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Abstract

Background: Essential Proteins are demonstrated to exert vital functions on cellular
processes and are indispensable for the survival and reproduction of the organism.
Traditional centrality methods perform poorly on complex protein—protein interaction
(PPI) networks. Machine learning approaches based on high-throughput data lack the
exploitation of the temporal and spatial dimensions of biological information.

Results: We put forward a deep learning framework to predict essential proteins by
integrating features obtained from the PPI network, subcellular localization, and gene
expression profiles. In our model, the node2vec method is applied to learn continuous
feature representations for proteins in the PPl network, which capture the diversity of
connectivity patterns in the network. The concept of depthwise separable convolu-
tion is employed on gene expression profiles to extract properties and observe the
trends of gene expression over time under different experimental conditions. Subcel-
lular localization information is mapped into a long one-dimensional vector to capture
its characteristics. Additionally, we use a sampling method to mitigate the impact of
imbalanced learning when training the model. With experiments carried out on the
data of Saccharomyces cerevisiae, results show that our model outperforms traditional
centrality methods and machine learning methods. Likewise, the comparative experi-
ments have manifested that our process of various biological information is preferable.

Conclusions: Our proposed deep learning framework effectively identifies essen-

tial proteins by integrating multiple biological data, proving a broader selection of
subcellular localization information significantly improves the results of prediction and
depthwise separable convolution implemented on gene expression profiles enhances
the performance.

Keywords: Essential protein, Deep learning, Protein—protein interaction network,
Subcellular localization, Gene expression
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Introduction

Essential proteins are closely related to the metabolism, differentiation, and apoptosis
of cells, which are indispensable for the survival and reproduction of organisms [1].
They help understand the minimum requirements for cell life and the mechanisms
of cell growth regulation, which are vital to the discovery of human disease-causing
genes and defense against human pathogens [2]. Furthermore, they are instrumental
in drug synthesis to find potential targets for new antibiotics in pathogenic organisms
[3]. In the early stage, methods for identifying essential proteins include single-gene
knockout [4], RNA interference [5], conditional knockout [6], etc., which are usually
resource-intensive and time-consuming. With the accumulation of high-throughput
data, and the completion of extensive proteome sequencing projects, technologies
such as yeast two-hybrid systems [7], affinity purification [8], and microarray gene
expression profiling [9] have yielded a wealth of protein interaction information. Con-
sequently, computational methods for identifying essential proteins develop rapidly,
reducing experimental costs and improving identification efficiency [10].

Studies have shown that the importance of a protein is closely related to its topo-
logical characteristic in the protein—protein interaction (PPI) network. Jeong et al.
[1] are the first to propose a topology-based method, degree centrality, judging the
necessity of a node based on the number of its adjacency node. Afterward, various
centrality methods based on other topological properties arise, while identifying
essential proteins merely using the PPI network is insufficient. Researchers found that
essential proteins tend to form highly connected clusters, hence, they began to focus
on the relationship between the importance of proteins and their aggregation [11],
which makes gene expression profiles one of the biological information that research-
ers value. PeC, proposed by Li et al. [12], determines a protein’s essentiality based
on its connectivity and whether it has a high probability of being co-clustered and
co-expressed with its neighbors. Another method, WDC [13], units the Pearson cor-
relation coefficient to measure the gene expression profiles and the edge clustering
coefficient to weigh the PPI network to identify the essential proteins. Lately, JDC
[14] refers to the fluctuations problem in gene expression data and offers a dynamic
threshold method to binarize it, then combines the degree centrality and Jaccard
similarity index to calculate the JDC score for each protein in the PPI network. Fur-
thermore, studies on the construction of the PPI network have emerged. TGSO [15]
firstly adopts the node density measurement method for complex networks to build a
protein aggregation degree network, then simultaneously utilizes biological informa-
tion to construct a protein co-expression interactive network and a protein co-locali-
zation interaction network. The three networks are integrated as a comprehensive PPI
network and the score of the protein is calculated iteratively based on the homology
information. Another prediction model based on the construction of the weighted
PPI network, WPDINM [16], is presented by Meng et al. Different from TGSO, this
method first combines gene expression data and topological information to construct
a weighted PPI network, and then simultaneously builds a domain-domain interac-
tion network. Finally, they integrate two networks as a protein-domain interaction
network. The criticality of proteins is estimated with a novel PageRank-based iterative
algorithm using the subcellular localization and orthologous information.
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Recently, many machine learning and deep learning methods have been applied to
predict essential proteins. Researchers generally integrate the PPI network with other
biological information, including gene expression profiles, subcellular localization, Gene
ontology, etc. With diverse topological and biological characteristics, selecting suitable
features to predict essential proteins is one concern. Utilizing 26 features composed
of centrality indexes and subcellular localization information as original feature space,
Zhong et al. [17] put forward a feature selection method based on SVM-RFE to predict
essential proteins. Another feature engineering method proposed by them, XGBGEMF
[18], uses the same features mentioned above to construct composite characteristics,
obtaining a better subset to predict essential proteins. Meanwhile, node2vec [19] tech-
nique, which has been commonly used in deep learning methods to extract topological
characteristics from PPI networks, presents a new perspective of automatically feature
learning without any manual selection. Zeng et al. construct a deep learning framework
DeepEP [20], which treats gene expression profiles as images and uses CNN to extract
features. They invoke node2vec to extract topological characteristics from the PPI net-
work and concatenate two biological features together. A sampling method is also used
to alleviate the impact of unbalanced learning in their research, which helps effectively in
prediction tasks. Considering the sequential characteristics of gene expression profiles,
they further raised a method [21], which applies bidirectional long short-term memory
cells to capture its non-local relationships. Zhang et al. present a deep learning method,
DeepHE [22], to predict essential genes accurately, by integrating 89 sequence features
derived from DNA sequence and protein sequence with network embedding features
learned from the PPI network to train a multilayer neural network, They also use a cost-
sensitive technique to address the imbalanced learning problem.

Concerning the traditional centrality method, in the first place, denoting the topo-
logical characteristics using one centrality index scalar is incomplete. Secondly, since
the noise in the PPI network is gradually increasing, it is inadequate to identify essen-
tial proteins merely depending on the PPI network. Some feature engineering meth-
ods may filter out a better subset, while the initial feature space is selected manually,
and it is uncertain whether these centrality features can fully represent the topologi-
cal properties of network nodes. Several machine learning and deep learning methods
combine gene expression profiles and subcellular localization data with the PPI network
to predict essential proteins. They generally select 11 or 17 types of pivotal subcellular
localization to construct feature space, while these common methods fail to adequately
cover the proteins in the PPI network. Many gene series matrices provide the data with
time courses and control experiments. Some deep learning methods have studied the
trend over the time course, while few of them observe the different conditions in the
meantime.

To tackle the problems mentioned above, we proposed a deep learning method, com-
bining the PPI network, gene expression profile, and subcellular localization to predict
essential proteins. We use the node2vec technique to learn a mapping of nodes to a
low-dimensional space of features to obtain topological properties in the PPI network.
Different from some existing deep learning treatments which generally target temporal
features of gene expression profiles to extract key proteins, in hope of extracting the pat-
terns of gene expression data that change along temporality under different experimental



Yue et al. BMC Bioinformatics

(2022) 23:318

conditions, we chose an experimental series matrix that provides both disparate treat-
ment and temporal data. The concept of depthwise separable convolution is applied to
gene expression profiles to understand the pattern under different experimental envi-
ronments. We use 1-dimensional convolution (Conv1D) to learn temporal character-
istics of gene expression separately, and then use pointwise convolution to merge the
features from two environments. In addition, unlike the common disposal of subcellular
localization in machine learning and deep learning methods, we did not select several
common subcellular localizations. To ensure most samples are characterized by sub-
cellular localization, we rank the number of proteins corresponding to each subcellular
localization in the PPI network and then selected the top 1024 of them as feature space.
From the integrated channel, we select a broader scope of subcellular localization and
map it as a long vector, covering 96.34% of proteins in the PPI network. Furthermore,
a sampling method is also employed to address the unbalanced learning problem due
to the essential proteins accounting for only a minor proportion. Plenty of experiments
are carried out on the dataset of Saccharomyces cerevisiae to validate the performance
of our model. To begin with, we compare the disposal of every biological information
partly to confirm whether our processing is superior. Then, we split and recombine the
biological information to observe the contribution of each element to the classification.
Finally, we measure the performance between the balanced dataset and raw dataset and
compare our method with ten centrality methods, six machine learning methods, and
one deep learning method, which turns out our model outperforms these measures.

Methods
Overview
Figure 1 displays the overall structure of the proposed deep learning framework, mainly
consisting of two parts: the feature extraction component and the classification com-
ponent. Our model includes three inputs, namely gene expression profile, subcellular
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Fig. 1 General structure of our framework. Conv1D 1-dimensional convolution, BN batch normalization, MP
max pooling, PW pointwise convolution, GMP global max pooling
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localization, and PPI network. In the feature extraction section, we separate the gene
expression profiles according to different experimental environments and then imple-
ment ConvlD on the data respectively to learn the features along the time step, followed
by a normalization operation and a max pooling process to prevent overfitting. After
that, we concatenate the outputs of two channels to transmit to a pointwise convolution
to integrate information from the different conditions. A global max pooling operation is
utilized to flatten the data, and a fully connected layer is used to condense it. As for the
PPI network, the node2vec technique is used to learn the topological properties of every
protein, and two fully connected layers are applied to the embedding output. Subcellular
localization data is mapped into a long 1-dimensional vector, and three fully-connected
layers are conducted to enrich the feature. Finally, we combine the result from three bio-
logical information as the input for the classification part. Given the minor proportion
of essential proteins, a sampling method is utilized to address the unbalanced learning
problem.

Features derived from gene expression profiles

Observing the gene expression profile, we found the data along the time course between
replicate samples appears to have a higher relevance. Still, the data along the time course
between different conditions seem more independent. GSE7645 [23] is selected as our
object of analysis, concluding with no-treated cultures as control groups and CHP
exposed cultures as observation groups with three replicate samples set each. The exper-
iment studied the genome-wide temporal response of the yeast S. cerevisiae to oxida-
tive stress, which is a well-known biological process that occurs in all respiring cells and
is involved in pathophysiological processes such as aging and apoptosis, while essential
proteins are closely related to the cell metabolism, differentiation, and apoptosis [10]. In
addition, the experiment provides expression data over time for different environments,

satisfying the conditions of our model.

po S x—m(y—m)
N 2 1)
\/Z(x—mx)zz (J’_W‘y)

The Pearson correlation coefficient (PCC) [24], which defines as Formula (1), is uti-
lized to measure the relevance between two vectors, x, and y, where m, and m, denotes
the mean value of them partly. PCC varies between — 1 and + 1, with 0 implying no cor-
relation, while — 1 or+1 indicates an exact linear relationship. For every protein, to
begin with, we calculate the PCC of the replicate samples between two different environ-
ments, then we compute the PCC between three replicate samples in the same environ-
ment. As plotted in Fig. 2, we can see the distribution relationship of proteins under
different comparisons. Although the values of samples in different environments are
relatively discrete, the overall trend is between 0.1 and 0.6. Meanwhile, in the control
group and the observation group, the correlation between different replicate samples is
steep, in the general range of 0.6—0.9. Due to the replicate sample being an exact copy of
a sample, it is reasonable to have a high positive correlation.

To observe changing trends from the aspects of time course and experiment envi-
ronment, we use the concept of depthwise separable convolution [25]. It applies a
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Fig. 2 The PCC between replicate samples and different conditions in the gene expression profiles. C control
group, O observation group, R1 replicate sample 1, R2 replicate sample 2, R3 replicate sample 3

single convolutional filter per each input channel, and pointwise convolution is used
to create a linear combination of the output of the depthwise convolution. To begin
with, assuming the control group and the observation group as different channels, we
separate the original data and apply ConvlD to learn the feature of the time course
in each channel. The output is displayed in Formula (2), in which C denotes the num-
ber of channels—while under current circumstances indicates the number of repli-
cate samples in the individual environment. b and W separately represent bias, and

weight.
Out(Coug ) = b(Coug ) + le W (Cous k) © Input (k) )
k=0

Secondly, batch normalization [26] processing follows to help the model generalize
better to new data. The transformation operation is shown in Formula (3). When B
denotes the numerical set passed in, py and op* represent the mean value and vari-
ance of B, which are applied to maintain the mean output close to 0 and the stand-
ard deviation output close to 1. With y and B referring to the trainable parameters, y,

implies the output for every number in B.

Xi — UB
Yi=V—F—
1/0’54—8

Notably, batch normalization works differently during training and inference. Dur-

+h 3)

ing training, the mean and variance are respectively the mean and variance of the
corresponding dimensions of the data in the batch. During prediction, the mean and
variance are calculated based on the expectations of all batches.

At the end of the separate disposal, we use the max pooling operation to process the
results above, with the pool size set as 2. Subsequently, the outputs of two channels
are concatenated together to go through a pointwise convolution [27], which com-
putes features that mix information from the channels of the input tensor and not
mix information across time since it is looking at one tile at a time, where they con-
tribute to factoring out channel-wise feature learning and time-wise feature learning.
Ultimately, we use the global max pooling process to reduce data dimension, and a
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dense layer with hidden units as 16 is employed to produce the output. To demon-
strate that the model can learn different patterns under different controls, we selected
a protein and visualized its gene expression profile data processing.

Figure 3 displays the visualization of convolution processing under two channels. It
can be seen that the gene expression data in the two environments are distinct, while
the data between replicate samples are similar. After independent processing of the two
channels, the output results of the middle layer prove that the patterns extracted are dis-
crepant, which is beneficial to model learning. Since the more multifaceted data patterns

can be observed, the more the model can learn.

Features extracted from subcellular localization

Some machine learning and deep learning methods employ commonly used subcellu-
lar localizations to build feature space [17, 18, 21]. Applying the method in the paper
[21], it turns out that 19.17% of proteins in our PPI network possess none of these fea-
tures. Therefore, hoping that the feature could cover most proteins in our PPI network,
we download the integrated channel data from the COMPARTMENTS database [28],
which integrates data from different channels to obtain a final confidence index. The
confidence index is provided by the COMPARTMENTS database for every subcellular
location-protein entry, indicating the reliability of the types and sources of localization
information. The higher the confidence score, the more reliable the confidence of the
subcellular localization-protein entity evidence. Next, we counted the number of pro-
teins corresponding to all subcellular localization in the file and then sorted the sub-
cellular localization in descending order according to the number. Finally, select the
top 1024 subcellular localizations in the ranking result as the feature space, containing
96.34% proteins in the network. At the same time, we maintain the representativeness of
every subcellular localization.

As shown in Fig. 4, the subcellular localization information of each protein is mapped
into a long one-dimensional vector, and the confidence score provided by the integrated
channel is normalized. We use three fully connected layers to process it. The first two
layers set 64 hidden units to compress the output length from 1024 to 64, then batch
normalization is applied to prevent overfitting, and the last layer sets 16 hidden units
as the output of the feature. We set the outcome of each component as a vector with a
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Fig. 3 Visualization of gene expression profile processing. ConviD 1-dimensional convolution, BN batch
normalization, MP max pooling, PW pointwise convolution, GMP global max pooling
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Fig. 4 The process of subcellular localization data for protein YLR308W. ABmEE complex Apolipoprotein
B mRNA editing enzyme complex, CPKAK complex cyclin-dependent protein kinase activating kinase
holoenzyme complex, 6PFK complex 6-phospho fructose kinase complex

length of 16 so as not to interfere with the weight of each part since the contribution of
each component is not explicit yet.

f(x) = max(0,x) (4)

The rectifier linear unit function (4), which can access a much richer hypothesis space
that would benefit from deep representations, is employed as the activation function.
Formula (5, 6) displays the calculation for each layer. With I, W, and b respectively
denoting the input, weight matrix, and bias of this layer, the adjusted signal is obtained
with initial weight, then the activation function is utilized to judge each element in the
matrix to acquire the output y.

Z=W-I+b (5)

y=f2) (6)

Features learning from PPl network

In traditional centrality methods, the score of one protein in the PPI network is gen-
erally calculated based on certain scoring criteria. These calculation standards indicate
unique theory, so their representativeness is relatively limited. With the increase in net-
work scale, it is insufficient to measure the topological properties with one scalar score.
Meanwhile, the feature engineering methods also require manually selecting the original
feature space. After the optimization, the best subset usually contains several centrality
indexes. Hence, we require a method that not only learns the topological characteristics
automatically but also gets richer representations.

Node2vec [19], a semi-supervised algorithm for scalable feature learning in networks,
automates the whole process by casting feature extraction as a representation learn-
ing problem that requires no hand-engineered features. Researchers formulate feature
learning in the network as a maximum likelihood optimization problem, and stochastic
gradient descent is applied to optimize a custom graph-based objective function. Skip-
Gram architecture, which is widely used in the field of neuro-linguistic programming,
is extended on the network to derive feature representations. Different from the lin-
ear nature of the text, a richer notion of the neighborhood for nodes in the network is
required. Thus, researchers propose a flexible biased random walk procedure that sam-
ples many different neighborhoods of a given source node. For a given network G=(V,
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E), where V and E respectively denote the set of vertexes and edges, a random walk of
fixed length | for source node u€V is simulated. During the process, the probability of
the iy, node in the walk observes the distribution below:

e if (v,%) <0

Plc; = x|ci-1 =v} = {x otherwise 7

where m,, is the unnormalized transition probability between nodes v and x, and Z is
the normalizing constant. The second-order random walk with parameters p and q is
utilized to guide the walk. When the walk just transitioned from node t to node v, the

vx?

evaluation of the next step depends on the probability of m,, = a(t, x)-w,,, where

% lf di =0
Ay (t,%) = 11 if dye =1 (8)
L if dy =2

and d, denotes the shortest path distance between node t and x. In our experiment,
the dimension of feature representations is set as 64. For the random walk process, we
set the length as 20 and the number of walks as 10. In the meanwhile, the context size of
the optimizer is also set to 10, and the other parameters remain the defaults. After that,
two fully connected layers are called on the feature generated by the node2vec technique
from the PPI network, with hidden units set as 64 and 16, respectively.

Data and materials

The proposed model consists of three inputs: protein—protein interaction networks,
gene expression profiles, and subcellular localization information. We also require
essential proteins to label the dataset.

PPI networks are derived from BioGRID [29] database, a regularly updated public
database that archives and disseminates genetic and protein interaction data from model
organisms and humans. We downloaded the new version (release 4.4.200, July 2021) of
Saccharomyces cerevisiae data as the PPI networks. In our experiment, physical inter-
action edges are adopted only. Besides, self-loops and duplicate edges are removed to
reduce data noise. The PPI network has 127,581 edges and 5988 nodes after processing,
with an average degree of 21.31.

Essential proteins are retrieved from different sources, with DEG [30] database offer-
ing 1109 essential proteins and OGEE [31] database providing 946 ones. Information
from two databases is combined, and duplicate records are removed, leaving 1132 pro-
teins in the union set, which takes up 18.90% of the total samples.

Subcellular localization data is extracted from the integrated channel of the COM-
PARTMENTS [28] database (October 2021), a weekly updated web resource that inte-
grates evidence on protein subcellular localization from manually curated literature, high
throughput screens, automatic text mining, and sequence-based prediction methods.

Gene expression profiles are collected from Gene Expression Omnibus, a public func-
tional genomics data repository. We download the series matrix file of GSE7645 [23], a
study of expression data for Saccharomyces cerevisiae oxidative stress response. The overall
design of the experiment comprises three replicate cultures in the mid-exponential phase
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exposed to 0.19 mM CHP with three non-treated cultures used as controls, and samples
were collected at the time point of 0, 3, 6, 12, 20, 40, 70, 120 min after adding the oxidant
respectively. The raw data held 9335 probe records, leaving 5658 entries after matching
probe ids from the annotation package. Given that a protein may correspond to more than
one probe, we calculated the average maximum expression data as the only result of mul-
tiple corresponding entries, leaving 5476 entries after processing, covering 91.45% of the
total sample.

Our experiments are performed on TensorFlow [32] version 2.4.0. The filters for all con-
volution operations are set to 64, and the activation function for all convolution operations
is selected as the rectified linear unit function. During training, we set the epoch to 20 and
batch size to 64. RMSprop is considered as the optimizer with the learning rate set as 0.001.
For the original data set, we first randomly disrupt it. Then 60% of the data is taken as the
training set to obtain trainable parameters, 20% as the validation set for hyperparameter
tuning, and 20% as the test set, which participates in no training steps, to inspect the ability
of the model to predict new samples.

Evaluation metrics

We evaluate the performance of our method with other methods by comparing the AUC
score and AP score, which separately indicate the area under the ROC curve and the area
under the PR curve. ROC curve is a graphical plot created by plotting the true positive rate
against the false positive rate at various threshold settings. The PR curve refers to a graph
with the precision value against the recall value. Additionally, we also employ other metrics
to evaluate the model as shown in Formula (9-14), where TP, TN, FP, and FN represent
the number of true positives, true negatives, false positives, and false negatives. Accuracy
counts the number of correct predictions in all samples. Due to the unbalanced learning
problem in our classification task, we further utilize precision and recall. Precision records
the number of correct predictions in the samples with positive predictions, denoting the
credibility of the model’s judgment on positive prediction, while recall statistics the correct
predictions in all positive samples. In our aim of identifying essential proteins, the two met-
rics are equally important.

Accuracy = (TP + TN)/(TP 4+ TN + FP 4+ FN) 9)
Precision = TP/(TP + FP) (10)
Recall = TP/(TP + FN) (11)

Thus, we apply another metric, the F1 score, which is the harmonic mean of precision
and recall. The closer the F1 score to 1, the better the comprehensive performance of the
model in terms of recall and precision. At the same time, the value of the f1 score decreases
when the value of either the recall or the precision becomes lower.

F1 score = 2 - precision - recall [ (precision + recall) (12)

Specificity = TF /(TN + FP) (13)
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NPV = TN/(IN + EN) (14)

Furthermore, we also employ specificity and negative predictive value (NPV). The for-
mer represents the proportion of correct predictions in all actual negative samples, and
the latter refers to the number of correct predictions in the samples with negative pre-
dictions. Notably, the F1 measure, AUC score, and AP score are more important than
other metrics in an imbalanced learning problem on the ability to comprehensively pro-
vide a classification assessment.

Result

Comparison of different processes on gene expression profiles

To demonstrate our separable approach to gene expression profiles is capable of excavat-
ing more patterns, we implement several comparative experiments, which reserve dif-
ferent environments sharing the same axis with replicate samples. Considering the time
characteristic of gene expression data, we respectively apply ConvlD and RNN-based
algorithms, namely long-short term memory (LSTM) [33], gated recurrent unit (GRU)
[34], bidirectional LSTM (BiLSTM), and bidirectional GRU (BiGRU) for comparison.
Among them, the ordinary ConvlD is used to verify the effectiveness of separation
processing. The control group, observation group, and replicate samples are put on the
channel axis, with other procedures and configurations remaining the same. Disposals
based on RNN are conducted by the TensorFlow instance, in which LSTM and GRU
set the unit as 64, and the ones calling the bidirectional operation set the unit as 32. For
tests that employ LSTM instance, dropout and recurrent dropout are set to 0.1 and 0.5
partly.

To ensure the reliability of comparison experiments, the six types of treatment keep
the output identical in length, and no other parts of the model or training parameters
are modified. After implementing the six methods on gene expression profiles, the ROC
and PR curves are shown in Fig. 5. With the AUC score of 0.93 and AP score of 0.81,
our method performs better, while the ordinary ConvlD has an AUC score of 0.85 and
an AP score of 0.68. From the terms of AUC score and AP score, BILSTM is slightly
better than LSTM, while GRU and BiGRU appear the same results. On the whole, the

Receiver Operating Characteristic Curve Precision-Recall Curve
1.0 e 1.0
Yos 0.8
©
x C
Yos 506
= 2
3 ]
Lo4 £04
9]
3
02 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
— Our Method(AUC=0.93) BILSTM(AUC=0.87) — Our Method(AP=0.81) BiLSTM(AP=0.66)
Conv1D(AUC=0.85) — GRU(AUC=0.88) Conv1D(AP=0.68) — GRU(AP=0.70)
LSTM(AUC=0.81) BiGRU(AUC=0.88) LSTM(AP=0.63) BiGRU(AP=0.70)

Fig. 5 ROC and PR curve of different processes on gene expression profiles
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performance of these RNN-based methods is rarely diverse. Apart from this, we also
evaluate the six different approaches on other metrics illustrated in Table 1.

Firstly, we find the value of accuracy, precision, recall, f1 score, NPV, and specific-
ity in our method is 6.26%, 14.04%, 10.52%, 12.41%, 5.00%, and 3.21% higher than the
ordinary ConvlD method respectively. Secondly, LSTM and BiLSTM have minor differ-
ences in performance. Although they are diverse in recall and precision, their F1 score
and accuracy are very close. Taking the AUC score and AP score into account, BILSTM
might be slightly better than LSTM, while the bidirectional operation in LSTM has little
impact on the results of this experiment. Furthermore, GRU is superior to the methods
using LSTM in all aspects, and the utilization of bidirectional hardly improves the per-
formance of GRU. Though the precision and specificity of BiGRU are 3.10% and 2.04%
higher than GRU, its other metrics are not as well as GRU. In general, among the RNN-
based processing methods, GRU displays the best result. The GRU is like the LSTM with
a forget gate, but has fewer parameters than LSTM, as it lacks an output gate, and has
been shown to exhibit better performance on certain smaller datasets. Bidirectional
operation simply consists of two regular RNNSs, each processing input sequence in one
direction, then merging their representations, hoping to catch patterns that may have
been overlooked by one-direction RNN. Nonetheless, the gene expression profiles used
in this experiment own a short timestep of length 8, thus, applying fewer parameters and
a simpler mechanism in training is a better choice. The overall result demonstrates that
it is recommended to split the channels and process the data separately for gene expres-
sion profiles with time courses and multiple conditions.

Comparison of different selections on subcellular localization

To prove our disposal of subcellular localization is better than other treatments, we
adopt the handling in paper [32] as a contrast. To begin with, they downloaded the
knowledge channel in the COMPARTMENTS database, then selected cytoskeleton,
cytosol, endoplasmic, endosome, extracellular, Golgi, mitochondrion, nucleus, per-
oxisome, plasma, and vacuole to map the feature for every protein. We implement the
same procedures and obtain a vector with a length of 11 from the knowledge channel.
Likewise, we also downloaded the integrated channel and select the same 11 subcellu-
lar localizations to construct the feature space. In our PPI network, the 11 subcellular
localizations from the knowledge channel cover 80.83% of proteins, while those from
the integrated channel cover 96.13% of proteins. We want to explore whether the cover-
age of features has an impact on the performance of the model. Furthermore, to study

Table 1 The performance of different processes on gene expression profiles

Method Accuracy Precision Recall F1 score Specificity NPV

Our Method 0.9048 0.7306 0.7885 0.7585 0.9320 0.9496
Conv1D 0.8422 0.5902 0.6833 0.6344 0.8820 09175
LSTM 0.8523 06311 0.5628 0.5950 09214 0.8982
BiLSTM 0.8514 0.5433 0.6900 0.6079 0.8838 0.9343
GRU 0.8606 0.6403 0.6807 0.6599 0.9052 0.9196

BiGRU 0.8581 06713 0.5943 0.6304 0.9256 0.8992
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Table 2 The performance of different selections of subcellular localization

Method Accuracy Precision Recall F1 score Specificity NPV

Integrated_1024 0.9048 0.7306 0.7885 0.7585 0.9320 0.9496
Integrated_512 0.8848 0.7304 0.6422 0.6835 0.9431 09165
Integrated_256 0.8548 0.6046 0.6943 0.6463 0.8927 09251
Integrated_128 0.7988 0.5253 0.7220 0.6081 0.8200 09145
Integrated_64 0.8214 0.4966 0.6840 0.5754 0.8509 0.9260
Integrated_11 0.7922 04752 0.6567 0.5514 0.8249 0.9087
Knowledge_11 0.7896 04585 0.6079 0.5227 0.8321 0.9008

the relevance between the scope of subcellular localization and the performance of the
model, based on the selection method mentioned in the previous section, we select the
top 64, 128, 256, 512, and 1024 subcellular localization respectively in the sorting results
to construct the feature space, and they all covered 96.34% of the proteins in the PPI net-
work. We remain other parts of the model unchanged to make the comparison results
more credible.

Figure 6 reveals the ROC and PR curves of the seven measurements. Employing the
same 11 subcellular localizations, the curve of the integrated channel roughly encloses
the curve of the knowledge channel, indicating that the coverage of features has an
impact on the model. Under the same conditions, the more comprehensive the coverage
samples are, the better the performance of the model will be. Applying the knowledge
channel, nearly 19.17% of the proteins do not have features, however, the proportion of
positive samples in this experiment is only 18.90%, so it is reasonable for the integrated
channel to perform better. Although the trend of the curve of Integrated 64 has some
twists, from an overall perspective, the length of subcellular localization is approxi-
mately in a positive correlation with the performance of the model. There is little differ-
ence between Integrated_64 and Integrated_128, thus, we infer that the features between
the position of 64 and 128 contribute less to the identification of essential proteins.

As illustrated in Table 2, the performance of seven disposals demonstrates the inte-
grated data retrieved with our method (Integrated_1024), is superior to the feature from
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the knowledge channel (Knowledge_11), with the value of accuracy, precision, recall,
f1 score, specificity, and NPV in our method being 11.52%, 27.21%, 18.16%, 23.58%,
9.99%, and 4.88% exceeds. In the first place, the common method sifts the data from
the knowledge channel with 11 subcellular localizations decreasing the supply of other
information. More importantly, nearly 20% of proteins possess none of the selected 11
subcellular localization, which causes insufficient coverage that leads to poor perfor-
mance. In contrast, our method uses combined data extracted from different sources
and extends the length of the features considerably, thus providing a richer representa-
tion and ensuring that the majority of the sample is included. Additionally, we found
that from Integrated 128 to Integrated 1024, the model performance rises steadily, so we
judge that there are properties in this section of data that enable the model to observe
more aspects. We stop continuing to extend the length of the feature because the sub-
cellular localization at position 1024 in the sorting results corresponds to only 136 pro-
teins in the PPI network. Further adding features that are not representative enough will
waste computing power and may not improve the effect of the model.

Comparison of centrality indexes and network embedding features
To validate that the node2vec technique generates a more comprehensive and effective
feature representation, ten well-known centrality methods, namely DC, BC, CC, EC,
SC, SoECC, ClusterC, MNC, LAC, and LID [1, 11, 35-42], are utilized in the compari-
son. First, we calculate the ten centrality indices for each protein. Then, we replace the
node2vec-generated 1D vector input of the PPI network in our model with centrality
values, remaining the disposal process of gene expression profiles and subcellular locali-
zation unchanged. Finally, we train the model and evaluate the performance. Moreover,
we concatenate the ten indexes together to test whether it provides a preferable result.
Except for the input of the PPI network part in the model, we keep the other settings
unchanged. In Fig. 7, we plot the ROC and AP curves of the node2vec technique and
other methods. We find that the AUC score of the centrality indexes shows little dif-
ference from that of node2vec, which is 0.08 less at most, while the AP value has more
obvious gaps. Although the PR curve of these methods intersected at begin, the ROC of
the node2vec curve is the largest. Intriguingly, using a single centrality index to replace
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Fig. 7 ROC and PR curve of node2vec technique and centrality methods
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the 64-dimensional vector of node2vec appears little difference, while the feature con-
catenating ten centrality indexes together reflects mediocre results, which may indicate
that simply combining the centrality properties is inadequate to provide a comprehen-
sive feature. We believe that some centrality indexes may be highly correlated, which
leads to redundancy problems because the smaller the difference between feature repre-
sentations, the fewer patterns the model can learn.

Table 3 presents that node2vec performs better than DC, BC, CC, SC, ClusterC, LAC,
LID, and the concatenated method in the six metrics. In general, using the index of EC
to replace node2vec reflects the best result, with an accuracy of 0.8840 and precision of
0.7011, which is supreme in the comparison of centrality indexes. Even though MNC
and SoECC show comparatively high accuracy of 0.8765, 0.8781, and precision of 0.7070,
0.7987, which is 6.81% higher than our method, they possess a low recall of 0.5211 and
0.5064. It is a manifestation of the trade-off between precision and recall, which draws
forth the f1 score to consider these two metrics at the same time. With MNC and SoECC
owning f1 scores of 0.6000 and 0.6198, we determine that, from the comprehensive level,
node2vec and EC outperform MNC and SoECC.

Notably, despite the result of the centrality index being just a scalar, when replacing
the representation extracted by node2vec with it, the disparity of outcome is not as sig-
nificant as we thought. Taking EC, for example, the result of recall is 10.36% less than
node2vec, while the other indicators are 5.74% lower at most, which hints that despite
centrality methods being proposed long before, treating their indexes as the input of the
deep learning model still shows an acceptable result. There is no doubt about the role the
PPI network played in classification, yet the small gap in the results between centrality
indexes and node2vec arouses the reflection of whether can we go further in the extrac-
tion of network features and how much every part contributes to the model capability.

Comparison of different combinations of features

In the previous three experiments, we separately implement comparison tests on the
process of three biological inputs. After demonstrating our treatment is practically more
effective, we conduct another experiment to confirm every feature is indispensable and

Table 3 The performance of node2vec technique and centrality indexes

Method Accuracy Precision Recall F1 score Specificity NPV

Node2vec 0.9048 0.7306 0.7885 0.7585 0.9320 0.9496
DC 0.8656 0.6443 0.6966 0.6694 0.9066 0.9249
BC 0.8589 0.6681 06163 0.6412 09213 0.9033
CcC 0.8406 0.5896 0.6271 0.6078 0.8929 0.9071
EC 0.8840 0.7181 0.6849 0.7011 0.9333 0.9228
SC 0.8581 0.5760 0.6923 0.6288 0.8929 0.9325
MNC 0.8765 0.7070 05211 0.6000 0.9533 0.9020
ClusterC 0.8539 0.6079 06161 0.6120 0.9086 09114
SoECC 0.8781 0.7987 0.5064 0.6198 0.9688 0.8894
LID 0.8573 0.7206 0.5632 0.6323 0.9392 0.8853
LAC 0.8623 0.6054 0.6368 0.6207 0.9108 0.9210

Concatenate 0.8497 0.5714 0.6667 06154 0.8900 0.9239
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sort out the contribution of each part to the model prediction. We split the three fea-
ture extraction components of our model, then test each separately, transmitting the
16-dimensional vector exported by the single part to the classification component to
obtain the last result. Moreover, we carry out the recombination among the features,
concatenating the output together to pass to the classification section.

Figure 8 plots the ROC and PR curves of the different components. In terms of the
performance of the single feature, the subcellular localization with an AUC score of
0.86 and AP score of 0.68 is significantly higher than the network embedding feature
and the gene expression features with AUC scores of 0.68, 0.57, and AP scores of 0.39,
0.24, which indicates that subcellular localization feature contributes the most in the
prediction task. From the perspective of the combination among features, the addition
of subcellular localization features on network embedding features and gene expression
features distinctly improves the capability with an AUC score of 0.19, 0.28, and an AP
score of 0.41, 0.45 higher than the original ones. Albeit the network embedding features
helps little on subcellular localization features, when incorporated with gene expression
profiles feature, it raises the AUC score and AP score by 0.21 and 0.22 from the previous.
Nonetheless, the participation of gene expression features hardly promotes the perfor-
mance of other features. Not to mention that the AUC score of subcellular localization
features decrease by 0.01 when combined with it. Yet, based on network embedding
features and subcellular localization features, the engagement of gene expression pro-
files enhances the AUC score from 0.87 to 0.93 and AP scores from 0.70 to 0.81, which
proves its function to a certain extent.

Table 4 tells the results of these combinations on other metrics. Remarkably, the recall
of gene expression features is 0.0396 and 0.4449 higher than the subcellular localization
feature and network embedding feature. Furthermore, the addition of gene expression
data on the network embedding feature reduces the accuracy and precision by 0.0234
and 0.061, while recall increases by 0.2599, which might be an embodiment of the trade-
off between the metrics and the features. Thus, we demand to improve other indicators
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Table 4 The performance of different feature combinations

Method Accuracy Precision Recall F1 score Sensitivity NPV

S+N+G 0.9048 0.7306 0.7885 0.7585 0.9320 0.9496
N 0.8122 0.5094 0.2379 0.3243 0.9464 0.8416
S 0.8639 0.6404 0.6432 06418 0.9156 0.9165
G 04566 02112 0.6828 03226 04037 0.8448
N+G 0.7888 04484 04978 04718 0.8568 0.8795
N+5S 0.8723 06713 0.6388 0.6546 0.9269 0.9165
S+G 0.8673 0.6560 0.6300 0.6427 09228 09143

N network embedding features, G gene expression profile features, N+ G network embedding features plus gene
expression profile features, N+ S network embedding features plus subcellular localization features, S+ G subcellular
localization features plus gene expression profile features, S+ N+ G subcellular localization features plus network
embedding features and gene expression profile features

while maintaining the fine result of existing metrics. Ultimately, adding the gene expres-
sion profiles on the combination of network embedding features and subcellular locali-
zation features boosts the accuracy, precision, recall, f1 score, sensitivity, and NPV by
0.0325, 0.0593, 0.1497, 0.1039, 0.0051, and 0.0331 respectively, which manifests that our
method (N + S+ G) realized an excellent balance on the three biological features.

The poor performance of gene expression profiles as a single component comes as no
surprise due to the utilization of gene expression profiles being mostly implemented on
only one gene series matrix. GSE7645, employed in our model, stores the microarray
data of the temporal response of the yeast to oxidative stress, in which every protein
corresponds to 48 expression data. Thus, it is unfair to count on a single gene expres-
sion matrix from one specific experiment to comprehensively measure every node in a
network. Comparatively speaking, PPI network and subcellular localization data are col-
lected and integrated from multiple databases by researchers, which conclude various
experimental results, numerous pieces of literature, and extensive annotation informa-
tion. The quality, quantity, and dimensionality of two biological information cannot be
compared with simple series data from one experiment, and it is natural for them to
perform better. However, in general, the inclusion of gene expression data improved the
performance of the model in all aspects.

Comparison of disposals on the unbalanced dataset

As previously mentioned, essential proteins merely take up a minor proportion in all
samples. Taking yeast data used in our experiments as an example, the ratio of essential
proteins is 18.90%. Therefore, the unbalanced dataset is also a problem to be considered.
Referring to the means in DeepEP [25], we applied a sampling method in our training.
Supposing the numbers of essential proteins and non-essential proteins are E and NE, in
every iteration, we randomly select E non-essential proteins and combine them with all

essential proteins to form a training set.
pl = (1 — E/NE)" (15)

To alleviate the problem that some non-essential proteins may not be capable of par-
ticipating in training, we iterate the process 20 times and randomly pick negative sam-
ples at every turn. The pl (15), which indicates the probability of one non-essential
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protein not being chosen in the training process with the sampling method applied is

approximately 0.00496, where n represents the number of epochs.
p2=(1-2-E/(E+ NE))" (16)

Next step, we use the raw dataset for comparative study. To minimize the differences
in other configurations, we arbitrarily sample 2 x E data as a train set to keep the same
size as the balanced dataset. When repeating 20 times, the probability, p2 (16), of one
protein not being selected is nearly 7.5e—05. Many studies have also applied class weight
or sample weight to deal with the unbalanced learning problem. Similarly, we also con-
ducted experiments to compare class weight and sampling methods. Set the class weight
of essential protein, which is the minority class in this experiment, to 1-10, while keep-
ing the class weight of nonessential protein at 1, and then observe the impact of class
weight on performance.

As displayed in Fig. 9, the AUC score and AP score of the raw dataset are 0.13 and
0.20 lower than the result of the balanced dataset, which employs the sampling method.
Although the performance results vary for different class weights, they all show some
improvement over the original dataset. In the process of class weight parameter adjust-
ment, the model obtains the largest AUC score of 0.87 when the class weight is 8 and the
largest AP score of 0.72 when the class weight is 9. The worst performance is obtained
when the class weight is 4, corresponding to AUC and AP values of 0.83 and 0.63 respec-
tively, which is unexpected. Since the ratio of essential proteins to non-essential proteins
in the original dataset is approximately 1:4, a balanced state should be reached when the
class weight was 4.

We find no clear pattern in the AUC or AP scores for different class weights, with
models performing relatively well when the class weight is 5, 8, 9, and 10, and relatively
poorly when the class weight is 2, 3, 4, and 7, so we cannot simply relate the value of
class weight to the capability of the model. Furthermore, the difference between these
models is not significant, which suggests two things: firstly, class weight, as a means of
adjusting for unbalanced datasets, improves model performance to some extent but is
not stable and we cannot directly obtain the best class weight value. Further, the model

shows robustness to class weight parameter adjustment.
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As exhibited in Table 5, the raw dataset, with accuracy, precision, recall, f1 score, spec-
ificity, and NPV 6.42%, 14.77%, 24.43%, 19.56%, 2.25%, and 5.40% lower than the bal-
anced dataset, strongly proves the necessity of applying balanced dataset. Furthermore,
we find that with the increase of class weight, the recall value of the model shows an
upward trend, while the precision value gradually decreases, and the values of accuracy
and F1 score are unstable. Class weight is a way to weight the loss function in training.
In our test, more and more essential proteins and non-essential proteins are judged as
essential proteins. In this case, we can discover more essential proteins, but in the mean-
time, we also misjudge a large number of non-essential proteins as positive samples,
which is the reason for the increase in recall value and the decrease in precision value.
Finally, we draw two conclusions. First, the problem of the unbalanced dataset is one
of the concerns that need to be taken into account when identifying essential proteins.
Second, the sampling method is more effective and stable than the class weight when
solving unbalanced datasets.

Comparison with traditional centrality methods

To compare the performance with other methods, we conduct ten centrality methods
on the same PPI network. DC, BC, EC, CC, and SC, are realized based on the pack-
age NetworkX, while SOECC, MNC, ClusterC, LAC, and LID are implemented on the
theory proposed by researchers. Same as common experimental procedures to measure
the performance in centrality methods, first, we calculate the centrality values of every
protein in the PPI network. Secondly, the proteins are ranked in descending order based
on the values. Then, the top-ranked 19% of proteins are selected as candidate essential
proteins. Last, based on this partition, we calculate evaluation metrics according to the
true labels of proteins.

From Fig. 10, our method significantly outperforms the centrality methods with
accuracy, precision, recall, and f1 score. The results of the comparison are as we
expected. Our model takes three inputs and uses different treatments to extract pat-
terns of features, whereas traditional centrality methods predict essential proteins
based on only one of these inputs, the PPI network. With the increase in network
scale and information noise, it is inadequate to capture the topological properties

Table 5 The performance of different approaches to the unbalanced dataset

Method Accuracy Precision Recall F1 score Specificity NPV

Sampling 0.9048 0.7306 0.7885 0.7585 0.9320 0.9496
Raw 0.8406 0.5829 0.5442 0.5629 0.9095 0.8956
CW=2 0.8689 0.7379 04735 0.5768 0.9609 0.8870
CW=3 0.8431 0.5870 0.6864 0.6328 0.8815 0.9197
Cw=4 0.8489 0.6266 0.6083 0.6173 0.9092 0.9026
CW=5 0.8523 0.5887 0.6964 0.6380 0.8881 0.9271
CW=6 0.8589 0.6244 0.5991 06115 0.9180 0.9096
cw=7 0.8406 0.5596 0.6920 0.6188 0.8747 0.9251
Ccw=8 0.8648 0.6522 0.6904 0.6707 0.9082 09217
CW=9 0.8673 0.5902 0.7094 0.6443 0.8995 0.9382

CW=10 0.8489 0.6069 0.6709 0.6373 0.8928 0.9167
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Fig. 10 Performance of our method and centrality methods

with one single scalar. However, it is unnecessary to completely deny the centrality
method for every proposed theory is based on rigorous theoretical derivation and
real-world data testing. Thus, if we abandon the primitive measurement procedures,
conversely regarding the centrality index as a characteristic of a protein, and put it
into deep learning, that would take a specific effect.

Comparison with machine learning methods

Machine learning methods have been widely applied to identify essential proteins. To
demonstrate the superiority of our proposed method, we conduct several comparison
experiments with six traditional machine learning methods and one deep learning
method, DeepEP. Firstly, Support Vector Machine (SVM), AdaBoost, Logistic Regres-
sion (LR), Naive Bayes (NB), Random Forest (RF), and Decision Tree (DT), imple-
mented by the scikit-learn package with default parameters, are tested on the same
inputs as our model. For shallow machine learning algorithms, the training and test-
ing datasets are divided in a ratio of 8:2. We also use the sampling method to provide a
balanced dataset during the training. Furthermore, DeepEP, a deep learning model to
identify essential proteins, which employs node2vec to learn network representations
and multi-scale CNN to extract features from gene expression profiles, is tested on
our dataset. With the other parameters remaining the same, we modified the values of
the two parameters, time step and channel, in DeepEP to fit the shape of our features,
as different gene series matrices were used in the two studies. To ensure the fairness
of comparison, we use the same data as our model. For the compared machine learn-
ing algorithm, we use the same PPI network, gene expression profile, and subcellular
localization. For the compared deep learning methods, we use the same PPI network
and gene expression profile due to the different construction of the models.

Figure 11 plots the ROC and PR curves of our method and other machine learning
methods. The AUC score of our method is 0.11, 0.14, 0.35, 0.23, 0.35, 0.17, and 0.24
higher than that of DeepEP, SVM, AdaBoost, Logistic Regression, Naive Bayes, Ran-
dom Forest, and Decision Tree. Correspondingly, the AP score of our method is 0.26,
0.34, 0.55, 0.47, 0.43, 0.36, and 0.50 exceeds that of DeepEP, SVM, AdaBoost, and
Logistic Regression, Naive Bayes, Random Forest, and Decision Tree. From the trend

of the curves, we can see that deep learning algorithms generally outperform shallow
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Fig. 11 ROC and PR curve of our method and other machine learning methods. SVM support vector
machine, LR logistic regression, NB naive bayes, RF random forest, DT decision tree

Table 6 The performance of our method and other machine learning method

Method Accuracy Precision Recall F1 score Specificity NPV

Our method 0.9048 0.7306 0.7885 0.7585 0.9320 0.9496
DeepEP 0.7629 0.4450 0.6831 0.5390 0.7832 0.9067
AdaBoost 0.7179 0.2597 0.2643 0.2620 0.8239 0.8273
Decision Tree 0.7588 0.4049 0.5815 04774 0.8002 0.8911
Naive Bayes 04766 0.2403 0.8150 0.3711 0.3975 0.9019
Logistic Regression 0.4332 0.2341 0.8767 0.3695 0.3296 0.9195
Random Forest 0.6569 0.2051 02819 0.2375 0.7446 0.8160
SVM 0.7905 0.4545 0.5286 0.4888 0.8517 0.8854

machine learning algorithms, and relatively speaking, among the shallow machine
learning methods SVM has the best adaptability for this classification problem.

Table 6 displays other metrics on these methods. Compared with DeepEP, our method
is 14.19%, 28.56%, 10.54%, 21.95%, 14.88%, and 4.29% higher than DeepEP in accuracy,
precision, recall, f1 score, specificity, and NPV, which confirms the assistance of subcel-
lular localization data on classification tasks. The superior capability of two deep learn-
ing methods to other machine learning on most metrics also demonstrates that deep
learning recognizes more patterns than machine learning. Adaboost and Random For-
est, with low precision of 0.2597, 0.2051, and low recall of 0.2643, 0.2819, reveal a poor
performance on such task. Although Naive Bayes and Logistic Regression show a high
recall of 0.8150, and 0.8767, their accuracy, precision, and f1 score are inferior, which
indicates the two methods classify many non-essential proteins as essential proteins,
which is undesired in our experiments. While Decision Tree and SVM present a rela-
tively better performance among other machine learning methods, they are unable to
compete with deep learning methods.

Test on Homo sapiens data
Since essential proteins are crucial for the understanding of the minimal require-
ments for cellular life, which is important for the discovery of human disease genes and
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defending against human pathogens, it is more meaningful to utilize the human pro-
tein interactome to find the essential protein candidates. Therefore, we further conduct
experiments on the data of Homo sapiens.

PPI network (BioGRID, Release 4.4.200, July 2021) and subcellular localization data
(COMPARTMENTS, October 2021) of Homo sapiens are downloaded from the same
version as Saccharomyces cerevisiae. The human PPI network contains 537,790 edges
and 19,093 nodes after removing repetitive edges and self-loops, with an average degree
of 28.17. As for subcellular localization data, we apply the same disposal as yeast data,
rank the subcellular localization according to the number of proteins they correspond
to, and select the top 1024 ones, covering 93.21% of proteins in the PPI network. For the
extraction of essential proteins, drawing lessons from the approach in DeepHE [22], we
download a total of 20 subsets of all human essential proteins in the DEG database and
consider a protein as vital if it appears in more than 5 subsets. There are 2161 essential
proteins after processed, taking up 11.32% of proteins in the PPI network.

Gene expression data, GSE41828 [43], is retrieved from the GEO database as well.
GSE41828 contains the expression data of TWEAK-treated time course in U20S cells,
which aims to explore the role of TWEAK in tumor growth and antitumor immune
response and the activity and mechanism of RG7212, an antagonistic anti-TWEAK anti-
body, in tumor models. The experiment set five timesteps, five replicate samples, and
two experimental conditions, TWEAK treated and Untreated. The raw series matrix
file held 54,675 probe records, leaving 43,138 entries after matching probe ids from the
annotation package. After removing duplicate entries, the matrix owns 20,857 records,
in which 16,926 proteins exist in the PPI network, covering 88.65% of the total sample.

Figure 12 displays the process of gene expression data of Homo sapiens. To fit the
input shape of the gene expression module in our model, we trim and pad every data
in GSE41828, selecting repl, rep2, and rep3 as replicate samples. Considering the
original data only owns five timesteps, we pad the timestep with zeros. To ensure the
fairness of the experiment, we use the same PPI network, subcellular localization,
and gene expression data as the input in the comparison among our proposed model,
DeepEP, and shallow machine learning methods. For the supervised learning meth-
ods, we split the original dataset, of which 80% is used as the training set and 20% as
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the test set, which is not involved in any training process. The hyperparameters, input
shape, and other settings of the model remain the same as those of the yeast experi-
ment. For unsupervised learning methods such as the centrality method, we use the
same method as for the yeast data, first calculating the centrality value for each pro-
tein, then sorting them in descending order according to the value, and selecting the
top 11% of proteins as candidate essential proteins.

Figure 13 displays the results of the comparison with traditional centrality methods.
Our method outperforms centrality methods with all metrics higher, especially the
value of precision, recall, and fl score. Among traditional centrality methods, LAC
and LID perform the best, while EC, SC, and SoECC perform a little worse, but the
overall difference is not significant. DC, CC, and BC are mediocre, while ClusterC has
the worst results.

Combining the result of Fig. 10, the comparison with centrality methods on yeast
PPI network, we find the value of precision, recall, and f1 score of our model have
decreased, while the value of accuracy, specificity, and NPV slightly increase. Due
to the identification of essential proteins is an unbalanced learning problem and the
ratio of essential proteins in the human PPI network is only 11.32%, thus, the metrics
as precision, recall, and f1 score are more significant. From an overall perspective,
the performance of the model on the human dataset is reduced. Notably, compared
to the yeast network, the metrics of centrality methods have increased in all aspects
of the human network, mainly accuracy, specificity, and NPV. We believe it is the rise
in the number of negative samples in the dataset that has enhanced the capability of
negative sample identification, but the main intention of our study is to identify the
positive samples. Another noteworthy point is in the yeast network, SOECC presents
the best result, while in the human network, LAC and LID outperform other meth-
ods. Also, CC gives a poor result in the yeast PPI network, while it surpasses the per-
formance of DC and BC in the network of H. sapiens, which reveals the instability of
centrality approaches. The size of the PPI network varies greatly between H. sapiens
and S. cerevisiae. The human network has 4.12 and 3.19 times the number of edges
and nodes as the yeast network respectively, which makes it denser. It may cause a dif-
ference in centrality performance. We also trimmed and padded the gene expression
data, which resulted in a loss of data and thus impact the performance of the model.

101 m OurMethod m DC m BC B CC EC W SC M SoECC MNC B ClusterC_M LAC ™ LID
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D06
2
©
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Fig. 13 Compare with centrality methods on Homo sapiens data
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The result of machine learning, DeepEP, and our method is shown in Fig. 14. The AUC
score of our model and DeepEP is higher than shallow machine learning methods, and
the AP score of our method is higher than other machine learning methods, proving that
in the H. sapiens PPI network, our model still owns the best performance.

Nonetheless, combining the results of yeast data in Fig. 11, the AP score and AUC
score of our model in human data, which are vital measurements in unbalancing learn-
ing, have reduced. The AUC score of DeepEP enhances by 0.09, while its AP score
reduces by 0.21. Among shallow machine learning methods, SVM performs best, which
is the same as the result of yeast data, and its AUC score and AP score increase by 0.10
and 0.09 separately, proving that SVM suits the task of essential proteins identifica-
tion best. Logistic Regression shows normal ability in the yeast data, but its capability
improves greatly in human data, with AP score and AUC score raise 0.18 and 0.22. The
overall performance of the Decision Tree on yeast data is not poor, but it presents unde-
sirable results on the human data. Naive Bayes and AdaBoost still reveal unacceptable
outcomes on the data of human, which is identical to the conclusion of yeast data, dem-
onstrating that these two approaches are not applicable for such a problem.

It is worth mentioning that, although the AUC score of DeepEP is high, its AP score
is lower than SVM, logistic regression, and random forest. We infer that there may be
some main reasons for this result as follows. First, DeepEP is designed to receive only
two biological information as inputs, gene expression profiles and PPI network, lack-
ing inputs for subcellular localization compared to shallow machine learning methods,
which proves that subcellular localization may be more important in the identification
of key human proteins. In addition, we have trimmed the human gene expression profile
data, resulting in some missing information, and using the expression data correspond-
ing to the experimental results to explain the proteins of the entire PPI network may not
be comprehensive.

We also tried to use the trainable parameters obtained from S. cerevisiae to predict
the essential proteins of humans, but the result is not satisfactory. Because genomic dif-
ferences between species are significant, also, the two gene expression data correspond
to completely different experiments, and the patterns they learn are certainly different.
We have to trim and pad the gene expression chosen for humans to fit the shape of the
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input, which causes the loss of some information. All these problems led to bad results.
We admit it is the limitation of our model and hope that future work will have a solution

to this problem.

Conclusion

We proposed a deep learning framework for identifying essential proteins. There are
three main purposes of our study: First, we want to explore whether the treatment we
perform on each element is preferable and the contribution of each element to the model
prediction. Secondly, we want to find a better way to address unbalanced datasets. Ulti-
mately, we want to know if the proposed model performs better than other methods in
predicting essential proteins.

For gene expression profiles, we demonstrate that separating the experiment environ-
ments as different channels and extracting their features along the time step is better
than using ordinary convolution. Concerning subcellular localization, we indicate that
the result of applying the long vector from the integrated channel as the feature space is
significantly excellent compared to the frequently-used 11-dimensional vector obtained
from the knowledge channel. When handling the PPI network, the embedding features
generated by the node2vec technique are preferable to centrality indexes. Subcellu-
lar localization information plays the most vital role in the classification task, followed
by the network embedding features, and gene expression profiles take a comparatively
less effect. In addition, we examined the impact of unbalanced datasets and confirmed
that the sampling method is an effective way to address this type of problem. To prove
the capability of our method, we compare our model with ten centrality methods, six
machine learning algorithms, and one deep learning model. Results show that our pro-
posed approach is better than the existing methods. We further test our model on the
data of Homo sapiens. Although our model still outperforms other methods, the metrics
are not as desirable as the yeast data. Results of directly applying training parameters of
S. cerevisiae to predict the essential proteins of H. sapiens are also unacceptable. The dif-
ference between the genomes of the two species is considered to be the main obstacle.
Addressing the limitations of deep learning on this problem is also one of the concerns
in the future.

In future work, we will integrate more gene expression data to explore multi-aspect
patterns. Since the gap between the performance of the node2vec embedding features
and the traditional centrality feature is trivial, we are interested in a more applicable
technique to extract the topological properties of the PPI network. Besides, our experi-
ment uses quite a long vector to represent the subcellular localization, which consumes
computational costs, so a more sophisticated treatment for subcellular localization

information is required.

Abbreviations

CNN Convolutional neural network

RNN Recurrent neural network

SVM-RFE  Support vector machine-recursive feature elimination
CHP Cumene hydroperoxide

AUC Area under the curve

AP Average precision

PR Precision-recall

ROC Receiver operating characteristic
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