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Background
Structural knowledge of TMPs 4–5 fold underrepresented

Transmembrane proteins (TMP) account for 20–30% of all proteins within any organ-
ism [1, 2]; most TMPs cross the membrane with transmembrane helices (TMH). TMPs 
crossing with transmembrane beta strands (TMB), forming beta barrels, have been esti-
mated to account for 1–2% of all proteins in Gram-negative bacteria; this variety is also 
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Results:  Here, we present TMbed, a novel method inputting embeddings from 
protein Language Models (pLMs, here ProtT5), to predict for each residue one of four 
classes: transmembrane helix (TMH), transmembrane strand (TMB), signal peptide, or 
other. TMbed completes predictions for entire proteomes within hours on a single con-
sumer-grade desktop machine at performance levels similar or better than methods, 
which are using evolutionary information from multiple sequence alignments (MSAs) 
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the beta barrel TMPs (53 of 57) and 98 ± 1% of the alpha helical TMPs (557 of 571) in a 
non-redundant data set, at false positive rates well below 1% (erred on 30 of 5654 non-
membrane proteins). On the per-segment level, TMbed correctly placed, on average, 9 
of 10 transmembrane segments within five residues of the experimental observation. 
Our method can handle sequences of up to 4200 residues on standard graphics cards 
used in desktop PCs (e.g., NVIDIA GeForce RTX 3060).

Conclusions:  Based on embeddings from pLMs and two novel filters (Gaussian and 
Viterbi), TMbed predicts alpha helical and beta barrel TMPs at least as accurately as any 
other method but at lower false positive rates. Given the few false positives and its out-
standing speed, TMbed might be ideal to sieve through millions of 3D structures soon 
to be predicted, e.g., by AlphaFold2.
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present in mitochondria and chloroplasts [3]. Membrane proteins facilitate many essen-
tial processes, including regulation, signaling, and transportation, rendering them tar-
gets for most known drugs [4, 5]. Despite this immense relevance for molecular biology 
and medicine, only about 5% of all three-dimensional (3D) structures in the PDB [6, 7] 
constitute TMPs [8–10].

Accurate 3D predictions available for proteomes need classification

The prediction of protein structure from sequence leaped in quality through AlphaFold2 
[11], Nature’s method of the year 2021 [12]. Although AlphaFold2 appears to provide 
accurate predictions for only very few novel “folds”, it importantly increases the width 
of structural coverage [13]. AlphaFold2 seems to work well on TMPs [14], but for pro-
teome-wide high-throughput studies, we still need to filter out membrane proteins from 
the structure predictions. Most state-of-the-art (SOTA) TMP prediction methods rely 
on evolutionary information in the form of multiple sequence alignments (MSA) to 
achieve their top performance. In our tests we included 13 such methods, namely BetA-
ware-Deep [15], BOCTOPUS2 [16], CCTOP [17, 18], HMM-TM [19–21], OCTOPUS 
[22], Philius [23], PolyPhobius [24], PRED-TMBB2 [20, 21, 25], PROFtmb [3], SCAMPI2 
[26], SPOCTOPUS [27], TMSEG [28], and TOPCONS2 [29].

pLMs capture crucial information without MSAs

Mimicking recent advances of Language Models (LM) in natural language processing 
(NLP), protein Language Models (pLMs) learn to reconstruct masked parts of protein 
sequences based on the unmasked local and global information [30–37]. Such pLMs, 
trained on billions of protein sequences, implicitly extract important information about 
protein structure and function, essentially capturing aspects of the “language of life” 
[32]. These aspects can be extracted from the last layers of the deep learning networks 
into vectors, referred to as embeddings, and used as exclusive input to subsequent meth-
ods trained in supervised fashion to successfully predict aspects of protein structure and 
function [30–34, 36, 38–43]. Often pLM-based methods outperform SOTA methods, 
which are using evolutionary information on top, and they usually require substantially 
fewer compute resources. Just before submitting this work, we became aware of another 
pLM-based TM-prediction method, namely DeepTMHMM [44] using ESM-1b [36] 
embeddings, and included it in our comparisons.

Here, we combined embeddings generated by the ProtT5 [34] pLM with a simple con-
volutional neural network (CNN) to create a fast and highly accurate prediction method 
for alpha helical and beta barrel transmembrane proteins and their overall inside/outside 
topology. Our new method, TMbed, predicted the presence and location of any TMBs, 
TMHs, and signal peptides for all proteins of the human proteome within 46 min on our 
server machine (Additional file 1: Table S1) at the same or better level of performance as 
other methods, which require substantially more time.

Materials and methods
Data set: membrane proteins (TMPs)

We collected all primary structure files for alpha helical and beta barrel transmembrane 
proteins (TMP) from OPM [45] and mapped their PDB [6, 7] chain identifiers (PDB-id) 
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to UniProtKB [46] through SIFTS [47, 48]. Toward this end, we discarded all chimeric 
chains, all models, and all chains for which OPM failed to map any transmembrane start 
or end position. This resulted in 2,053 and 206 sequence-unique PDB chains for alpha 
helical and beta barrel TMPs, respectively.

We used the ATOM coordinates inside the OPM files to assign the inside/outside ori-
entation of sequence segments not within the membrane. We manually inspected incon-
sistent annotations (e.g., if both ends of a transmembrane segment had the same inside/
outside orientation) and cross-referenced them with PDBTM [49–51], PDB, and Uni-
ProtKB. We then either corrected such inconsistent annotations or discarded the whole 
sequence. As OPM does not include signal peptide annotations, we compared our TMP 
data sets to the set used by SignalP 6.0 [52] and all sequences in UniProtKB/Swiss-Prot 
with experimentally annotated signal peptides using CD-HIT [53, 54]. For any matches 
with at least 95% global sequence identity (PIDE), we transferred the signal peptide 
annotation onto our TMPs. We removed all sequences with fewer than 50 residues to 
avoid noise from incorrect sequencing fragments, and all sequences with over 15,000 
residues to save energy (lower computational costs).

Finally, we removed redundant sequences from the two TMP data sets by clustering 
them with MMseqs2 [55] to at most 20% local pairwise sequence identity (PIDE) with 
40% minimum alignment coverage, i.e., no pair had more than 20% PIDE for any local 
alignment covering at least 40% of the shorter sequence. The final non-redundant TMP 
data sets contained 593 alpha helical TMPs and 65 beta barrel TMPs, respectively.

Data set: globular non‑membrane proteins

We used the SignalP 6.0 (SP6) dataset for our globular proteins. As the SP6 dataset 
contained only the first 70 residues of each protein, we took the full sequences from 
UniProtKB/Swiss-Prot and transferred the signal peptide annotations. To remove any 
potential membrane proteins from this non-TMP data set, we compared it with CD-
HIT [53, 54] against three other data sets: (1) our TMP data sets before redundancy 
reduction, (2) all protein sequences from UniProtKB/Swiss-Prot with any annotations 
of transmembrane segments, and (3) all proteins from UniProtKB/Swiss-Prot with any 
subcellular location annotations for membrane. We removed all proteins from our non-
TMP data set with more than 60% global PIDE to any protein in sets 1–3. Again, we 
dropped all sequences with less than 50 or more than 15,000 residues and applied the 
same redundancy reduction as before (20% PIDE at 40% alignment coverage). The final 
non-redundant data set contained 5,859 globular, water-soluble non-TMP proteins; 698 
of these have a signal peptide.

Additional redundancy reduction

One anonymous reviewer spotted homologs in our data set after the application of the 
above protocol. To address this problem, we performed another iteration of redundancy 
reduction for each of the three data sets using CD-HIT at 20% PIDE. In order to save 
energy (i.e., avoid retraining our model), we decided to remove clashes for the evalua-
tion, i.e., if two proteins shared more than 20% PIDE, we removed both from the data 
set (as TMbed was trained on both in the cross-validation protocol). Thereby, this sec-
ond iteration removed 235 proteins: 8 beta barrel TMPs, 22 alpha helical TMPs, and 205 
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globular, non-membrane proteins. Our final test data sets included 57 beta barrel TMPs, 
571 alpha helical TMPs, and 5654 globular, non-membrane proteins.

Membrane re‑entrant regions

Besides transmembrane segments that cross the entire membrane, there are also oth-
ers, namely membrane segments that briefly enter and exit the membrane on the same 
side. These are referred to as re-entrant regions [56, 57]. Although rare, some methods 
explicitly predict them [17, 18, 22, 27, 58]. However, as OPM does not explicitly annotate 
such regions and since our data set already had a substantial class imbalance between 
beta barrel TMPs, alpha helical TMPs and, globular proteins, we decided not to predict 
re-entrant regions.

Embeddings

We generated embeddings with protein Language Models (pLMs) for our data sets 
using a transformer-based pLM ProtT5-XL-U50 (short: ProtT5) [34]. We discarded the 
decoder part of ProtT5, keeping only the encoder for increased efficiency (note: encoder 
embeddings are more informative [34]). The encoder model converts a protein sequence 
into an embedding matrix that represents each residue in the protein, i.e., each position 
in the sequence, by a 1024-dimensional vector containing global and local contextual-
ized information. We converted the ProtT5 encoder from 32-bit to 16-bit floating-point 
format to reduce the memory footprint on the GPU. We took the pre-trained ProtT5 
model as is without any further task-specific fine-tuning.

We chose ProtT5 over other embedding models, such as ESM-1b [36], based on our 
experience with the model and comparisons during previous projects [34, 38]. Further-
more, ProtT5 does not require splitting long sequences, which might remove valuable 
global context information, while ESM-1b can only handle sequences of up to 1022 
residues.

Model architecture

Our TMbed model architecture contained three modules (Additional file 1: Fig. S1): a 
convolutional neural network (CNN) to generate per-residue predictions, a Gaussian 
smoothing filter, and a Viterbi decoder to find the best class label for each residue. We 
implemented the model in PyTorch [59].

Module 1: CNN

The first component of TMbed is a CNN with four layers (Additional file  1: Fig. S1). 
The first layer is a pointwise convolution, i.e., a convolution with kernel size of 1, which 
reduces the ProtT5 embeddings for each residue (position in the sequence) from 1024 
to 64 dimensions. Next, the model applies layer normalization [60] along the sequence 
and feature dimensions, followed by a ReLU (Rectified Linear Unit) activation function 
to introduce non-linearity. The second and third layers consist of two parallel depthwise 
convolutions; both process the output of the first layer. As depthwise convolutions pro-
cess each input dimension (feature) independently while considering consecutive res-
idues, those two layers effectively generate sliding weighted sums for each dimension. 
The kernel sizes of the second and third layer are 9 and 21, respectively, corresponding 



Page 5 of 19Bernhofer and Rost ﻿BMC Bioinformatics          (2022) 23:326 	

to the average length of transmembrane beta strands and helices. As before, the model 
normalizes the output of both layers and applies the ReLU function. It then concatenates 
the output of all three layers, constructing a 192-dimensional feature vector for each 
residue (position in the sequence). The fourth layer is a pointwise convolution combin-
ing the outputs from the previous three layers and generates scores for each of the five 
classes: transmembrane beta strand (B), transmembrane helix (H), signal peptide (S), 
non-membrane inside (i), and non-membrane outside (o).

Module 2: Gaussian filter

This module smooths the output from the CNN for adjacent residues (sequence posi-
tions) to reduce noisy predictions. The filter allows flattening isolated single-residue 
peaks. For instance, peaks extending of only one to three residues for the classes B and 
H are often non-informative; similarly short peaks for class S are unlikely correct. The 
filter uses a Gaussian distribution with standard deviation of 1 and a kernel size of 7, i.e., 
its seven weights correspond to three standard deviation intervals to the left and right, 
as well as the central peak. A softmax function then converts the filtered class scores to a 
class probability distribution.

Module 3: Viterbi decoder

The Viterbi algorithm decodes the class probabilities and assigns a class label to each 
residue (position in the sequence; Additional file 1: Note S3, Fig. S2). The algorithm uses 
no trainable parameter; it scores transitions according to the predicted class probabili-
ties. Its purpose is to enforce a simple grammar such that (1) signal peptides can only 
start at the N-terminus (first residue in protein), (2) signal peptides and transmembrane 
segments must be at least five residues long (a reasonable trade-off between filtering out 
false positives and still capturing weak signals), and (3) the prediction for the inside/out-
side orientation has to change after each transmembrane segment (to simulate crossing 
through the membrane). Unlike the Gaussian filter, we did not apply the Viterbi decoder 
during training. This simplified backpropagation and sped up training.

Training details

We performed a stratified five-fold nested cross-validation for model development 
(Additional file 1: Fig. S3). First, we separated our protein sequences into four groups: 
beta barrel TMPs, alpha helical TMPs with only a single helix, those with multiple heli-
ces, and non-membrane proteins. We further subdivided each group into proteins with 
and without signal peptides. Next, we randomly and evenly distributed all eight groups 
into five data sets. As all of our data sets were redundancy reduced, no two splits con-
tained similar protein sequences for any of the classes. However, similarities between 
proteins of two different classes were allowed, not the least to provide more conservative 
performance estimates.

During development, we used four of the five splits to create the model and the fifth 
for testing (Additional file 1: Fig. S3). Of the first four splits, we used three to train the 
model and the fourth for validation (optimize hyperparameters). We repeated this 3–1 
split three more times, each time using a different split for the validation set, and calcu-
lated the average performance for every hyperparameter configuration. Next, we trained 
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a model with the best configuration on all four development splits and estimated its final 
performance on the independent test split. We performed this whole process a total of 
five times, each time using a different of the five splits as test data and the remaining four 
for the development data. This resulted in five final models; each trained, optimized, and 
tested on independent data sets.

We applied weight decay to all trained weights of the model and added a dropout layer 
right before the fourth convolutional layer, i.e., the output layer of the CNN. For every 
training sample (protein sequence), the dropout layer randomly sets 50% of the features 
to zero across the entire sequence, preventing the model from relying on only a specific 
subset of features for the prediction.

We trained all models for 15 epochs using the AdamW [61] optimizer and cross-
entropy loss. We set the beta parameters to 0.9 and 0.999, used a batch size of 16 
sequences, and applied exponential learning rate decay by multiplying the learning 
rate with a factor of 0.8 every epoch. The initial learning rate and weight decay values 
were part of the hyperparameters optimized during cross-validation (Additional file 1: 
Table S2).

The final TMbed model constitutes an ensemble over the five models obtained from 
the five outer cross-validation iterations (Additional file  1: Fig. S3), i.e., one for each 
training/test set combination. During runtime, each model generates its own class prob-
abilities (CNN, plus Gaussian filter), which are then averaged and processed by the 
Viterbi decoder to generate the class labels.

Evaluation and other methods

We evaluated the test performance of TMbed on a per-protein level and on a per-seg-
ment level (Additional file 1: Note S1). For protein level statistics, we calculated recall 
and false positive rate (FPR). We computed those statistics for three protein classes: 
alpha helical TMPs, beta barrel TMPs, and globular proteins.

We distinguished correct and incorrect segment predictions using two constraints: (1) 
the observed and predicted segment must overlap such that the intersection of the two is 
at least half of their union, and (2) neither the start nor the end positions may deviate by 
more than five residues between the observed and predicted segment (Additional file 1: 
Fig. S4). All segments predicted meeting both these criteria were considered as “cor-
rectly predicted segments”, all others as “incorrectly predicted segments”. This allowed 
for a reasonable margin of error regarding the position of a predicted segment, while 
punishing any gaps introduced into a segment. For per-segment statistics, we calculated 
recall and precision. We also computed the percentage of proteins with the correct num-
ber of predicted segments (Qnum), the percentage of proteins for which all segments are 
correctly predicted (Qok), and the percentage of correctly predicted segments that also 
have the correct orientation within the membrane (Qtop). We considered only proteins 
that actually contain the corresponding type of segment when calculating per-segment 
statistics, e.g., only beta barrel TMPs for transmembrane beta strand segments.

We compared TMbed to other prediction methods for alpha helical and beta barrel 
TMPs (details in Additional file 1: Note S2): BetAware-Deep [15], BOCTOPUS2 [16], 
CCTOP [17, 18], DeepTMHMM [44], HMM-TM [19–21], OCTOPUS [22], Philius 
[23], PolyPhobius [24], PRED-TMBB2 [20, 21, 25], PROFtmb [3], SCAMPI2 [26], 
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SPOCTOPUS [27], TMSEG [28], and TOPCONS2 [29]. We chose those methods 
based on their good prediction accuracy and public popularity. For methods predict-
ing only either alpha helical or beta barrel TMPs, we considered the corresponding 
other type of TMPs as globular proteins for the per-protein statistics. In addition, we 
generated signal peptide predictions with SignalP 6.0 [52]. The performance of older 
TMH prediction methods could be triangulated based on previous comprehensive 
estimate of such methods [28, 62].

Unless stated otherwise, all reported performance values constitute the average 
performance over the five independent test sets during cross-validation (c.f. Train-
ing details) and their error margins reflect the 95% confidence interval (CI), i.e., 1.96 
times the sample standard error over those five splits (Additional file 1: Tables S5, S6). 
We considered two values A and B statistically significantly different if they differ by 
more than their composite 95% confidence interval:

Additional out‑of‑distribution benchmark

In the most general sense, machine learning models learn and predict distributions. 
Most membrane data sets are small and created using the same resources, including 
OPM [45], PDBTM [49–51], and UniProtKB/Swiss-Prot [46] that often mix experimen-
tal annotations with sophisticated algorithms [50, 63–65] to determine the boundaries 
of transmembrane segments, e.g., by using the 3D structure. Given these constraints, 
we might expect data sets from different groups to render similar results. Analyzing the 
validity of this assumption, we included the data set assembled for the development of 
DeepTMHMM [44]. Three reasons made us chose this set as an alternative perspective: 
(1) it is recent, (2) it contains helical and beta barrel TMPs, and (3) the authors made 
their cross-validation predictions available, simplifying comparisons.

We created two distinct data sets from the DeepTMHMM data. First, we collected all 
proteins common to both data sets (TMbed and DeepTMHMM). We used those pro-
teins to estimate how much the annotations within both data sets agree with each other. 
In total, there were 1788 proteins common to both data sets: 43 beta barrel TMPs, 184 
alpha helical TMPs, 1,560 globular proteins, and one protein (MSPA_MYCS2; Porin 
MspA) which sits in the outer-membrane of Mycobacterium smegmatis [66]. We clas-
sified this as beta barrel TMP while DeepTMHMM listed it, most likely incorrectly, as 
a globular protein. The second data set that we created contained all proteins from the 
DeepTMHMM data set that were non-redundant to the training data of TMbed. We 
used PSI-BLAST [67] to find all significant (e-value < 10–4) local alignments with a 20% 
PIDE threshold and 40% alignment coverage to remove the redundant sequences. This 
second data set contained 667 proteins: 14 beta barrel TMPs, 86 alpha helical TMPs, 
and 567 globular proteins. We generated predictions with TMbed for those proteins and 
compared them to the cross-validation predictions for DeepTMHMM, as well as the 
best performing methods from our own benchmark (CCTOP [17, 18], TOPCONS2 [29], 
BOCTOPUS2 [16]); we used the DeepTMHMM data set annotations as ground truth.

(1)|A− B| > CIc = CI
2

A
+ CI

2

B
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Data set of new membrane proteins

In order to perform a CASP-like performance evaluation, we gathered all PDB struc-
tures published since Feb 05, 2022, which is just after the data for our set and that 
of DeepTMHMM [44] have been collected. This comprised 1,511 PDB structures 
(more than 250 of which related to the SARS-CoV-2 protein P0DTD1) that we could 
map to 1,078 different UniProtKB sequences. We then used PSI-BLAST to remove all 
sequences similar to our data set or that of DeepTMHMM (e-value < 10–4, 20% PIDE 
at 40% coverage), which resulted in 333 proteins. Next, we predicted transmembrane 
segments within those proteins using TMbed and DeepTMHMM. For 38 proteins, 
either TMbed or DeepTMHMM predicted transmembrane segments. After removing 
any sequences shorter than 100 residues (i.e., fragments) and those in which the pre-
dicted segments were not within the resolved regions of the PDB structure, we were 
left with a set of 5 proteins: one beta barrel TMP and four alpha helical TMPs. Finally, 
we used the PPM [63–65] algorithm from OPM [45] to estimate the actual membrane 
boundaries.

Results and discussion
We have developed a new machine learning model, dubbed TMbed; it exclusively 
uses embeddings from the ProtT5 [34] pLM as input to predict for each residue in 
a protein sequence to which of the following four “classes” it belongs: transmem-
brane beta strand (TMB), transmembrane helix (TMH), signal peptide (SP), or non-
transmembrane segment. It also predicts the inside/outside orientation of TMBs and 
TMHs within the membrane, indicating which parts of a protein are inside or outside 
a cell or compartment. Although the prediction of signal peptides was primarily inte-
grated to improve TMH predictions by preventing the confusion of TMHs with SPs 
and vice versa, we also evaluated and compared the performance for SP prediction of 
TMbed to that of other methods.

Reaching SOTA in protein sorting

TMbed detected TMPs with TMHs and TMBs at levels similar or numerically above the 
best state-of-the-art (SOTA) methods that use evolutionary information from multiple 
sequence alignments (MSA; Table 1: Recall). Compared to MSA-based methods, TMbed 
achieved this parity or improvement at a significantly lower false positive rate (FPR), tied 
only with DeepTMHMM [44], another embedding-based method (Table 1: FPR). Given 
those numbers, we expect TMbed to misclassify only about 215 proteins for a proteome 
with 20,000 proteins (Additional file 1: Table S10), e.g., the human proteome, while the 
other methods would make hundreds more mistakes (DeepTMHMM: 331, TOPCONS2: 
683, BOCTOPUS2: 880). Such low FPRs suggest our method as an automated high-
throughput filter for TMP detection, e.g., for the creation and annotation of databases, 
or the decision which AlphaFold2 [11, 68] predictions to parse through advanced soft-
ware annotating transmembrane regions in 3D structures or predictions [45, 49, 69]. In 
the binary prediction of whether or not a protein has a signal peptide, TMbed achieved 
similar levels as the specialist SignalP 6.0 [52] and as DeepTMHMM [44], reaching 99% 
recall at 0.1% FPR (Additional file 1: Table S3).
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Many of the beta barrel TMPs that prediction methods missed had only two or 
four transmembrane beta strands (TMB). Such proteins cannot form a pore on their 
own, instead they have to form complexes with other proteins to function as TMPs, 
either by binding to other proteins or by forming multimers with additional copies of 
the same proteins by, e.g., trimerization. In fact, all four beta barrel TMPs missed by 
TMbed fell into this category. Thus, as all other methods, TMbed performed, on aver-
age, worse for beta barrel TMPs that cannot form pores alone. This appeared unsur-
prising, as the input to all methods were single proteins. For TMPs with TMHs, we 
also observed lower performance in the distinction between TMP/other for TMPs 
with a single TMH (recall: 93 ± 3%) compared to those with multiple TMHs (recall: 
99 ± 1%). However, TMPs with single helices can function alone.

The embedding-based methods TMbed (introduced here using ProtT5 [34]) and 
DeepTMHMM [44] (based on ESM-1b [36]) performed at least on par with the SOTA 
using evolutionary information from MSA (Table 1). While this was already impres-
sive, the real advantage was in the speed. For instance, our method, TMbed, predicted 
all 6,517 proteins in our data set in about 13 min (i.e., about eight sequences per sec-
ond) on our server machine (Additional file 1: Table S1); this runtime included gener-
ating the ProtT5 embeddings. The other embedding-based method, DeepTMHMM, 
needed about twice as long (23 min). Meanwhile, methods that search databases and 

Table 1  Per-protein performance. *

*Evaluation of the ability to distinguish between 57 beta barrel TMPs (β-TMP), 571 alpha helical TMPs (α-TMP) and 5654 
globular, water-soluble non-TMP proteins in our data set. Recall and false positive rate (FPR) were averaged over the five 
independent cross-validation test sets; error margins given for the 95% confidence interval (1.96*standard error); bold: best 
values for each column; italics: differences statistically significant with over 95% confidence (only computed between best 
and 2nd best, or all methods ranked 1 and those ranked lower)
1 Evaluation missing for one of 5,654 globular proteins
2 Evaluation missing for one of 571 α-TMPs and six of 5,654 globular proteins
3 Evaluation includes only 51 β-TMPs, 552 α-TMPs, and 5,524 globular proteins due to runtime errors
4 The local PRED-TMBB2 version did not include the pre-filtering step of the web server. This caused a FPR for β-TMP of 
almost 78%. Thus, we listed the statistics for the web server predictions, which did not include MSA input

β-TMP (57) α-TMP (571) Globular (5654)

Recall (%) FPR (%) Recall (%) FPR (%) Recall (%) FPR (%)

TMbed 93.8 ± 7.5 0.1 ± 0.1 97.5 ± 0.7 0.5 ± 0.2 99.5 ± 0.2 2.8 ± 1.2

DeepTMHMM 77.9 ± 12.7 0.1 ± 0.1 95.8 ± 1.3 0.5 ± 0.2 99.5 ± 0.2 5.9 ± 2.2

TMSEG – – 96.5 ± 1.0 2.3 ± 0.3 97.7 ± 0.3 3.5 ± 1.0

TOPCONS21 – – 94.2 ± 1.3 2.6 ± 0.3 97.4 ± 0.3 5.8 ± 1.3

OCTOPUS1 – – 94.2 ± 1.9 9.1 ± 0.7 90.9 ± 0.7 5.8 ± 1.9

Philius1 – – 92.5 ± 1.4 2.6 ± 0.2 97.4 ± 0.2 7.5 ± 1.4

PolyPhobius1 – – 97.2 ± 1.1 5.3 ± 0.4 94.7 ± 0.4 2.8 ± 1.1

SPOCTOPUS1 – – 97.5 ± 1.6 17.2 ± 0.8 82.8 ± 0.8 2.5 ± 1.6
SCAMPI2 (MSA) – – 94.2 ± 1.6 5.6 ± 0.3 94.4 ± 0.3 5.8 ± 1.6

CCTOP2 96.1 ± 2.1 3.7 ± 0.6 96.3 ± 0.6 3.9 ± 2.1

HMM-TM (MSA)3 – – 97.3 ± 1.6 21.4 ± 0.5 78.6 ± 0.5 2.7 ± 1.6

BOCTOPUS2 84.0 ± 13.3 4.2 ± 0.5 – – 95.8 ± 0.5 16.0 ± 13.3

BetAware-Deep 85.1 ± 9.3 4.7 ± 0.3 – – 95.3 ± 0.3 14.9 ± 9.3

PRED-TMBB24 88.8 ± 12.1 7.1 ± 0.4 – – 92.9 ± 0.4 11.2 ± 12.1

PROFtmb 91.9 ± 9.0 6.1 ± 0.5 – – 93.9 ± 0.5 8.1 ± 9.0
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generate MSAs usually take several seconds or minutes for a single protein sequence 
[70], or require significant amounts of computing resources (e.g., often more than 
100 GB of memory) to achieve comparable runtimes [55].

Excellent transmembrane segment prediction performance

TMbed reached the highest performance for transmembrane segments amongst all 
methods evaluated (Tables 2, 3). With recall and precision values of 89 ± 1% for TMHs, 
it significantly outperformed the second best and only other embedding-based method, 
DeepTMHMM, (80 ± 2%, Table 2). TMbed essentially predicted 62% of all transmem-
brane helical (TMH) TMPs completely correctly (Qok, i.e., all TMHs within ± 5 resi-
dues of true annotation). DeepTMHMM reached second place with Qok of 46 ± 4%. 
This difference between TMbed and DeepTMHMM was over twice that between 

Table 2  Per-segment performance for TMH (transmembrane helices). *

*Segment performance for transmembrane helix (TMH) prediction based on 571 alpha helical TMPs (α-TMP) with a total of 
2936 TMHs. Recall, Precision, Qok, Qnum, and Qtop were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error); bold: best values for each column; italics: differences 
statistically significant with over 95% confidence (only computed between best and 2nd best).
1 Evaluation missing for one of 571 α-TMPs.
2 Evaluation includes only 552 of the 571 α-TMPs due to runtime errors of the method.

TMH (571/2936)

Recall (%) Precision (%) Qok (%) Qnum (%) Qtop (%)

TMbed 88.7 ± 0.6 88.7 ± 0.7 62.4 ± 3.7 86.0 ± 2.3 96.4 ± 2.7
DeepTMHMM 80.0 ± 2.4 80.5 ± 2.4 46.2 ± 4.8 85.7 ± 3.5 96.3 ± 2.2

TMSEG 74.5 ± 2.4 77.1 ± 1.7 35.6 ± 2.4 69.9 ± 2.7 83.8 ± 4.7

TOPCONS2 76.4 ± 1.5 78.4 ± 0.8 41.0 ± 3.1 74.4 ± 3.3 91.7 ± 3.1

OCTOPUS 71.6 ± 1.5 75.7 ± 1.4 36.0 ± 2.8 67.6 ± 3.4 87.5 ± 3.1

Philius 70.8 ± 2.2 73.7 ± 0.8 34.2 ± 3.7 66.9 ± 3.4 87.5 ± 2.9

PolyPhobius 76.0 ± 2.1 76.4 ± 1.1 40.3 ± 3.5 74.5 ± 2.8 86.8 ± 2.7

SPOCTOPUS 71.5 ± 1.2 75.8 ± 1.2 35.7 ± 3.3 67.4 ± 5.5 87.2 ± 3.4

SCAMPI2 (MSA) 72.3 ± 2.7 74.1 ± 1.5 33.5 ± 3.0 72.2 ± 4.5 90.6 ± 3.5

CCTOP1 77.0 ± 1.7 79.4 ± 1.0 41.9 ± 3.6 82.6 ± 2.7 92.6 ± 2.6

HMM-TM (MSA)2 73.3 ± 1.7 72.5 ± 1.2 33.5 ± 1.4 72.1 ± 3.0 88.3 ± 4.2

Table 3  Per-segment performance for TMB (transmembrane beta strands). *

*Segment performance for transmembrane beta strand (TMB) prediction based on 57 beta barrel TMPs (β-TMP) with a total 
of 768 TMBs. Recall, Precision, Qok, Qnum, and Qtop were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error); bold: best values for each column; italics: differences 
statistically significant with over 95% confidence (only computed between best and 2nd best)

TMB (57/768)

Recall (%) Precision (%) Qok (%) Qnum (%) Qtop (%)

TMbed 95.0 ± 4.3 99.2 ± 0.7 80.5 ± 11.4 88.1 ± 6.9 98.1 ± 3.8
DeepTMHMM 85.9 ± 6.6 92.5 ± 4.7 46.1 ± 7.6 74.3 ± 13.0 97.2 ± 4.4

BOCTOPUS2 85.3 ± 9.2 96.6 ± 2.0 56.6 ± 18.9 71.2 ± 11.8 98.0 ± 2.0

BetAware-Deep 67.1 ± 6.5 62.2 ± 11.4 8.7 ± 5.3 60.9 ± 14.1 95.7 ± 5.4

PRED-TMBB2 (MSA) 85.4 ± 1.9 75.6 ± 4.8 18.4 ± 15.0 44.5 ± 26.7 95.9 ± 3.4

PROFtmb 78.2 ± 10.1 78.0 ± 6.9 20.2 ± 12.8 46.6 ± 11.7 97.2 ± 1.0
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DeepTMHMM and the two methods performing third  best by this measure, CCTOP 
[17, 18] and TOPCONS2 [29], which are based on evolutionary information.

The results were largely similar for beta barrel TMPs (TMBs) with TMbed achieving 
the top performance by all measures: reaching 95% recall and an almost perfect 99% pre-
cision. The most pronounced difference was a 23 percentage points lead in Qok with 80%, 
compared to BOCTOPUS2 [16] with 57% in second place. Overall, TMbed predicted the 
correct number of transmembrane segments in 86–88% of TMPs and correctly oriented 
98% of TMBs and 96% of TMHs. For signal peptides, TMbed performed on par with 
SignalP 6.0, reaching 93% recall and 95% precision (Additional file 1: Table S3). For this 
task, both methods appeared to be slightly outperformed by DeepTMHMM. However, 
none of those differences exceeded the 95% confidence interval, i.e., the numerically 
consistent differences were not statistically significant. On top, the signal peptide expert 
method SignalP 6.0 is the only of the three that distinguishes between different types of 
signal peptides.

As for the overall per-protein distinction between TMP and non-TMP, the per-seg-
ment recall and precision also slightly correlated with the number of transmembrane 
segments, i.e., the more TMHs or TMBs in a protein the higher the performance (Addi-
tional file 1: Table S4). Again, as for the TMP/non-TMP distinction, beta barrel TMPs 
with only two or four TMBs differed most to those with eight or more.

Gaussian filter and Viterbi decoder improve segment performance

TMbed introduced a Gaussian filter smoothing over some local peaks in the predic-
tion and a Viterbi decoder implicitly enforcing some “grammar-like” rules (Materials & 
Methods). We investigated the effect of these concepts by comparing the final TMbed 
architecture to three simpler alternatives: one variant used only the CNN, the other two 
variants combined the simple CNN with either the Gaussian filter or the Viterbi decoder, 
not both as TMbed. For the variants without the Gaussian filter, we retrained the CNN 
using the same hyperparameters but without the filter. Individually, both modules (fil-
ter and decoder) significantly improved precision and Qok for both TMH and TMB, 
while recall remained largely unaffected (Additional file 1: Table S9). Clearly, either step 
already improved over just the CNN. However, which of the two was most important 
depended on the type of TMP: for TMH proteins Viterbi decoder mattered more, for 
TMB proteins the Gaussian filter. Both steps together performed best throughout with-
out adding any significant overhead to the overall computational costs compared to the 
other components.

Self‑predictions reveal potential membrane proteins

We checked for potential overfitting of our model by predicting the complete data set 
with the final TMbed ensemble. This meant that four of the five models had seen each of 
those proteins during training. While the number of misclassified proteins went down, 
we found that there were still some false predictions, indicating that our models did not 
simply learn the training data by heart (Additional file 1: Tables S7, S8). In fact, upon 
closer inspection of the 11 false positive predictions (8 alpha helical and 3 beta barrel 
TMPs), those appear to be transmembrane proteins incorrectly classified as globular 
proteins in our data set due to missing annotations in UniProtKB/Swiss-Prot, rather 
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than incorrect predictions. Two of them, P09489 and P40601, have automatic annota-
tions for an autotransporter domain, which facilitates transport through the membrane. 
Further, we processed the predicted AlphaFold2 [11, 68] structures of all 11 proteins 
using the PPM [45] algorithm, which tries to embed 3D structures into a membrane 
bilayer. For eight of those, the predicted transmembrane segments correlated well with 
the predicted 3D structures and membrane boundaries (Fig. 1; Additional file 1: Fig. S5). 
For the other three, the 3D structures and membrane boundaries still indicate trans-
membrane domains within those proteins, but the predicted transmembrane segments 
only cover parts of those domains (Additional file 1: Fig. S5, last row). Together, these 
predictions provided convincing evidence for considering all eleven proteins as TMPs.

Predicting the human proteome in less than an hour

Given that our new method already outperformed the SOTA using evolutionary infor-
mation from MSAs, the even more important advantage was speed. To estimate pre-
diction throughput, we applied TMbed to all human proteins in 20,375 UniProtKB/
Swiss-Prot (version: April 2022; excluding TITIN_HUMAN due to its extreme length 
of 34,350 residues). Overall, it took our server machine (Additional file 1: Table S1) only 
46 min to generate all embeddings and predictions (estimate for consumer-grade PC in 
the next section). TMbed identified 14 beta barrel TMPs and 4,953 alpha helical TMPs, 
matching previous estimates for alpha helical TMPs [1, 28]. Two of the 14 TMBs appear 
to be false positives as TMbed predicted only a single TMB in each protein. The other 12 
proteins are either part of the Gasdermin family (A to E), or associated with the mito-
chondrion, including three proteins for a voltage-dependent anion-selective channel and 
the TOM40 import receptor.

Further, we generated predictions for all proteins from UniProtKB/Swiss-Prot (ver-
sion: May 2022), excluding sequences above 10,000 residues (20 proteins). Processing 
those 566,976 proteins took about 8.5 h on our server machine. TMbed predicted 1,702 
beta barrel TMPs and 77,296 alpha helical TMPs (predictions available via our GitHub 
repository).

Fig. 1  Potential transmembrane proteins in the globular data set. AlphaFold2 [11, 68] structure of 
extracellular serine protease (P09489) and Lipase 1 (P40601). Transmembrane segments (dark purple) 
predicted by TMbed correlate well with membrane boundaries (dotted lines: red = outside, blue = inside) 
predicted by the PPM [45] web server. Images created using Mol* Viewer [71]. Though our data set lists them 
as globular proteins, the predicted structures indicate transmembrane domains, which align with segments 
predicted by our method. The predicted domains overlap with autotransporter domains detected by the 
UniProtKB [46] automatic annotation system. Transmembrane segment predictions were made with the final 
TMbed ensemble model
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Hardware requirements

Our model needs about 2.5 GB of memory on the GPU when in 16-bit format. The addi-
tional memory needed during inference grows with the square of sequence length due 
to the attention mechanism of the transformer architecture. On our consumer-grade 
desktop PC (Additional file 1: Table S1), this translated to a maximum sequence length 
of about 4,200 residues without maxing out the 12 GB of GPU memory. This barred 76 
(0.4%) of the 20,376 human proteins from analysis on a personal consumer-hardware 
solution (NVIDIA GeForce RTX 3060). The prediction (including embedding genera-
tion) for 99.6% of the human proteome (20,376 proteins) took about 57 min on our desk-
top PC. While it is possible to run the model on a CPU, instead of on a GPU, we do not 
recommend this due to over tenfold larger runtimes. More importantly, the current lack 
of support of 16-bit floating-point format on CPUs would imply doubling the memory 
footprint of the model and computations.

Out‑of‑distribution performance

The two pLM-based methods DeepTMHMM [44] and TMbed appeared to reach simi-
lar performance according to the additional out-of-distribution data set (Additional 
file 1: Tables S11, S12). While DeepTMHMM reached higher scores for beta barrel pro-
teins (Qok of 79 ± 22% vs. 64 ± 26%), these were not quite statistically significant. On 
the other hand, TMbed managed to outperform DeepTMHMM for alpha helical TMPs 
(Qok of 53 ± 11% vs. 47 ± 10%), though again without statistical significance. Further-
more, TMbed performed on par with the OPM baseline (Additional file 1: Table S12), 
i.e., using the OPM annotations as predictions for the DeepTMHMM data set, imply-
ing that TMbed reached its theoretical performance limit on that data set. Surprisingly, 
TOPCONS2 and CCTOP both outperformed TMbed and DeepTMHMM with Qok of 
65 ± 10% and 64 ± 10% (both not statistically significant), respectively.

Taking a closer look at the length distribution for the transmembrane segments in 
the TMbed and DeepTMHMM data set annotations and predictions (Additional file 1: 
Fig. S6) revealed differences. First, while the TMB segments in both data sets averaged 
9 residues in length, the DeepTMHMM distribution was slightly shifted toward shorter 
segments (left in Additional file 1: Fig. S6A) but with a wider spread towards longer seg-
ments (right in Additional file 1: Fig. S6A). Both of these features were mirrored in the 
distribution of predicted TMBs. In contrast, the TMH distributions for DeepTMHMM 
showed an unexpected peak for TMH with 21 residues (both in the annotations used to 
train DeepTMHMM and in the predictions). In fact, the peak for annotated TMHs at 
21 was more than double the value of the two closest length-bins (TMH = 20|22) com-
bined. As the lipid bilayer remains largely invisible in X-ray structures, the exact begin 
and ends of TMHs may have some errors [28, 45, 49–51, 62]. Thus, when plotting the 
distribution of TMH length, we expected some kind of normal distribution with a peak 
around 20-odd residues with more points for longer than for shorter TMHs [72]. In stark 
contrast to this expectation, the distribution observed for the TMHs used to develop 
DeepTMHMM appeared to have been obtained through some very different protocol 
(Additional file 1: Fig. S6B).

In contrast, the distributions for the annotations from OMP and the predictions from 
TMbed appeared to be more normally distributed with TMH lengths exhibiting a slight 
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peak at 22 residues. The larger the AI model, the more it succeeds in reproducing fea-
tures of the development set even when those might be based on less experimentally 
supported aspects. The DeepTMHMM model reproduced the dubious experimental 
distribution of TMHs exceedingly (Additional file 1: Fig. S6B, e.g., orange line and bars 
around peak at 16). Although we do not know the origin of this bias in the DeepTM-
HMM data set, we have seen similar bias in some prediction methods and automated 
annotations in UniProtKB/Swiss-Prot. In fact, a quick investigation showed that for 80 
of the 184 common alpha helical TMPs the DeepTMHMM annotations matched those 
found in UniProtKB but not the OPM annotation in our TMbed data set. Of those 
annotations, 66% (303 of 459) were 21-residues long TMHs, accounting for 73% of all 
such segments; the other 104 TMPs contained only 19% (114 of 593) TMHs of length 
21. This led us to believe that the DeepTMHMM data set contained, in part, length-
biased annotations found in UniProtKB. Other examples of methods with length biases 
include SCAMPI2 and TOPCONS2 that both predicted exclusively TMHs with 21 resi-
dues; OCTOPUS and SPOCTOPUS predicted only TMHs of length 15, 21, and 31 (with 
more than 90% of those being 21 residues). BOCTOPUS2 predicted only beta strands of 
length 8, 9, and 10, with about 80% of them being nine residues long.

Since TMHs are around 21 residues long, such bias is not necessarily relevant. How-
ever, it might point to why performance appears better against some data sets supported 
less by high-resolution experiments than by others.

Performance on new membrane proteins

Although, the small data set size did not allow for statistically significant results (Addi-
tional file 1: Table S13), TMbed performed numerically better than the other methods; in 
particular, BOCTOPUS2 failed to predict the only beta barrel TMP. While TMbed and 
DeepTMHMM both missed two of the 30 transmembrane beta strands, TMbed placed 
the remaining ones, on average, more accurately (recall: 93% vs 87%; precision: 100% vs. 
93%). All methods performed worse for the alpha helical TMPs than on the other two 
benchmark data set, though with a sample size of only four proteins (25 TMHs total), 
we cannot be sure if this is an effect of testing on novel membrane proteins or simply by 
chance. Nevertheless, the transmembrane segments predicted by TMbed fit quite well to 
the membrane boundaries estimated by the PPM [63–65] algorithm (Fig. 2).

No data leakage through pLM

pLMs such as ProtT5 [34] used by TMbed or ESM-1b [36] used by DeepTMHMM 
are pre-trained on billions of protein sequences. Typically, these include all pro-
tein sequences known today. In particular, they include all membrane and non-
membrane proteins used in this study. In fact, assuming that the TMPs of known 
structure account for about 2–5% [78, 79] of all TMPs and that TMPs account for 
about 20–25% of all proteins, we assume pLMs have been trained on over 490 mil-
lion TMPs that remain to be experimentally characterized. For the development of 
AI/ML solutions, it is crucial to establish that methods do not over-fit to existing 
data but that they will also work for new, unseen data. This implies that in the stand-
ard cross-validation process, it is important to not leak any data from development 
(training and validation used for hyperparameter optimization and model choice) 
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to test set (used to assess performance). This implies the necessity for redundancy 
reduction. This also implies that the conditions for the test set are exactly the same 
as those that will be encountered in future predictions. For instance, if today’s exper-
imental annotations were biased toward bacterial proteins, we might expect perfor-
mance to be worse for eukaryotic proteins and vice versa.

Both TMbed introduced here and DeepTMHMM are based on the embeddings of 
pre-trained pLMs; both accomplish the TM-prediction through a subsequent step 
dubbed transfer learning, in which they use the pLM embeddings as input to train 
a new AI/ML model in supervised manner on some annotations about membrane 
segments. Could any data leak from the training of pLMs into the subsequent step of 
training the TM-prediction methods? Strictly speaking, if no experimental annota-
tions are used, no annotations can leak: the pLMs used here never saw any annota-
tion other than protein sequences.

Even when no annotations could have leaked because none were used for the pLM, 
should we still ascertain that the conditions for the test set and for the protein for 
which the method will be applied in the future are identical? We claim that we do 
not have to ascertain this. However, we cannot support any data for (nor against) 
this claim. To play devil’s advocate, let us assume we had to. The reality is that the 
vast majority of all predictions likely to be made over the next five years will be for 
proteins included in these pLMs. In other words, the conditions for future use-cases 
are exactly the same as those used in our assessment.

Fig. 2  New membrane proteins. PDB structures for probable flagellin 1 (Q9YAN8; 7TXI [73]), protein-serine 
O-palmitoleoyltransferase porcupine (Q9H237; 7URD [74]), choline transporter-like protein 1 (Q8WWI5; 7WWB 
[75]), S-layer protein SlpA (Q9RRB6; 7ZGY [76]), and membrane protein (P0DTC5; 8CTK [77]). Transmembrane 
segments (dark purple) predicted by TMbed; membrane boundaries (dotted lines: red = outside, 
blue = inside) predicted by the PPM [45] web server. Images created using Mol* Viewer [71]
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Conclusions
TMbed predicts alpha helical (TMH) and beta barrel (TMB) transmembrane proteins 
(TMPs) with high accuracy (Table  1), performing at least on par or even better than 
state-of-the-art (SOTA) methods, which depend on evolutionary information from mul-
tiple sequence alignments (MSA; Tables 1, 2, 3). In contrast, TMbed exclusively inputs 
sequence embeddings from the protein language model (pLM) ProtT5. Our novel 
method shines, in particular, through its low false positive rate (FPR; Table 1), incorrectly 
predicting fewer than 1% of globular proteins to be TMPs. TMbed also numerically out-
performed all other tested methods in terms of correctly predicting transmembrane 
segments (on average, 9 out of 10 segments were correct; Tables 2, 3). Despite its top 
performance, the even more significant advantage of TMbed is speed: the high through-
put rate of the ProtT5 [34] encoder enables predictions for entire proteomes within an 
hour, given a suitable GPU (Additional file  1: Table  S1). On top, the method runs on 
consumer-grade GPUs as found in more recent gaming and desktop PCs. Thus, TMbed 
can be used as a proteome-scale filtering step to scan for transmembrane proteins. Vali-
dating the predicted segments with AlphaFold2 [11, 68] structures and the PPM [45] 
method could be combined into a fast pipeline to discover new membrane proteins, as 
we have demonstrated with a few proteins. Finally, we provide predictions for 566,976 
proteins from UniProtKB/Swiss-Prot (version: May 2022) via our GitHub repository.
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