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Abstract 

Background:  The malaria risk prediction is currently limited to using advanced 
statistical methods, such as time series and cluster analysis on epidemiological data. 
Nevertheless, machine learning models have been explored to study the complexity 
of malaria through blood smear images and environmental data. However, to the best 
of our knowledge, no study analyses the contribution of Single Nucleotide Polymor-
phisms (SNPs) to malaria using a machine learning model. More specifically, this study 
aims to quantify an individual’s susceptibility to the development of malaria by using 
risk scores obtained from the cumulative effects of SNPs, known as weighted genetic 
risk scores (wGRS).

Results:  We proposed an SNP-based feature extraction algorithm that incorporates 
the susceptibility information of an individual to malaria to generate the feature set. 
However, it can become computationally expensive for a machine learning model to 
learn from many SNPs. Therefore, we reduced the feature set by employing the Logistic 
Regression and Recursive Feature Elimination (LR-RFE) method to select SNPs that 
improve the efficacy of our model. Next, we calculated the wGRS of the selected fea-
ture set, which is used as the model’s target variables. Moreover, to compare the per-
formance of the wGRS-only model, we calculated and evaluated the combination of 
wGRS with genotype frequency (wGRS + GF). Finally, Light Gradient Boosting Machine 
(LightGBM), eXtreme Gradient Boosting (XGBoost), and Ridge regression algorithms are 
utilized to establish the machine learning models for malaria risk prediction.

Conclusions:  Our proposed approach identified SNP rs334 as the most contributing 
feature with an importance score of 6.224 compared to the baseline, with an impor-
tance score of 1.1314. This is an important result as prior studies have proven that 
rs334 is a major genetic risk factor for malaria. The analysis and comparison of the three 
machine learning models demonstrated that LightGBM achieves the highest model 
performance with a Mean Absolute Error (MAE) score of 0.0373. Furthermore, based 
on wGRS + GF, all models performed significantly better than wGRS alone, in which 
LightGBM obtained the best performance (0.0033 MAE score).

Keywords:  Malaria, Single nucleotide polymorphisms, Machine learning, Feature 
extraction algorithm, Genetic risk factors, Weighted genetic risk score
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Background
Malaria is a mosquito-borne infectious disease that can progressively infect and anni-
hilate the red blood cells. The World Health Organization’s report entitled “World 
Malaria Report” [1] estimated the annual death of 400,000 from malaria, of which 
two-thirds are children below the age of five. It is also more commonly diagnosed 
in sub-Saharan Africa, where a significantly large number of cases throughout the 
endemic region are due to increased mosquitoes’ reproduction resulting in more 
malaria transmission. Furthermore, ineffective prevention methods are still wide-
spread [2]. Thus, much research has been devoted to developing tools for malaria 
surveillance. It is believed that prevention is better than cure [3], and hence, the 
implementations of preventative solutions are crucial in determining individuals’ 
early detection even before the disease symptoms strike.

The development of malaria cases in malaria-endemic regions is not the only known 
risk factor. According to other observations in the literature [4–6], specific inherited 
genetic traits are also possible risks of malaria contraction among different popula-
tions. Thus, genetic susceptibility (an inherited increase in the risk of developing the 
disease) [7] and genetic resistance (the ability to prevent the risk of developing the 
disease or a marked reduction in the severity of the symptoms) to malaria have been 
characterized by genetic mutations with erythrocytes. This includes hemoglobin vari-
ants or related sickle cell disease, Duffy blood antigens glycophorins, and blood type 
groupings. Substantial evidence in the past decade has established that different pop-
ulations have different susceptibility to malaria due to diverse genetic adaptations and 
gene selection pressures of malaria in the human genome [8].

A genome-wide association study (GWAS) is an approach used in genetics research 
that scans genomes of multiple individuals to find specific genetic variations with a 
particular disease. These genetic variations are markers or contributing risk factors 
of the disease [9]. Multiple prior studies [10, 11] have established that the Hemo-
globin Subunit Beta (HBB) gene to be a significant genetic risk factor for malaria 
because of its risk alleles. However, HBB variants alone cannot precisely predict the 
disease as malaria is a complex disease. Many other genes, such as ABO, ATP2B4, 
G6PD, CD40LG, FY, GYPA, GYPB, GYPC, HBA, HP, SCL4A1, have been associated 
with malaria susceptibility or resistance across different populations via GWAS [12]. 
To further combat the disease’s spread, it is crucial to understand the contributing 
genetic risk factors involved in characterizing the disease’s complexity [10].

Machine learning is an Artificial Intelligence strategy that uses training algorithms 
to learn from large datasets, and is the basis of numerous developments, from speech 
recognition to autonomous self-driving cars [13]. Inspired by the recent break-
throughs of machine learning in various domains, this paper applies machine learning 
algorithms to study malaria’s complexity by leveraging well-planned malaria research 
on genetic variants. The Malaria Genomic Epidemiology Network (MalariaGEN) 
http://​www.​malar​iagen.​net/ is a community of researchers from more than 20 coun-
tries to understand how natural genetic variation in humans and malaria parasites 
affects the biology and epidemiology of malaria. This network, formally established 
in 2005, has developed several GWAS [12, 14–22] with their collaborating partners 

http://www.malariagen.net/
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to fulfil their goals. Therefore, MalariaGEN produces the essential data required for 
machine learning algorithms to mine for valuable patterns.

In recent endeavours, machine learning algorithms were used to explore the complex-
ity of malaria, particularly malaria parasites and development stages, through blood 
smear images [23, 24]. In separate studies, environmental data were collected and 
trained by machine learning algorithms to link climate change to malaria transmission 
[25, 26]. Since the aforementioned prediction strategy was deemed successful, we lever-
aged the power of machine learning to quantify the risk score of an individual’s suscep-
tibility to malaria based on genetic variation, i.e., the contributing risk factors, instead. 
Currently, the prediction is limited to using advanced statistical methods, such as time 
series and cluster analysis [27]. Hence, machine learning prediction models based 
on genetic variation are required to fully explore the disease’s potential genetic mark-
ers. The machine learning algorithms can detect valuable patterns in complex datasets 
by applying various optimization, statistical and probabilistic methods to identify the 
most suitable set of variables to train the model, for example, Single Nucleotide Poly-
morphisms (SNPs). SNP is the most common type of genetic variation among individu-
als. We are interested in finding out whether it is possible to quantify an individual’s 
risk of malaria based on SNP genotype data for facilitating personalized prevention and 
treatment. Thus, instead of classifying “Is this individual infected by malaria?”, this study 
predicts a risk score to answer the question “What is the individual risk score towards 
malaria susceptibility?”. In answering this question, we propose a feature extraction algo-
rithm that aids in selecting the main SNP features representing the genetic risk factors as 
well as exploring machine learning models’ performance based on SNP genotype data. 
Weighted genetic risk scores (wGRS) and the combination of wGRS with genotype fre-
quency (wGRS + GF) were calculated as the target variable. The contributions of this 
paper are summarized below:

•	 Proposes a novel feature extraction algorithm using genotype patterns that can 
aid Logistic Regression and Recursive Feature Elimination (LR-RFE) in selecting 
the significant features. We also provide the ranked features list obtained from our 
approach;

•	 Proposes a novel machine learning-based model to predict the risk score of an indi-
vidual developing malaria, and;

•	 Proposes a risk score that combines wGRS and genotype frequency (wGRS + GF). 
We also provide a comprehensive analysis of the experimental results, comparing 
wGRS with wGRS + GF.

This study hypothesizes that we can predict the risk score of an individual’s suscep-
tibility to malaria from genetic variants through the proposed feature extraction algo-
rithm with LR-RFE and the analysis of multiple machine learning models. The potential 
findings will add to our understanding of this topic by exploring genetic variation for 
different populations to predict an individual’s risk score of developing malaria, i.e., indi-
vidual malaria risk score, in various regions. This will further create a comprehensive 
understanding of malaria susceptibility and reaching out to a wider community to com-
bat the spread of malaria.
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Methods
Figure  1 depicts the pipeline for identifying the malaria risk score in subjects, start-
ing from the raw data until the evaluation stage of the prediction model. The pipeline 
consists of four discrete stages of operation: (1) Data Mining and Modeling, (2) Feature 
Extraction and Selection, (3) Model Development and (4) Model Evaluation. Figure  2 
shows the methodology flow chart in detail.

Dataset

Our study uses the human GWAS data produced from the MalariaGEN Consortial Pro-
ject 1 entitled: “Genome-wide study of resistance to severe malaria in eleven popula-
tions.” The consortial project structure is described in [28], and information on each 
collaborating partner’s studies and field sites is acknowledged on the MalariaGEN 
website.

We used genotype data of 20,854 individuals (10,791 malaria-affected individuals and 
10,063 controls) from 11 worldwide populations (Table 1).

Data mining and modeling

Data preprocessing

Initially, the first stage of the pipeline is converting raw MalariaGEN genotype data into 
a format that machine learning models can use. We downloaded the data from the Euro-
pean Genome-phenome Archive http://​ega-​archi​ve.​org/. We then identify 122 SNPs rel-
evant to malaria through literature reviews, where 31 academic articles [8, 12, 15–22, 
29–49] are reviewed and analysed. Out of 122 SNPs, 18 SNPs are removed due to unre-
ported effect size and unavailability in some populations. A total of 104 SNPs is retained 
(Additional file  1), with genotypes comprising major allele A and minor allele a. This 
stage also converts all unparseable values in the data, such as data types and standard 
format errors, into null representations. We also map 32 kgpIDs to rsIDs and remove 37 
samples without detailed information about malaria subtypes. This preprocessing proce-
dure yielded 104 SNP variables from a total of 20,817 samples.

Generally, genotype imputation softwares such as IMPUTE2 [50] and Beagle [51] are 
deployed for estimating missing genotypes. These software programs impute missing 
genotypes based on publicly available reference datasets such as 1000 Genomes Pro-
ject or HapMap 3. However, in our case, imputation needs to be more specific as we 
are developing a prediction model of individual’s susceptibilities to malaria. Thus, we 

Fig. 1  Machine learning pipeline for individual malaria risk score prediction

http://ega-archive.org/
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Fig. 2  Methodology flow chart

Table 1  Analysed populations and samples

Sample size indicates the total number of individuals for each population

Population Case Control Sample size

Burkina Faso 807 639 1446

Cameroon 693 778 1471

Gambia 2807 2786 5593

Ghana 422 342 764

Kenya 1944 1738 3682

Malawi 1590 1498 3088

Mali 475 394 869

Nigeria 288 131 419

Tanzania 485 494 979

Vietnam 860 868 1728

Papua New Guinea 420 395 815

Total 20,854
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developed a python program that imputes any missing genotypes based on the popula-
tion group and malaria subtype from the human GWAS data used in this study. In order 
to do so, the program first groups individuals based on their countries and then by their 
malaria subtypes. Finally, a comparison of a total of six SNPs for each missing genotype, 
i.e., three SNPs before and after the missing loci, is performed before imputing the miss-
ing genotype with the most common genotype data.

Moreover, to perform feature extraction and selection separately from model develop-
ment, we split the preprocessed dataset into two independent datasets, of which 25% 
were used for feature extraction and selection (5,204 samples; 2,667 malaria-affected 
individuals and 2,537 controls), and 75% were used for model development (15,613 sam-
ples; 8,087 malaria-affected individuals and 7,526 controls).

Dataset for feature extraction and selection

As a preparation for the feature extraction and selection stage, we represent the geno-
type data as feature and class label data frame. Each SNP itself is a feature, where the 
columns represent 104 SNPs containing genotype data. The genotype data is formed by 
two alleles, A and a, generally expressed as AA, Aa, and aa. The last column represent-
ing the class label contains the categorical value representing the binary classification of 
the individuals: 0–case (malaria-affected) and 1–control (healthy). Note that binary clas-
sification is only used for feature extraction and selection; for model development, the 
target variable is the risk score described in the next section.

Dataset for model development

The model is designed to provide individuals with continuous risk scores rather than 
binary classification. Therefore, we convert the categorical value in the class label by 
calculating wGRS as the target variable. To further evaluate the model performance 
of wGRS, we also computed wGRS + GF as the target variable for an identical dataset, 
which will be compared with wGRS-only model to determine the better performing 
model.

Genotype patterns and frequency

Several observations in the literature [52, 53] indicate that genotype patterns contrib-
ute to disease association. The exploration of genotype patterns is significant for malaria 
prediction as substantial evidence has established that sickle cell anemia traits can par-
tially prevent malaria [10, 54–56]. The genetic trait of sickle cell anemia is found on the 
recessive allele of the hemoglobin gene. This means that an individual needs to have 
two copies of the recessive alleles—one from the mother and one from the father—to 
have this condition. If the alleles are heterozygous, the individual tends to be resistant 
to the development of malaria. In contrast, if the alleles are homozygous, the individual 
is susceptible to the development of malaria. Inspired by these evidences, our study will 
include genotype frequency in the formulation of wGRS + GF to characterize the indi-
vidual’s malaria risk score; and propose a novel feature extraction algorithm based on 
genotype patterns and frequencies.
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wGRS

The wGRS is calculated for each genotype by multiplying the number of risk alleles (0, 
1, 2) by the estimated effect size reported for each variant. The reported effect size was 
estimated using the logistic regression association tests method and can be found in the 
association test summary statistics on the MalariaGEN website https://​www.​malar​iagen.​
net/​sppl25/. The calculation of wGRS is summarized as: risk allele * effect size = wGRS 
[57].

wGRS + GF

The wGRS + GF combines the wGRS mentioned above and genotype frequency. Simi-
larly, the wGRS + GF is calculated for each genotype. The Hardy–Weinberg equation is 
utilized to calculate genotype frequency from genotype data as this equation calculates 
an individual’s genetic variation at equilibrium. For example, the frequency of allele A is 
represented by p, and the frequency of allele a is represented by q. Thus, the frequency of 
genotype AA is calculated as p2, genotype aa is calculated as q2, and genotype Aa is cal-
culated as 2pq. The wGRS + GF is then produced by multiplying the genotype frequency 
by the wGRS. The calculation of wGRS + GF is summarized as: (risk allele * effect size) * 
genotype frequency = wGRS + GF. Of note, this approach is a novelty, because research-
ers to date only used wGRS [58–60]. However, the wGRS only considers the risk alleles 
and the variant effect size, which is insufficient in these aspects for malaria prediction 
as genotype patterns have been associated with malaria. Thus, it is essential to include 
genotype frequency to characterize an individual’s malaria risk score further.

Feature extraction and selection

Feature extraction

We proposed an algorithm to extract genotype, i.e., SNP features, into a valuable set of 
information that aids feature selection. As mentioned earlier, for all subjects, genotype 
data is usually represented as AA, Aa, and aa, by two alleles A (major allele) and a (minor 
allele). Such representation leads to repeated data that may affect analysis performance, 
and thus feature extraction and normalization are required. The proposed algorithm 
focuses on genotype patterns where we find pattern frequencies based on populations 
due to its strong linkage between genotype patterns and malaria. This approach is a nov-
elty because the current state-of-the-art methods substitute genotype data with numeri-
cal values {0, 1} for the major and minor allele [61]; or with numerical values {0, 1, 2} 
for homozygous major, heterozygous and homozygous minor [62–65]. Simultaneously, 
some other studies rely on odd ratios calculated from genotype data [60], and some are 
combined with clinical features [66].

For each population, the proposed feature extraction algorithm makes a left-to-right 
pass over the preprocessed dataset to compute the frequency counts of the genotype 
patterns. The genotype patterns and frequency counts are stored in a dictionary. Next, 
we compute the total of all the genotype patterns by summing up all the counts in the 
dictionary. The total is used for data normalization. Another left-to-right pass is then 
made over each population’s preprocessed dataset, but this time, we retrieve the gen-
otype pattern counts from the dictionary in O(1) time to divide it by the total, which 

https://www.malariagen.net/sppl25/
https://www.malariagen.net/sppl25/
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we define the resulting value as the pattern frequency. Each pattern frequency is stored 
based on the SNP feature list. The pseudocode of the proposed feature extraction algo-
rithm is presented in Fig. 3. The most common feature extraction approach that substi-
tutes homozygous major, heterozygous and homozygous minor with numerical values 
{0, 1, 2} is used for benchmark comparisons.

Feature selection

To create an accurate model that relies on the most relevant features (namely, features 
that contribute the most for malaria prediction), we evaluated the feature importance, 
i.e., feature dependence of the model, through Logistic Regression and Recursive Fea-
ture Elimination (LR-RFE). The analysis is based on the feature extraction algorithm 
described above, followed by the Recursive Feature Elimination (RFE) algorithm, in 
which the Logistic Regression (LR) coefficient is utilized in the core of the model to per-
form feature selection.

The LR model’s coefficients have been widely utilized for feature importance estima-
tion [67]. Each coefficient represents a score, known as the feature importance score, 
which describes the significance level between the feature and the target variable. The 
higher the coefficient, the more relevant the feature is to the target variable. In other 
words, coefficients can be utilized to determine the important and unimportant features 
to avoid overfitting [67] and are thus useful for prediction [68]. The RFE model ranks the 
104 features based on their importance scores obtained from the LR model into a list, in 
which the first position represents the most significant feature, while the least impor-
tant feature is ranked on the last position. The features are ranked via their importance 
scores, where the least important features are iteratively eliminated through remodeling 
until the required number of features is retained. This iterative process results in a list of 
ranked features, i.e., from the most to the least important features.

In this regard, a recent study [69] used LR-RFE to rank feature importance and selec-
tion to find the optimal feature set in breast cancer prediction. The study focused on 
cytological characteristics obtained from the breast fine needle aspiration test. Several 
models were developed to predict breast cancer using different number of features. 
It was concluded that LR-RFE contributed to better classification performance and 

Fig. 3  Pseudocode of the proposed feature extraction algorithm
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improved model accuracy. Therefore, we chose to use LR-RFE on genetic variation to 
observe the effectiveness of improving the accuracy of risk score prediction.

Subsequently, to explore different sets of features for predicting malaria risk score, the 
results obtained are then utilized to generate 104 feature sets based on feature impor-
tance ranking. For example, the first feature set consists of the top one feature, whereas 
the second feature set consists of the top two features, and so on as shown in Fig.  4. 
Finally, the last feature set consisting of all 104 features is used to compare the efficacy of 
other feature sets. For each feature set, the cumulative effects of features are used as the 
target variable, whereby the wGRS and wGRS + GF are summed, respectively. Figure 5 
shows the high-level pseudocode up to this stage.

Model development

Preprocessed datasets from the previous stage are split into two independent data-
sets, namely Test-1 (15%) and Test-2 (85%). The study in [70] recommended the split 
percentage.

Test-1 and Test-2 are split into seven equally-sized random groups by using seven-
fold cross-validation to prevent overfitting. Three machine learning models are trained, 
namely, Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boost-
ing (XGBoost), and Ridge regression. We choose these machine learning algorithms 
because they are rarely used to analyse SNP genotype data and have been proven to 
have higher efficiency and faster training speed in other machine learning domains. For 

Fig. 4  Overview of genotype-pattern-frequency-based features

Fig. 5  High-level pseudocode of the feature extraction and selection stage
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each machine learning model, the Test-1 dataset is utilized to obtain the best parameters 
through a grid search. These best parameters are then used on the Test-2 dataset for the 
machine learning prediction models.

Model evaluation

Performance metrics

The final stage of the pipeline in Fig. 1 evaluates the performance of each model in pre-
dicting individual malaria risk scores. The outcome is a continuous risk score, so the 
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics are utilized 
[71]. The MAE measures the average residual error between the target and predicted 
values. On the other hand, the RMSE measures the square root of the average squared 
residual error between the target and predicted values. Unlike other metrics, MAE and 
RMSE are negatively-oriented scores, where a smaller value indicates better model per-
formance. In other words, the lower the MAE or RMSE value, the higher the prediction 
accuracy.

All code was developed using the Python programming language, and simulations 
were performed on a machine with Apple M1 Max processor and 32 GB of memory. All 
methods were carried out in accordance with relevant guidelines and regulations.

Results
Optimization of feature importance ranking

Figures 6 and 7 highlight the feature importance ranking and importance scores for 
all 104 SNPs, starting from the most important to the least important in the con-
text of malaria risk score prediction. For readability purposes, we only show the abso-
lute value of the scores. The ranks in Fig. 6 are computed using the proposed feature 
extraction algorithm with LR-RFE as detailed in the Methods section. (We also pro-
vide a list of these features ranked in ascending order in the Additional file 2.) By con-
trast, Fig. 7 is based on the feature extraction algorithm that substitutes homozygous 
major, heterozygous, and homozygous minor genotypes with numerical values {0, 1, 
2} with LR-RFE, as benchmark comparisons.

The results of two different feature extraction algorithms with LR-RFE are sum-
marized in Fig. 8, which shows the comparative feature importance of all 104 SNPs. 
These results indicate that LR-RFE ranks features and calculates their importance 
scores differently depending on the feature extraction algorithm in use. For example, 
rs334 was ranked as the 1st feature with an importance score of 6.224 in Fig. 6. How-
ever, when comparing with the benchmark in Fig. 7, it was ranked as the 1st feature 
with an importance score of 1.1314 instead. The higher the score, the more prominent 
the feature is in predicting malaria risk score. Of note, previous findings from Malar-
iaGEN [12, 15, 18–22] and prior studies [10, 11] have proven that the HBB gene is the 
major genetic risk factor for malaria, and rs334 is an SNP from HBB. Thus, the pro-
posed algorithm with LR-RFE can be considered a promising method, where it can 
identify rs334 with a higher importance score compared to the benchmark algorithm.



Page 11 of 21Tai et al. BMC Bioinformatics          (2022) 23:325 	

Fig. 6  Feature importance ranking of all 104 SNPs, computed using the proposed feature extraction 
algorithm with LR-RFE



Page 12 of 21Tai et al. BMC Bioinformatics          (2022) 23:325 

Fig. 7  Feature importance ranking of all 104 SNPs, computed using the benchmark feature extraction 
algorithm with LR-RFE
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Analysis of model prediction results

We train and evaluate three machine learning regression models to predict individual 
risk scores towards malaria susceptibility. Results across different feature sets based 
on wGRS and wGRS + GF as target variables are reported in Additional files 3 and 4, 
respectively. These results show that reducing the feature set sizes lowers the RMSE 
scores in contrast to increasing the sizes, which lowers the MAE scores. This is as 
expected because, in RMSE, the errors are squared before being averaged, which gives 
higher errors more weight resulting in the metric being more sensitive to isolated outli-
ers than MAE [71]. In other words, increasing the feature set size increases the number 
of outliers, which in turn increases the number of errors. Hence, MAE is a better indica-
tor of the model’s performance than the RMSE and is used in this study as the evaluation 
metric.

When based on wGRS alone, the best performing model is LightGBM, which achieves 
an MAE score of 0.0373 when trained on a single feature, i.e., rs334, compared to 
the MAE score of 1.1104 when trained on all the 104 features. In contrast, based on 
wGRS + GF as the target variable, the MAE scores indicate that all models performed 
significantly better than wGRS alone. LightGBM obtains the best performance, yielding 
an MAE score of 0.0033 when only a single feature, i.e., rs334, is utilized. Compared to 
wGRS, the MAE scores obtained across different feature sets based on wGRS + GF as 
the target variable is much lower, indicating higher accuracy.

Regardless of whether wGRS or wGRS + GF are utilized, all models achieve the lowest 
MAE scores when trained solely on a feature, i.e., rs334. On the other hand, they achieve 
the highest MAE scores when trained with all the 104 features. Furthermore, there is a 

Fig. 8  Comparison of feature importance scores using different feature extraction algorithms with LR-RFE: (1) 
proposed algorithm and (2) benchmark algorithm
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marginal difference between the scores obtained by using the default parameters and the 
best parameters. We also provide a graph (Fig. 9) containing the MAE scores against the 
number of features based on wGRS and wGRS + GF.

Discussion
The genetic-based method of predicting the malaria risk is a powerful and feasible 
method that can strengthen the existing prevention strategies for malaria elimination. 
Traditional GWAS has achieved fruitful results in exploring the genetic risk associated 
with malaria through SNPs identification in specific populations [72]. GWAS is con-
ducted to understand the disease, genes, and pathways, but it is not designed to predict 
whether an individual may develop the disease. On the other hand, machine learning 
methods can identify interacting genetic variants [61, 73] and, thus, are used in predict-
ing complex genetic diseases, such as breast cancer [64], asthma [74], and Crohn’s dis-
ease [75].

This study puts forward a hypothesis that machine learning methods can quantify 
individual risk scores of susceptibility to malaria based on genetic variants. We pro-
pose a genotype-pattern-frequency-based feature extraction algorithm with LR-RFE 
for feature selection, where the importance of genotype patterns in malaria prediction 

Fig. 9  Performance analysis of the wGRS-based and wGRS + GF-based models with respect to MAE scores 
and feature sets
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was essentially highlighted in the Methods section. To evaluate the performance of our 
proposed method, we implemented the most common feature extraction algorithm 
with LR-RFE for feature selection as a benchmark comparison. We observe that LR-RFE 
ranks features and calculates their importance scores differently depending on different 
feature extraction algorithms. Thus, a suitable feature extraction algorithm may be an 
essential step to discover the most important markers in building an accurate predic-
tion model. In particular, when using the proposed feature extraction algorithm, LR-RFE 
ranked rs334 as the most contributing feature with an importance score of 6.224, while 
the baseline has a score of 1.1314. The importance score is crucial as the scores highlight 
the significant level of features contributing to malaria risk prediction that will affect the 
final prediction result. Therefore, the higher the score, the more prominent the feature is 
in predicting malaria risk.

This is an important result because previous findings from MalariaGEN [12, 15, 18–
22] and prior studies [10, 11] have proven that the HBB gene is the major genetic risk 
factor for malaria, and rs334 is an SNP from HBB. Hence, the proposed feature extrac-
tion algorithm with LR-RFE appears to be a promising method to extract the significant 
contributing risk factors to malaria.

We calculate wGRS and wGRS + GF as target variables to learn and model the rela-
tionship between SNPs. These scores enable us to understand the degree to which 
a genetic marker, i.e., an SNP, is associated with malaria via machine learning. This 
includes training and analysing three machine learning regression models: LightGBM, 
XGBoost, and Ridge regression, to predict the risk score of an individual’s susceptibil-
ity to malaria through genetic variants information only. Machine learning models are 
expected to simulate the relationship between SNP genotype data and target variables, 
explaining more genetic components of complex diseases such as malaria. Compared 
with GWAS research alone, building a model to predict malaria risk scores among dif-
ferent populations will be an essential advancement for disease prediction [76].

The wGRS based results indicate that LightGBM is the best performing model obtain-
ing an MAE score of 0.0373 when trained solely on feature rs334 in contrast to obtaining 
an MAE score of 1.1104 despite being trained on all 104 features. We further compare 
the performance of wGRS with wGRS + GF to identify the better performing model. Sur-
prisingly, the MAE scores obtained across different feature sets for all models is much 
lower than solely utilizing wGRS, indicating significantly better performance. The best 
performing model is LightGBM, which achieves an MAE score of 0.0033 when trained 
solely on feature rs334. The wGRS + GF approach is a novelty, as to date, research-
ers have only used wGRS [58–60], which is insufficient for malaria risk score predic-
tion as genotype patterns are essential in malaria prediction. It is also worth noting that 
when the number of features utilized to train the model increases, the data correlation 
becomes complex. Thus, the performance of the model decreases. Furthermore, as the 
model’s MAE score is very low, these findings support our hypothesis that genetic vari-
ants are efficient markers of the disease and, therefore, may be used for future machine 
learning predictions.

We also note that both wGRS and wGRS + GF approaches achieve the best performing 
models when solely trained on feature rs334. This result is as expected, as multiple prior 
studies [10–12, 15, 18–22] have identified SNP  rs334  from the  HBB  gene as malaria’s 
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main genetic risk factor. However, it is insufficient to train on a single feature as recent 
studies have shown that each SNP is associated with disease development only to an 
extent, and complex interactions between features may improve the predictive ability of 
the model [10, 77]. Moreover, many genes are involved in the genetic basis of malaria’s 
susceptibility or resistance, making prediction complicated on several levels [10]. For 
instance, even though the rs334 feature may provide the most potent predictive power, 
the remaining features may improve the prediction further.

In addition, we compare the prediction performance of different feature combinations 
determined using the feature extraction algorithms with LR-RFE. To represent small and 
large feature sets respectively, we used sets 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. 
The results are summarized in Table 2. We note that the feature set generated using the 
proposed feature extraction algorithm with LR-RFE achieved slightly better MAE scores 
when the feature sizes were between 50 and 70. In contrast, the feature set generated 
using the baseline with LR-RFE obtained slightly better MAE scores when the feature 
sizes were between 20 and 40. However, there is only a marginal difference in the MAE 
scores obtained for feature sizes 10, 80, 90, and 100.

Our findings further reaffirm that prediction performance is affected by the complex 
interactions between the susceptibility or resistance features (i.e., SNP) in predicting 
malaria risk. This is because each SNP is not equally important due to its susceptibil-
ity or resistance levels. Therefore, when combined, the impact of the SNPs interactions 

Table 2  Comparison of prediction performance between different feature combinations 
determined using the feature extraction algorithms with LR-RFE

Feature set Proposed feature extraction algorithm Baseline feature extraction algorithm

LightGBM XGBoost Ridge regression LightGBM XGBoost Ridge regression

wGRS

10 0.2304 0.2313 0.2313 0.2035 0.2037 0.2027

20 0.4862 0.4883 0.4868 0.2678 0.2675 0.2706

30 0.6135 0.6238 0.6141 0.3471 0.3514 0.3622

40 0.6114 0.6204 0.6209 0.4683 0.4726 0.5050

50 0.6263 0.6464 0.6362 0.8010 0.8124 0.8274

60 0.6856 0.7009 0.7078 0.8145 0.8330 0.8491

70 0.7431 0.7522 0.7731 0.8129 0.8321 0.8260

80 0.9077 0.9546 0.9219 0.9047 0.9509 0.9394

90 0.9586 1.0018 0.9744 0.9302 0.9704 0.9538

100 1.0934 1.1240 1.1236 1.0318 1.1065 1.0641

wGRS + GF

10 0.0748 0.0749 0.0831 0.0584 0.0597 0.0600

20 0.2220 0.2231 0.2274 0.0747 0.0751 0.0760

30 0.2625 0.2624 0.2641 0.1265 0.1285 0.1352

40 0.2713 0.2736 0.2751 0.1743 0.1800 0.1931

50 0.2605 0.2644 0.2625 0.5646 0.5656 0.5671

60 0.2929 0.2945 0.2944 0.5660 0.5678 0.5721

70 0.2940 0.2981 0.3034 0.5354 0.5345 0.5359

80 0.5323 0.5421 0.5317 0.5602 0.5610 0.5670

90 0.5501 0.5646 0.5509 0.5437 0.5463 0.5488

100 0.6249 0.6333 0.6323 0.5929 0.6041 0.6003



Page 17 of 21Tai et al. BMC Bioinformatics          (2022) 23:325 	

differs from one feature set to another. Hence, we hardly justify which feature combina-
tion is the most important for malaria prediction as each feature has a particular contri-
bution to malaria development.

Extremely statistically significant differences in MAE scores, i.e., p-value < 0.0001, are 
obtained using wGRS and wGRS + GF via one-way Analysis of Variance (ANOVA) test. 
Of note, we performed a normality test for the data distribution to ensure no violation 
of the one-way ANOVA test’s normality assumption. We used the skewness and kurtosis 
index to identify the normality of the data, obtaining the range of [-0.4204, + 0.4005] for 
skewness and [-0.8025, -0.2566] for kurtosis. The data is considered normal if the skew-
ness falls in the range of [‐2, + 2] [78, 79] and the kurtosis falls in the range of [‐7, + 7] 
[78, 79]. Hence, we can conclude the MAE scores of the models are normally distributed. 
To further compare the two methods, we also provide Table 3 summarizing the p-values 
obtained with the best parameters and Table 4 summarizing the p-values obtained with 
the default parameters.

This study has obtained promising results in predicting the risk score of individual 
susceptibility to malaria. We believe that our findings hold great promise for individ-
ual malaria risk score prediction and contribute in bridging the implementation gap 
between healthcare practitioners and computer scientists. The pipeline of the model’s 
development emphasized in this study can fully be reproduced and thus, be used as a 
base towards model retraining with new data.

Our study, based on 20,817 individuals from eleven populations, provides a basis for 
further exploration and improvement of the machine learning models, where individuals 
from different continents can be included. In addition, to explore more comprehensive 
solutions and strengthen our proposed method, alternate hypotheses may be consid-
ered, namely, developing a machine learning model that integrates blood group and SNP 
genotype data of malaria-affected individuals to characterize the genetic component and 
complexity of the disease. There is substantial evidence showing that blood group A is 
very susceptible to malaria, whereas blood group O can prevent malaria [80, 81].

Conclusions
We developed machine learning-based prediction models which utilized SNPs geno-
type data and calculated wGRS and wGRS + GF as target variables to quantify the 
risk score of an individual’s susceptibility to malaria. More precisely, we employed 

Table 3  P-values obtained with best parameters

Compares the p-values of MAE scores using the aforementioned risk scores with best parameters

LightGBM XGBoost Ridge regression

2.52E-24 8.56E-24 2.13E-24

Table 4  P-values obtained with default parameters

Compares the p-values of MAE scores using the aforementioned risk scores with default parameters

LightGBM XGBoost Ridge regression

6.41E-24 7.76E-23 2.59E-23
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an approach that consists of the proposed genotype-pattern-frequency-based feature 
extraction algorithm with LR-RFE to identify the SNPs’ significant level implication 
to malaria. Results show that this approach identified and ranked SNP rs334 (a major 
genetic risk factor for malaria proved by previous studies) as the most contributing 
feature with an importance score of 6.224 compared to the baseline which only yields 
an importance score of 1.1314. (This suggests that our approach has the potential to 
discover significant genetic markers for other diseases as well.) Furthermore, Light-
GBM, a tree-based model, is the best-performing model in this study. It is also found 
that compared with wGRS alone, the model trained based on SNP genotype data and 
wGRS + GF obtains a lower MAE scores, and it is also a novelty as far as the literature 
on risk scores is concerned. To a larger extent, we have shown a promising method 
that demonstrates how machine learning can augment the insights derived from 
GWAS to quantify an individual’s risk score for a particular disease.
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