s t-test (p values < 0.05)
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clustering algorithms. ARI values were similar or higher for metacells built with Super-
Cell compared to those built with MetaCell. Similar results were obtained with other 
clustering algorithms (Additional file 1: Fig. S4a).

We then explored whether the original number of clusters, defined as the one that 
maximizes the silhouette coefficient [34], can be recovered in metacells. Additional file 1: 
Fig. S4b demonstrates that this number could in general be recapitulated and this conser-
vation compares favorably with subsampling. Additionally, even in cases where the pre-
dicted optimal number of clusters differs between single cells and metacells, the clusters 
of metacells are still consistent with the ones of single cells (Additional file 1: Fig. S4c).

As metacells contain different numbers of single cells, we used a sample-weighted 
hierarchical clustering algorithm in Fig. 2b. To explore the impact of weights of meta-
cells on the clustering results, we compared the performance of unweighted versus sam-
ple-weighted clustering. Overall, Additional file 1: Fig. S5 shows that both unweighted 
and sample-weighted clustering algorithms perform similarly.

We finally explored other choices of parameters and methods in the SuperCell pipeline 
(see “Methods”). Altogether, we observed lower performance with higher values of k, 
when using shared nearest neighbor (sNN) instead of kNN networks or when using the 
Louvain clustering algorithm instead of the walktrap (Additional file 1: Fig. S6). These 
observations suggest that the default parameters in SuperCell provide a reasonable solu-
tion to build metacells, although we do not exclude that other solutions could lead to 
similar performance.

Metacells are consistent with differential expression analysis

Another use of scRNA-seq data analysis is to identify differentially expressed genes 
between clusters or conditions. To explore the performance of differential expression 
(DE) analysis between clusters at the metacell level for the four datasets of Fig. 1b-e, we 
used sample-weighted t-test and assessed the recovery rate of differentially expressed 
genes found at the single-cell level using the true positive rate (TPR) (see “Methods”). 
Our results show that more than 75% of the DE genes observed at the single-cell level 
can be recovered in metacells even at relatively high graining levels (Fig. 2c), in contrast 
to subsampling or random grouping. Improvements were also observed with SuperCell 
compared to MetaCell. Comparison of sample-weighted versus unweighted DE revealed 
similar TPR for moderate granularity ( γ < 50) , while for larger γ , we observed improved 
performance when using sample-weighted t-test (Additional file 1: Fig. S7). As with clus-
tering consistency, other choices of parameters and methods in the SuperCell pipeline 
did not improve the results (Additional file 1: Fig. S8).

We next explored the results of DE between different conditions. To this end, we 
capitalized on a dataset (Mouse_DE) generated to benchmark DE between conditions 
(treated vs untreated) in scRNA-seq data compared to bulk RNA-seq [35]. We assessed 
the recovery of DE genes found in the bulk at both the single-cell and metacell level, 
using EdgeR [36]. We observed that metacells built either with SuperCell or MetaCell 
improved recovery of DE genes found in bulk (Fig.  2d). Similar results were obtained 
with other DE algorithms, like DESeq2 [37] or t-test, or when using AUC instead of TPR 
(Additional file 1: Fig. S9). This demonstrates that metacells can significantly reduce the 
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size of the data and simultaneously identify DE genes between conditions that better 
recapitulate those found in bulk.

Metacells reveal genes specifically expressed in dendritic cell subtypes

To further illustrate the use of metacells for the identification of genes expressed in specific 
cell types, we examined the TIICs dataset (Fig. 1c). We performed DE analysis between 
conventional (cDCs) and plasmacytoid (pDCs) dendritic cells, which are known to play 
important roles in eliciting the immune response against cancer, at both single-cell and 
metacell levels. Several genes displayed clearer DE patterns in metacells (i.e., better rank-
ing). These include H2-Aa, which is known to be upregulated in cDCs [38, 39] (ranked 
#6 in the metacell DE analysis, while it was ranked #110 in the single-cell DE analysis, 
Fig. 2e). To experimentally validate these predictions, we selected additional genes cod-
ing for trans-membrane proteins with available antibodies and that were ranked better in 
the metacell DE analysis (see “Methods”). These included Cd74 (upregulated in cDCs) as 
well as Ly6e, Cd47 and Cd44 (upregulated in pDCs) (Fig. 2e). We then performed a flow 
cytometry analysis of DCs of the same murine lung cancer model (Fig. 2f and Additional 
file 1: Fig. S10, see “Methods”). The results confirmed the DE of all the selected genes at the 
protein level (Fig. 2g), demonstrating that metacells are useful for magnifying biological 
information in scRNA-seq data that is less detectable at the single-cell level.

Metacells improve cell type annotation, gene correlation and imputation

We next compared marker-based cell type annotation at single-cell and metacell levels. 
For this, we first annotated CD4 and CD8 T cells from the Tcells dataset using either 
single markers (Fig.  3a) or gene signatures derived from bulk RNA-seq data (Fig.  3b, 
see “Methods”) and compared this annotation with the cell type determined by protein 
expression during the sorting procedure (see “Methods”). The annotation quality, com-
puted as the area under the ROC curve (AUC), grows with the graining level until it 
almost reaches saturation (AUC = 1) for both CD4 and CD8 T cells. Annotations based 
on metacells obtained with MetaCell lead to lower AUC. As expected, subsampling 

(See figure on next page.)
Fig. 3  Metacells improve cell type annotation, gene correlation, imputation and RNA velocity. a–b AUC of 
recovery of CD4 (top) and CD8 (bottom) T cells from the Tcells dataset using single markers (a) or signatures 
defined form bulk (b) consisting of the top 5 or top 50 genes for metacells computed with SuperCell, 
MetaCell_def, MetaCell_SC and random grouping, or after subsampling. c Expression of CD4 (top) and 
CD8A (bottom) in T cells from the Tcells dataset at the single-cell and the metacell ( γ = 100 ) levels. d Gene 
correlation at the single-cell (top) and the metacell ( γ = 50 ) (bottom) levels for selected gene pairs in the 
Cd8_TILs dataset, with the corresponding sample-weighted Pearson correlation (ρ). e Comparison of the 
GO similarity of metacell and single-cell top correlated genes identified for individual cell lines from the 
cell_lines dataset. The y-axis shows the ratio between mean GO match scores of the top correlated genes at 
the metacell and the single-cell levels. f Mean Spearman correlation between bulk and MAGIC-imputed data 
in each cell line of the cell_lines dataset. The dashed lines show the correlation between the pseudo-bulk 
(i.e., averaged gene expression within a cell line) and bulk gene expression. g Joint tSNE visualization of RNA 
velocity for the brain_cells dataset ( N = 3396 ) for single cells (left) and metacells ( γ = 10 ) (right) colored by 
cell type annotation. h, Velocity purity in metacells (defined as the cosine similarity of single-cell velocities 
within each metacell). i Number of genes with valid estimated equilibrium slope values. j Pearson correlation 
of gene equilibrium slope values obtained in single-cell and metacell RNA velocities. k Cosine similarity 
between 2D single-cell and metacell RNA velocities shown in (g). For the subsampling and random grouping, 
the center of the error bars denotes the median, and the extrema denotes the 1st and 3rd quartiles (obtained 
with different random seeds)
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failed to improve cell type annotation. Similar results were obtained when annotating 
metacells in the Cd8_TILs dataset (Additional file  1: Fig.  S11). Inaccuracies in anno-
tating cells using single markers or gene signatures are likely due to the high dropout 
rate [22]. In the Tcells dataset, less than 40% of CD4, respectively CD8 T cells, express 
the CD4, respectively CD8A, marker genes (Fig.  3c). By contrast, at the graining level 
γ = 100 , 79% of CD4 metacells and 97% of CD8 metacells express CD4 and CD8A mark-
ers, respectively.

We next investigated gene correlation, which is an important source of informa-
tion to infer gene co-expression modules [40]. We first used the Cd8_TILs dataset and 

Fig. 3  (See legend on previous page.)



Page 9 of 24Bilous et al. BMC Bioinformatics          (2022) 23:336 	

explored genes that are known to be positively correlated (e.g., Ibgb7, Cxcr3, Ly6c, and 
Gzmk which are markers of effector memory-like cells) or negatively correlated (e.g., 
Tcf7 that is expressed in naïve and stem-like cells, versus Pdcd1 and Havcr2/Tim-3 that 
are expressed in exhausted cells). Figure 3d shows that metacells increase expected gene 
correlations and remove the noise arising from single-gene dropouts in scRNA-seq. To 
more systematically explore the biological relevance of correlated genes, we compared 
the biological relatedness of top correlated gene pairs found exclusively at the single-
cell or metacell levels within individual cell lines in the cell_lines dataset. As a measure 
of similarity between a pair of genes, we used a Gene Ontology (GO) [41] match score 
(see “Methods”). Figure 3e shows higher values of the average GO match score of the top 
correlated gene pairs in the metacells compared to the single cells until a graining level 
of roughly 50 . Average GO match score computed in metacells built with Supercell or 
MetaCell had similar behavior, although the limited range of graining levels in MetaCell 
prevented comparisons for γ values where the largest improvement was observed with 
SuperCell. Overall, these results show that pairs of correlated genes found in metacells 
show higher biological relatedness compared to those found in single cells.

Imputation methods were shown to improve signal-to-noise ratio in scRNA-seq data 
and lead to better correlation with bulk profiles [42]. To investigate whether metacells 
can be used as an input for imputation approaches, we applied MAGIC [40] to both 
the single cells and the metacells from the cell_lines dataset. The results show that the 
imputed gene expression profiles are more similar to the bulk profiles when applying 
MAGIC on metacells (Fig. 3f ). The best improvement is reached within the same range 
of graining levels as for gene–gene correlations (Fig.  3e). The results obtained with 
MetaCell_SC are comparable to those of SuperCell, while the correlations obtained 
with MetaCell_def are much lower. Overall, our results indicate that imputation can be 
applied to metacells and leads to improved correspondence with bulk data.

Metacells are compatible with RNA velocity

We next investigated whether metacells can be used to study differentiation processes 
with RNA velocity [5]. We first considered a dataset of mouse hippocampus cells (brain_
cells, N = 3396 ) [43] and applied the velocyto algorithm [5] to single cells and metacells 
(see “Methods”). We observed consistent RNA velocity results at the metacell (right) and 
the single-cell (left) levels (Fig. 3g) when plotted on a joint t-distributed stochastic neigh-
bor embedding (tSNE). Both cases show the developmental path from neurogenic cells 
(light blue) to neurons (dark blue). This consistency is further confirmed with a high 
purity of metacells in terms of velocity across multiple graining levels (see “Methods”) 
(Fig. 3h). To compute RNA velocity, a key parameter is the estimated equilibrium slope 
of each gene (i.e., linear fit between spliced and un-spliced mRNA, referred to as “γ” in 
the original RNA velocity publication [5]). The number of genes for which this equilib-
rium slope can be estimated increases with higher graining levels for metacells, while it 
stays constant for random grouping, and decreases for subsampling (Fig. 3i). Moreover, 
the equilibrium slopes of genes in metacells correlate with those in single cells, and the 
correlation is higher than for the subsampling (Fig. 3j). The improvements of metacells 
over subsampling are likely due to the regularizing and enriching effects of metacells on 
spliced and un-spliced mRNA abundance (see examples in Additional file 1: Fig. S12a). 
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To directly compare RNA velocity at the single-cell and metacell levels in the tSNE plots 
of Fig. 3g, we computed the cosine similarity between 2D RNA velocity of each single 
cell and 2D RNA velocity of the metacell it belongs to (Fig. 3k). This similarity score also 
suggests a high consistency of metacell RNA velocity across multiple graining levels. In 
the joint tSNE used in Fig.  3g to facilitate comparison, subsampling displayed similar 
conservation of the 2D RNA velocity (Fig.  3k). However, when plotted separately, the 
differentiation process is much more visible in metacells than after subsampling (Addi-
tional file 1: Fig. S12b). Metacells built with MetaCell also preserve the results of RNA-
velocity, demonstrating the robustness of the metacell concept for RNA-velocity analysis 
in scRNA-seq data. The same analyses were performed on a mouse pancreas scRNA-seq 
dataset (pancreatic_cells, N = 3696 ) [44] and similar results were obtained (Additional 
file 1: Fig. S13). This demonstrates that metacells are compatible with RNA velocity.

Metacells facilitate data integration

ScRNA-seq atlases are built by integrating data from multiple samples. To explore the 
use of metacells in scRNA-seq data integration, we analyzed a recently published dataset 
of 1.46 million immune cells coming from various tissues from 196 COVID-19 patients 
and healthy controls (COVID-19_atlas, N = 1, 462, 702 ) [45]. Analyzing these data is 
challenging since most existing data integration algorithms do not scale with such cell 
numbers on standard computational infrastructures. We applied the SuperCell algo-
rithm on each sample separately (see “Methods”), which led to a total of 146, 304 meta-
cells (Fig.  4a). We then performed data integration on metacells with Harmony [46] 
(Fig. 4b). The results of integrated metacells showed high similarity with those obtained 
based on single cells in the original study. In particular, the main immune cell types 
reported in the original study could be recapitulated. Visually, Fig. 4b shows that pro-
tocols and samples are well mixed after integration of metacells. This is confirmed by 
the improvement of the kBET acceptance rates (a quantitative measure of batch mixing) 
[47] both in terms of protocols (Fig.  4c, top) and samples (Fig.  4c, bottom). The clus-
tering of integrated data has also higher consistency with the original cell type annota-
tion (ARI = 0.75, compared to ARI = 0.66 in non-integrated data). To further illustrate 
the use of metacells, we performed DE analysis followed by gene set enrichment analy-
sis within monocytes and B cells from COVID-19 patients versus healthy controls, at 
the metacell level (see “Methods”). For monocytes, the most upregulated GO term in 
COVID-19 patients included ‘chemokine mediated signaling pathway’ (GO:0070098, 
adjusted p value = 1.3 · 10−7 ) and ‘complement activation’ (GO:0006956, adjusted p 
value = 4.1 · 10−5 ). The most upregulated GO terms in B cells from COVID-19 patients 
included ‘inflammatory response’ (GO:0006954, adjusted p value = 5.9 · 10−3 ), ‘type I 
interferon signaling’ (GO:0060337, adjusted p value = 3.7 · 10−2 ) or ‘response to viruses’ 
(GO:0009615, adjusted p value = 3.7 · 10−2 ), consistent with a humoral response to 
SARS-Cov2. Importantly, all these analyses could be run on a standard desktop (Mac-
book Pro i7 core, 16G RAM) in less than two hours.

Metacells significantly accelerate downstream analyses and reduce memory requirements

To assess the improvement in computational efficiency obtained with metacells, we 
benchmarked the time and memory needed for the downstream analyses, including 
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Fig. 4  Metacells facilitate data integration and accelerate downstream analyses. a–b UMAP visualization of 
the non-integrated (a) and Harmony-integrated (b) COVID-19_atlas dataset ( N = 1, 462, 702 ) at the metacell 
(γ = 10) level. Metacells are colored according to the cell type annotation, protocol or sample. c, Batch effect 
level in terms of protocol (top) and sample (bottom) in the non-integrated and Harmony-integrated COVID-19_
atlas dataset, computed as the kBET acceptance rate for the four most frequent cell types. d Computational 
time (top) and memory allocation (bottom) for the visualization (UMAP), clustering (Seurat), DE analysis (t-test, 
each cell type versus the rest), data integration (Harmony) and all steps together (‘Combined analysis’) for the 
metacells (dashed lines) and single cells (solid line). Red dots show the limits reached on standard desktops 
(16G of RAM). Black dots correspond to the limits reached on a machine with 512G RAM (linear extrapolations 
shown in gray). e UMAP visualization of the TIM_atlas dataset ( N = 108, 566 ) at the single-cell (left) and the 
metacell (γ = 50) (right) levels computed with the approximate coarse-graining. Cells are colored according 
to the cell type annotation. f Relative (z-score) expression of genes experimentally tested in Fig. 2g at the 
single-cell (top) and metacell (bottom) levels. The number following the ‘#’ sign indicates the ranking of each 
gene among the top differentially expressed ones. All comparisons pass statistical significance based on 
two-tailed unpaired Student’s t-test (p values < 0.05) except for CD74 at the single-cell level (p value = 1). Ranks 
for genes showing a different behavior both at single-cell and metacell levels between mouse and human 
are shown in red. g, Computational time (top) and memory allocation (bottom) for the building of metacells 
followed by downstream analyses including dimensionality reduction, clustering and DE analysis for metacells 
computed with SuperCell (red dashed line) or MetaCell (green dashed line), and for the single cells (solid black 
line). Red dots show the limit reached on standard desktops (16G of RAM)
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visualization, clustering, DE analysis (i.e., each major cell type versus the rest) and data 
integration (Fig. 4d), as well as RNA velocity (Additional file 1: Fig. S14) (see “Methods”). 
As expected, each analysis runs faster on metacells and uses less memory. All analyses 
could be run on a standard desktop with 16G of RAM at the metacell level, while they 
crashed at ∼ 200, 000 cells for DE and ∼ 480, 000 cells for the other analyses at the sin-
gle-cell level (red dots in Fig. 4d). Moreover, DE analysis could not be performed at the 
single-cell level for datasets with more than 600, 000 cells even on a high-performance 
computing (HPC) platform with 512G of RAM (black dots in Fig.  4d, extrapolations 
in gray). This demonstrates the advantage of metacells for exploratory analysis of large 
scRNA-seq datasets.

Although metacell construction needs to be run only once, it can be computationally 
demanding for large numbers of cells ( > 100, 000 ). To address this issue, we included 
an option to perform an approximate coarse-graining in SuperCell, which first builds 
metacells using a subset of cells and then maps the rest of the cells to the most simi-
lar metacells (Additional file 1: Fig. S15a) (see “Methods”). Additional file 1: Fig. S15b–e 
show that the approximate version of SuperCell has similar performance as the exact 
one. To further demonstrate the ability of the approximate coarse-graining to deal with 
large-scale scRNA-seq datasets, we applied it to a human pan-cancer atlas of tumor-
infiltrating myeloid cells (TIM_atlas, N = 108, 566 ) [39] (Fig.  4e). Focusing on DCs, 
we performed DE analysis between cDCs and pDCs for the genes tested in Fig.  2g. 
Our results confirm the improved DE signal in metacells compared to single cells for 
HLA-DRB1, HLA-DPA1, CD74 and CD47 (Fig. 4f ). The signal for LY6E and CD44 was 
opposite to their expression pattern in mouse at both the single-cell and metacell levels, 
suggesting that their expression in DCs subtypes may not be conserved between human 
and mouse or across cancer types.

Taking everything together, the entire analysis, including building of metacells, dimen-
sionality reduction, clustering and DE analysis, runs faster with metacells than with sin-
gle cells and requires less memory (Fig.  4g, Additional file  1: Fig.  S16a, b). Compared 
to MetaCell, our approach is significantly faster and can be applied to larger datasets, 
both when considering the entire analysis (Fig. 4g), or only the construction of metacells 
(Additional file 1: Fig. S16c). These results indicate that metacells significantly facilitate 
and accelerate the analysis of large scRNA-seq data.

Discussion
ScRNA-seq technologies are revolutionizing biological sciences by providing transcrip-
tome-wide information for very large numbers of individual cells. Here we introduce 
the SuperCell pipeline for scRNA-seq data coarse-graining and analysis at the metacell 
level. We demonstrate that metacells built with SuperCell preserve the results of the 
single-cell data and serve as a compromise structure between the single-cell level and 
the level of clusters. The fact that metacells are compatible with clustering, differential 
expression, cell type annotation, gene correlation, imputation, RNA velocity and data 
integration indicates that this framework can be readily applied to the majority of anal-
yses performed on scRNA-seq data. Moreover, metacells can magnify biologically rel-
evant information, as demonstrated with the identification and validation of markers of 
tumor-infiltrating dendritic cell subtypes (Fig. 2e–g). When exploring scRNA-seq data, 
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different methods or choices of parameters are typically tested for visualization, clus-
tering, differential expression, RNA velocity or data integration [48, 49]. The SuperCell 
framework is therefore especially appropriate for such exploratory analyses.

Unlike clustering, the primary aim of metacells is not to identify groups of cells with a 
specific biological interpretation (e.g., cell types or cell states), but to simplify, accelerate 
and improve the analysis of scRNA-seq data. As such, the exact number of metacells is 
not meant to have a specific biological significance and can be fixed by the users based 
on the available computational resources. For practical applications, we recommend 
using γ ∈ [10, 50] , as this already provides a significant speed-up in the analysis of large 
datasets and preserves downstream analyses results. We also note that defining optimal 
γ with measures like the silhouette coefficient used in clustering would result in very 
large values where properties of the scRNA-seq data are no longer conserved. To follow 
the principle of metacells and to ensure the preservation of the downstream analyses 
results, we discourage using large graining levels (i.e., γ > 100 ) which leads to a signifi-
cant risk of losing some of the biologically relevant heterogeneity of the single-cell data.

For the construction of metacells, we used the walktrap algorithm. Owing to its hierarchi-
cal structure, this algorithm enables users to explore different graining levels without having 
to recompute the metacells for each choice of γ . This can be useful considering the heteroge-
neity in size and complexity of scRNA-seq datasets. Comparison with the Louvain clustering 
algorithm suggests that the walktrap algorithm provides a reasonable solution (Additional 
file 1: Figs. 6 and 8). However, it is expected that robust metacells can be built with other 
approaches since the exact definition of each metacell is not critical, as long as cells of high 
transcriptomic similarity are merged, and the results of downstream analyses are preserved.

The high purity of metacells indicates that they mainly consist of cells of the same cell 
type. However, we also observed that a small fraction cells from rare cell types can be 
mixed with cells from other cell types in some metacells. To overcome this issue, we 
implemented the possibility to build metacells in a way that is consistent with a priori 
defined cell type annotations (see “Methods”). We anticipate that this option will sig-
nificantly facilitate the re-analysis of large datasets carefully annotated based on expert 
knowledge which is difficult to perfectly recapitulate with unsupervised analyses.

The metacell concept shares similarity with other computational approaches devel-
oped for scRNA-seq data analysis. Akin to imputation [40], it averages signals over cells 
with high transcriptomic similarity. However, results of imputations can be difficult to 
use with very large datasets, since the total number of cells remains the same and the 
imputed gene expression matrices are less sparse than the original ones. Methods ana-
lyzing networks of clusters, like PAGA [30] or TooManyCells [50], can be thought of as 
a coarse-graining with a very high graining level which is not the aim of metacells. These 
approaches have been developed for other purposes and by construction cannot pre-
serve the intra-cluster heterogeneity. Compared to the MetaCell algorithm [51], where 
the concept of metacells was first introduced, the SuperCell approach displays equal or 
better performance, is more flexible in terms of graining levels, runs faster and scales 
better with larger numbers of cells.

Beyond the details of the metacell construction procedure, our work provides the first 
systematic validation of whether and how metacells can be used for the downstream 
analyses. This is critical to ensure that metacells can indeed be used without losing 
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important information from the single-cell data. As such, we believe that this framework 
will be useful to benchmark other coarse-graining approaches that will be or are being 
developed [52–54].

Conclusions
Altogether, our work shows that SuperCell significantly reduces the size of scRNA-seq 
data and accelerates downstream analyses, while preserving the global structure of the 
data and the results of such downstream analyses. These results demonstrate that meta-
cells provide an intermediate and tunable level of representation for scRNA-seq data 
between the single-cell level, which is partly redundant and suffers from high technical 
noise, and the cluster level, which can mask biologically relevant intracluster heteroge-
neity. As the throughput of single-cell technologies keeps increasing [55], we anticipate 
that SuperCell-like approaches will play an increasingly important role in facilitating vis-
ualization, analysis, sharing and interpretation of single-cell genomics data.

Methods
Metacell construction

Metacells are built based on a log-normalized gene expression matrix. The set of features 
(genes) used for the construction of metacells is defined by default as the set of the most 
variable genes but can also be provided by the user. Based on this set of features, a low 
dimensional embedding is computed using principal component analysis (PCA) (func-
tion irlba() from irlba R package [56]). The top principal components (top 10 by default 
in this work) are used to build a single-cell network with a k-nearest neighbors (k-NN, 
k = 5 for all studied datasets) algorithm (nn2() function from RANN R package [57]): 
each cell (node) is connected to k most similar cells based on the Euclidean distance. To 
construct metacells, we apply the walktrap clustering algorithm (available as clust_walk-
trap() function from igraph R package [58]) to the singe-cell network. Metacells are con-
structed by merging single cell (nodes) at a user-specified graining level ( γ ). The graining 
level is defined as the ratio between the number of single cells ( Nc ) and the number of 
metacells ( NSC ). In the metacell network, the size of a metacell is defined as the total 
number of cells it contains. The weight of an edge connecting two metacells is computed 
as the total number of edges connecting cells of those metacells. A gene expression pro-
file of metacells is computed by averaging gene expression within metacells.

The SuperCell method is implemented in an R package (SuperCell) that can be used 
for all steps of the downstream analyses and is compatible with other state-of-the-art 
tools for scRNA-seq data analyses, including Seurat [15] and SingleCellExperiment [14].

Purity of metacells

The purity of a metacell is defined as the proportion of cells from the most abundant cell 
type in this metacell. For the cell_lines and TIICs datasets, we used the cell type annota-
tion provided in the original studies [4]. For the Tcells and Cd8_TILs datasets, we anno-
tated single cells based on clustering since cell type annotation is not known a priori. 
When studying conservation of rare cell types (i.e., plasmacytoid dendritic cells or baso-
phils) in the TIICs dataset, metacells were annotated to a particular cell type with the 
Bayesian classifier developed in Zillionis et al. [4]. We then computed the proportion of 
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single cells of each of the two rare cell types that were found in metacells annotated to 
the same cell type (Additional file 1: Fig. S3a). For the subsampling, this value was com-
puted as a proportion of subsampled single cells of the rare cell type of interest. We fur-
ther computed the purity of each metacell annotated to these rare cell types (Additional 
file 1: Fig. S3b). This purity was defined as the fraction of single cells of the correspond-
ing cell type weighted by the number of these single cells to account for heterogeneity in 
the size of metacells.

PCA in metacells

A scaling of the metacell gene expression matrix was applied before PCA based on a 
weighted version of a scale function (wt.scale() function from corpcor R package [59]). 
Next, a singular value decomposition (SVD) was computed (function irlba() from irlba 
R package [56]) for the sample-weighted gene expression matrix (
Xfor_SVD = 1

N .c

(
XTWX

)
= U�VT

)
 , where X is a scaled and transposed (cells as rows) 

gene expression matrix at a metacell level, W  is a diagonal matrix with sizes of metacells 
on its diagonal, � are the singular vectors of Xfor_SVD , U and V  are left- and right-singu-
lar vectors of Xfor_SVD . Then, the principal component embedding of metacells ( XPCA ) 
was computed as XPCA = XV .

Clustering consistency

To compute clusters, the top 1000 and 500 variable genes were used to perform the PCA 
for cell_lines and Tcells datasets, respectively. For TIICs and Cd8_TILs, we used the same 
gene set as in the original studies [4, 33]. Single-cell and metacell data were clustered 
with hierarchical clustering (hclust() function in R with the “ward.D” method and the 
parameter members set to the metacell size vector). Alternatively, k-means (kmeans() 
function in R) and Seurat (FindClusters() function in Seurat package [15]) clustering 
algorithms were also explored.

To assess the consistency between the clustering of single cells and metacells, Hubert 
and Arabie’s adjusted Rand index (ARI) was computed. The same number of clusters 
was used in single cells and metacells. To estimate the variability of ARI values expected 
with different clustering algorithms at the single-cell level, we clustered single-cell data 
with alternative clustering algorithms (i.e., different methods of hierarchical clustering, 
including "ward.D", "single", "complete", "average", "mcquitty", "median", "centroid", and 
k-means clustering with 5 different random starts) and computed ARI between the hier-
archical clustering and the results obtained with the alternative clustering algorithms 
(thick blue bars in Fig. 2b).

Silhouette coefficient in metacells

The computation of the silhouette coefficient was also adjusted for considering the 
weights of metacells. If a(i) is the mean distance between a metacell i belonging to a 
cluster Cm and all other metacells from the same cluster, then 
a(i) = 1

|Cm|−size(i) j∈Cm,j �=i d i, j · size(j) , where d
(
i, j
)
 is a distance between metacells i 

and j , size(i) is the size of metacell i , and |Cm| is the size of cluster Cm . If b(i) is the mini-
mal average distance from a metacell i to any metacell from a different cluster, then 
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b(i) = min
k �=m

1
|Ck |

∑
j∈Ck

d(i, j) · size
(
j
)
 . The silhouette of a metacell i is s(i) = b(i)−a(i)

max{a(i),b(i)}
 if 

|Cm| > 1 and s(i) = 0 if |Cm| = 1 . The overall silhouette value S is a sample-weighted 
mean of s(i) , S = 1

N .c

∑
s(i) · size(i).

Alternatives for metacell construction

To study the sensitivity of the SuperCell algorithm to particular choices of methods and 
parameters, we built metacells with different values for k in kNN single-cell networks, 
kNN and shared nearest neighbors (sNN) algorithms from Seurat, and Louvain cluster-
ing instead of walktrap. Metacells obtained with these different approaches were tested 
for preservation of the results of clustering (Additional file  1: Fig.  S6) and differential 
expression (Additional file 1: Fig. S8).

Differentially expressed genes recovery rate

To assess the ability of metacells to recover differentially expressed genes, we consid-
ered both differential expression between clusters and between conditions. Differential 
expression between clusters (i.e., each cluster versus all the others) in the cell_lines, the 
TIICs, the Tcells and the CD8_TILs datasets was performed with sample weighted t-test 
(wtd.t.test() function from weights R package [60]). Clusters were computed for single 
cells and metacells. The set of differentially expressed genes in single cells ( M ) was iden-
tified as a union of significantly (two-tailed t-test adjusted p value < 0.05) upregulated 
(i.e., logFC > 0.5 for cell_lines and Cd8_TILs or logFC > 0.25 for TIICs and Tcells) genes 
from all clusters. The set of differentially expressed genes at the metacell level ( M̃ ) was 
computed as the top n = |M| significantly (i.e., two-tailed t-test adjusted p value < 0.05) 
upregulated genes across all clusters ranked by logFC.

Differential expression between conditions (i.e., control versus treated samples) in the 
Mouse_DE dataset was performed with t-test, DESeq2 [37] and EdgeR [36]. For each 
test, the set of the differentially expressed genes ( M ) was computed from the bulk RNA-
seq dataset as the set of significantly (adjusted p value < 0.05) differentially expressed 
genes. The set of differentially expressed genes at the metacell level ( M̃ ) was computed 
as the top n = |M| significantly (i.e., adjusted p value < 0.05) differentially expressed 
genes ranked by absolute value of logFC.

To measure the conservation of DE genes, the True Positive Rate (TPR) was computed 
as TPR =

|M∩M̃|
|M|

 . This value is equivalent to the precision since |M| =

∣∣∣M̃
∣∣∣ . For the differ-

ential expression analysis between conditions, the AUC was additionally computed 
using the adjusted p value as a predictor and the set of differentially expressed genes in 
bulk as a label.

Benchmarking with MetaCell

The MetaCell algorithm [23] was run in two modes: a default (green) and a SuperCell-
like (yellow) mode. For the default mode, MetaCell was run using the vignette instruc-
tions provided at the authors’ GitHub (https://​github.​com/​tanay​lab/​metac​ell/​tree/​
master/​vigne​ttes). As a gene expression matrix of MetaCell, we used the output field of 
MetaCell named mc_fp (MetaCell footprint). For the SuperCell-like mode, MetaCell was 
run using the same set of genes used with the SuperCell approach and the same way 

https://github.com/tanaylab/metacell/tree/master/vignettes
https://github.com/tanaylab/metacell/tree/master/vignettes
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of computing the gene expression (i.e., by averaging gene expression within metacells). 
Since MetaCell does not explicitly allow users to tune the graining level, we had to vary 
the parameter of the minimal MetaCell size (min_mc_size). This parameter was set to 
{1, 10, 20, 30, 50} . This explains why the range of graining level values for MetaCell is 
narrow.

Identification of cDCs and pDCs marker genes in the TIICs dataset

Data pre-processing and cell type annotation in the TIICs dataset at the metacell level 
was performed the same way as the single-cell analyses in the original study [4]. In brief, 
metacells were built based on the first 60 principal components computed on highly var-
iable genes (i.e., genes with the variance larger than a mode variance). Metacells were 
annotated to a particular cell type with a Bayesian classifier developed in Zillionis et al. 
[4] applied to the metacell count matrix. To plot metacells, we used SPRING layout [29] 
from the original study averaged within each metacell.

For the annotated TIICs dataset, DE analysis between cDCs and pDCs was per-
formed at the single-cell and metacell levels. Among the top 150 differentially expressed 
genes at the metacell level, we selected those that were detected in both subtypes 
(i.e., in at least 95% of cDC and pDC metacells) and those that were ranked higher 
(by p value significance and then by logFC for identical p values) at the metacell level 
(ranksingle−cell − ranksuper−cell ≥ 3) . Among them, genes coding for trans-membrane 
proteins with available antibodies were tested for their protein expression using flow 
cytometry (see Additional file 1: Tables 3 and 4 for the full list of genes matching these 
criteria).

Mouse tumor model

Murine KP1.9 lung adenocarcinoma tumor cells were cultured in Iscove’s DMEM media 
(Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/strepto-
mycin. Cells were injected into 8 weeks old C57BL/6 J male mice (Charles River) intra-
venously (2.5 × 105 cells in 100 μl PBS) to develop orthotopic tumors in the lung. The 
tumor cell line was derived from lung tumor nodules of a C57BL/6 KrasLSL-G12D/
WT;p53Flox/Flox (KP) mouse and was kindly provided by Dr. Zippelius (University 
Hospital Basel, Switzerland). Mice were analyzed for tumor phenotypes 4 weeks post-
cancer cell injection [4, 61]. All animals were housed at the Agora In Vivo Center (AIVC) 
in Lausanne. Experiments were performed following protocols approved by the Veteri-
nary Authorities of the Canton Vaud according to Swiss law (animal license VD3612).

Flow cytometry analysis of mouse lung tumors

Single cell suspensions were obtained from lung tumor tissue of C57BL/6 J male mice 
after transcardial PBS perfusion. Small tissue pieces were generated from perfused lungs 
using scissors and digested in DMEM containing 2.5% FBS, 25% Accutase (Sigma), 
0.5 mg/ml collagenase type IV (Worthington Biochemical Corporation), 0.5 mg/ml hya-
luronidase (Sigma) and 5 Units/ml DNAse I (Sigma) for 20 min at 37 C while shaking 
(800 rpm). Digested lung tissue was gently meshed through 70 μm cell strainers using a 
plunger. After red blood cells lysis (BD Pharm Lyse), single cell suspensions were incu-
bated with Fc blocker (1:100, BioLegend) in staining buffer (PBS with 2% FBS and 1 mM 
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EDTA), followed by cell viability staining with Live/Dead Fixable Zombie UV (1:1000, 
BioLegend) in PBS. Cells were then stained with fluorochrome-conjugated antibodies 
(see Additional file 1: Table 5) for 30 min at 4 C in staining buffer, prior to fixation with 
IC Fixation buffer (Invitrogen) for 30 min. Samples were acquired using an LSRFortessa 
apparatus (BD Biosciences), and data were analyzed with FlowJo (v10.7.1). Cells were 
gated based on their size and granularity (FSC-A vs SSC-A), followed by doublet and 
dead- cell exclusion. Conventional DCs (cDC) and pDCs were defined as CD45 + F4/80–
CD11c + MHCII + SiglecH– and CD45 + F4/80– CD11c + MHCII + SiglecH + B220 + , 
respectively.

Cell type annotation with single genes and gene signature recovered from bulk RNA‑seq

Cell type annotation in Tcells was performed with either a single marker or a gene sig-
nature recovered from bulk RNA (see below). A score was computed as the sum of 
max-normalized expression of signature genes. AUC was computed using the score as 
a predictor and CD4/CD8 sorting information as a label with prediction() function from 
ROCR R package [62].

To compute CD4/CD8 gene signature from bulk RNA-seq, a dataset of bulk RNA-seq 
of sorted immune cells from donors were downloaded from GEO under accession num-
ber GSE60424 [63]. DE analysis of 20 sorted CD4 and 20 sorted CD8 T cells populations 
from 10 donors was performed using edgeR R package [36]. The disease status was used 
as a covariate to eliminate disease bias. Genes with FDR < 0.01 and 

∣∣logFC
∣∣ > 0.5 were 

considered to be true markers ( N = 550). Only 174 of those markers were found among 
genes in the Tcells dataset. The top 5 and top 50 markers were used as a gene signature of 
CD4 and CD8 T cell types.

The cell type annotation in Cd8_TILs (Additional file 1: Fig. S11) was performed simi-
larly to the one in Tcells, but instead of using the bulk signature, a set of top marker 
genes of each cluster found at the single-cell level was used. Due to the lack of sorting 
information in this dataset, the label (ground truth cell type annotation) was set to the 
single-cell clustering results.

GO match score of top correlated genes

For each cell line from the cell_lines dataset, genes that were expressed in more than 
50% of cells of this cell line were kept. The gene pairwise Pearson correlation was com-
puted using a gene expression matrix at the single-cell and at the metacell levels. Then, 
the top 1000 statistically significant (adjusted p value < 0.05) and highly correlated gene 
pairs at each level were selected. For each gene pair, a GO match score was computed as 
a Jaccard coefficient of their GO id sets. We then computed an average GO match score 
for gene pairs found exclusively in metacells and normalized it by an average GO match 
score of gene pairs found exclusively at the single-cell level ( γ = 1).

Imputation in metacells

The imputation in single-cell and metacell data were performed using MAGIC [40] 
with the default configuration. Bulk RNA-seq data of human adenocarcinoma used 
for comparison with the imputed profiles were extracted from GEO under accession 
number GSE86337. Only the common genes between the bulk data and the single 
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cell data (cell_lines) were kept for the imputation. For each cell line, the imputed 
profiles of the metacells and single cells were compared with the corresponding bulk 
profile using the rank-based Spearman correlation. For the comparison, a pseudo-
bulk profile is computed as an average scRNA-seq gene expression within a particu-
lar cell line.

RNA velocity in metacells

Metacells were built in the same way described in the metacell construction section 
starting from the total counts (sum of spliced and un-spliced counts). The spliced and 
un-spliced counts for metacells were computed by taking their mean value within 
each metacell. The RNA velocity of the single cells and metacells was computed inde-
pendently using relative.velocity.estimate() function from the Velocyto.R package [5] 
with fit.quantile = 0.02.

The purity of metacells in terms of velocity was computed based on the cosine simi-
larity of RNA velocities of single cells belonging to one metacell. The purity is deter-
mined as a maximum of a median of the cosine between RNA velocity vectors of cells 
based on the formula:

where −→v (x) is a velocity of a cell x belonging to a metacell C.
To obtain comparable 2D velocities vectors between single cells and metacells, a 

joint tSNE of single-cell and metacell velocities was computed using tSNE.velocity.
plot() function with the parameters nPCs = 10 and perplexity = 50. We then com-
puted the velocity similarity score as a median of the cosine similarities between the 
velocity of each single cell and the velocity of corresponding metacell, i.e.,

where −→v (x) is the velocity of cell x , and 
−→
V (C) is the velocity of a supercell C (that 

contains x ) in the joint tSNE. We computed the similarity between single-cell RNA 
velocity and that of random grouping in the same way. For subsampling method, to 
make a reasonable comparison, we define the similarity as follows:

where −→v (x) is the velocity of cell x and −→v ′
(
x′
)
 is the velocity of subsampled cell x′ that 

is nearest to x (based on the Euclidean distance).
A key parameter estimated with RNA velocity is the equilibrium slope of each gene, 

which corresponds to the ratio between spliced and un-spliced mRNA that represents 
the equilibrium between mRNA production and degradation. This equilibrium slope 
can be computed for a limited number of genes (Fig. 3i). To compare the consistency 
of RNA velocity results in metacells and single cells, the Pearson correlation between 
equilibrium slope values was computed for the genes for which this equilibrium slope 
can be computed in all the methods (metacell, subsampling and random grouping) 
across all graining levels.

velocity_purity(C) = maxx∈Cmediany∈Ccos
(−→
v (x),

−→
v
(
y
))
,

similarity = mediancos(
−→
v (x),

−→
V (C))

similarity = mediancos
(−→
v (x),

−→
v ′

(
x′
))
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Data integration of the COVID‑19_atlas dataset

For each sample of the COVID-19_atlas dataset, metacells were first constructed by 
specifying the graining levels to ensure more than 20 metacells are obtained in each 
sample:

where [] denotes the integer part and n denotes the sample size. We then used the 
SelectIntegrationFeatures() function from Seurat package [15] to get 2000 genes for the 
integration. We next merged the metacell samples into a single object of 146, 304 meta-
cells and performed a PCA reduction and Harmony integration [46] of all the samples.

To evaluate the batch effects in terms of protocols and samples before and after 
integration, kBET acceptance rate [47] was computed for non-integrated and inte-
grated datasets for the cell types present in all samples in a sufficient number (i.e., B 
cells, monocytes, CD4 T cells and CD8 T cells). UMAP coordinates were used for this 
estimation.

To compute kBET acceptance rates for protocols, we randomly subsampled m meta-
cells from 10 × 5’ protocol where m is number of metacells in 10 × 3’ protocol. We then 
applied the function kBET() on those subsampled batches for k ∈ {10, 20, 30, 40, 50} to 
obtain the rejection rate r(k) . The kBET acceptance rate is then determined as 1− r(k).

The kBET acceptance rates for samples were computed in the same way. In the sub-
sampling step, 15 metacells from each sample were subsampled where possible.

DE analysis within either monocytes or B cells from COVID-19 patients versus healthy 
controls was performed at the metacell level with Seurat using only PBMC samples. 
Gene set enrichment was applied to the top 20 differentially expressed genes.

Approximate coarse‑graining for large datasets

For the datasets with size> 100, 000 , we offer the option to use an approximate coarse-
graining in SuperCell, which repeats all the steps of the metacells construction but uses 
a set of subsampled cells , whose number can be specified by the user, to build an initial 
subsampled metacell structure. Then, the remaining cells are mapped to the most similar 
metacell based on the Euclidean distance (Additional file 1: Fig. S15a).

Integration of the human TIM_atlas dataset

Publicly available and well annotated datasets generated or reported in ref [39] and used 
to build the atlas of tumor infiltrating myeloid cells (TIM_atlas, N = 108, 566 ) are listed 
in Additional file 1: Table 2. Integration of the listed datasets was performed as described 
in the original study [39]. Briefly, we performed two rounds of integration using scano-
rama package [64]. In the first round, 10 × datasets were integrated and corrected. In the 
second round, corrected 10 × data were integrated with all the other datasets.

All the downstream analyses, including metacell construction, cell type annotation 
and the DE analysis were performed on the corrected gene expression data. Cell type 
annotation is available for the dataset generated in the original study [39]. Cells from the 
remaining datasets integrated into the atlas were annotated using a logistic regression, 

γ = min
([ n

20

]
, 10

)
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trained on the first 100 principal components of annotated data. Metacells were anno-
tated based on the most abundant cell type in each metacell. The DE analysis between 
pDC and cDCs was performed at the single-cell and metacell levels the same way as in 
the TIICs dataset.

Computational time and memory allocation

Assessment of the computational time and memory allocation for the data integration 
pipeline was performed on the COVID-19_atlas dataset. We benchmarked each step 
of the analyses separately, iteratively increasing the number of single cells by adding 
new samples. The benchmarking of the visualization includes dimensionality reduction 
(PCA) and UMAP. The benchmarking of the clustering includes PCA, graph construc-
tion and Seurat clustering. The benchmarking of the DE analysis consists of Seurat DE 
analysis with the t-test for 12 clusters (defined as the main cell types annotated in the 
original study) and 2000 genes. Since DE analysis could not be performed for datasets 
with more than 600, 000 cells, the computational time and memory allocation were 
extrapolated using linear model (gray lines in Fig.  4d). The benchmarking of the data 
integration consists of PCA and Harmony integration. The benchmarking of the ‘Com-
bined analysis’ consists of all the steps, including PCA, UMAP, graph construction, 
clustering, DE analysis and Harmony integration. The following functions of the Seurat 
package [15] were used: RunPCA(), RunUMAP(), RunHarmony(), FindNeighbors() and 
FindClusters(), FindAllMarkers(). The benchmarking was performed on one node of an 
HPC cluster with 512G of RAM. To test the limits reached on standard desktop, the 
benchmarking was performed on an Intel core i7 with 16G of RAM. To assess computa-
tional time and memory allocation, the function mark() from R package bench [65] was 
used.

To test computational time and memory allocation for the standard scRNA-seq data 
analyses pipeline for one sample, including building metacells with SuperCell or with 
MetaCell followed by dimensionality reduction (PCA), clustering (Seurat) and DE analy-
sis (t-test), scRNA-seq datasets of a different number of cells were generated by subsam-
pling a larger dataset (GSE136831) [66]. DE analysis was performed for 3 clusters and 
10, 000 genes. The benchmarking was performed using the time linux command on an 
HPC cluster using 20 CPUs to allow parallel computation for MetaCell. To test the limits 
reached on standard desktop, the benchmarking was performed on an Intel core i7 with 
16G of RAM.

Building metacells that are consistent with cell type annotation

To build metacells that are consistent with a cell type annotation or specific conditions 
(e.g., treatments, donors) provided by the users, metacells that contain cells from differ-
ent cell types or conditions are split such that each metacell contains cells from only one 
cell type and/or one condition.
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