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Background
G-protein coupled receptors (GPCRs) belong to membrane protein families that 
sense and transmit extracellular signals to the intracellular region by regulating 
G proteins. GPCRs are involved in diverse signaling pathways triggered by hor-
mones and neurotransmitters, and participate in cell growth, differentiation, vision, 
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olfaction, and gustatory system [1]. When a ligand binds to a GPCR, the receptor 
undergoes a conformational change that can either activate (called an  agonist) or 
inhibit (called an antagonist) signal transduction pathways [2]. Approximately one-
third of the drugs on the market target GPCRs [2, 3] and are used to treat various 
human diseases including cardiac malfunction, asthma, and migraines [4]. In 2017, 
Hauser et al. reported that approximately 34% (475 drugs) of all US FDA (Food and 
Drug Administration)-approved drugs act on GPCR targets, and that most agents in 
clinical trials target novel GPCRs [5].

Owing to recent technological advances in receptor pharmacology, new avenues 
for GPCR drug discovery have emerged that diverge from the traditional view of sig-
nal transduction as a linear chain of events involving the heterotrimeric G proteins. 
However, GPCR drug discovery has long been focused on the identification of new 
compounds targeting GPCRs and their ligand binding sites. The classification of the 
agonist and antagonist properties of existing and newly discovered ligands is needed 
to optimize drug efficacy and develop appropriate therapeutic strategies that selec-
tively activate or block relevant pathways.

Using a support vector machine (SVM) learning algorithm with 4884 chemical 
descriptors as input, Bushdid et al. [6] virtually screened 258 chemical compounds 
and determined agonists for the human G-protein-coupled odorant receptor (OR) 
51E1 as well as human receptors OR1A1 and OR2W1, and mouse receptor MOR256-
3. The predicted novel agonists were identified with a hit rate of 39–50%. Two newly 
identified agonists for OR51E1 were functionally validated through in vitro assays. In 
addition, to predict ligands and their roles in the human olfactory receptor OR1G1, 
Jabeen and Ranganathan [7] built classification models (SVM, random forest, naïve 
bayes, and neural networks) based on 13 relevant features for a dataset of 74 ago-
nists and 74 antagonists. The area under the ROC curve (AUC) was 0.652–0.827. 
Using over 200,000 compounds, the best performing classifier, naïve bayes model, 
predicted 37 compounds as agonists for OR1G1 with > 80% probability score.

In this study, we developed a ligand-based machine learning model to identify 
novel human GPCR agonists and antagonists, irrespective of GPCR types. Using the 
existing knowledge-base to predict ligand activity according to similarities/dissimi-
larities of known active ligands, we designed two-step machine learning models that 
first identify the ligands binding to GPCRs and then classify the ligands as agonists 
or antagonists. GPCR ligand information from the International Union of Basic and 
Clinical Pharmacology (IUPHAR)/British Pharmacological Society (BPS) Guide to 
PHARMACOLOGY database (GtoPdb) [8] and Context-Oriented Directed Asso-
ciations (CODA) [9] database were used to train two random forest (RF) models 
that will act independently but successively to classify query components into non-
ligands, agonists, and antagonists of GPCRs. The optimal performance parameters 
for the integrated two-step models were AUC = 0.795, accuracy = 0.733, sensitiv-
ity = 0.716, and specificity = 0.744. Hence, our model allowed us to understand the 
molecular mechanisms of GPCR–ligand interactions. This model can be employed 
in the pharmaceutical sciences to screen novel drugs and therapeutic agents.
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Results and discussion
Data collection and preprocessing

Out of 14,659 initially available human ligand-target interactions, 4590 ligand-target 
pairs were analyzed. We obtained 1058 and 1150 ligands that act as agonists (hereaf-
ter called GPCR-agonist) and antagonists (hereafter called GPCR-antagonist), respec-
tively; the remaining 2382 ligands were classified as non-ligands of GPCRs (hereafter 
called GPCR-nontarget).

To eliminate potentially redundant ligands, ligands were clustered with their ECFP4 
(extended connectivity fingerprints of bond diameter 4) fingerprints encoding the 
ligand’s structural characteristics as a vector [10] using an agglomerative hierarchi-
cal clustering method. This algorithm iteratively merges subclusters based on their 
similarity (above 0.8 in this study [11]) considering interconnectivity and closeness 
of the clusters [12]. Only representative ligands in each cluster were used for training 
and test dataset. Consequently, 758 GPCR-agonists, 950 GPCR-antagonists, and 2206 
GPCR-nontargets were selected for further analysis.

Molecular descriptor calculation and feature selection

We calculated 5270 molecular descriptors using Dragon software, and they were used 
for feature selection. Using Boruta algorithm that performs the comparison of the real 
predictor features with those of random (so-called shadow) variables, 990 selected 
predictor features (Additional file 1) with significantly larger importance values were 
taken as inputs for machine learning classifiers (Fig. 1A).

Fig. 1  Overall workflows of A feature selection process and B two-step binary-class RF models
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Machine learning model construction and evaluation

We designed two-step binary-class classifiers, given their superior accuracy estimates 
compared to multi-class classifiers [13]. The first model (T-model) predicted GPCR-
target or GPCR-nontarget; the second model (A-model) predicted GPCR-agonist or 
GPCR-antagonist (Fig.  1B). Specifically, when a query molecule is input, the T-model 
predicts whether or not the molecule is a GPCR ligand. If not, it is classified as a GPCR-
nontarget molecule. If classified as a GPCR-target, the A-model predicts whether it acts 
as a GPCR agonist or antagonist.

For the T-model, 1708 GPCR-target (from 758 GPCR-agonists and 950 GPCR-antag-
onists) and 2206 GPCR-nontarget were used in the training dataset. Because no statisti-
cal model functions at 100% accuracy, some of the GPCR-nontarget classified molecules 
could potentially interact with GPCRs; thus, we used all of the available data to mini-
mize the data imbalance [14, 15]. For the A-model, we used 758 GPCR-agonists and 950 
GPCR-antagonists in the training data set.

The T-model and A-model were built separately using the RF classifier and were evalu-
ated using the leave-one-out cross-validation (LOO-CV) method. The T-model and 
A-model achieved an AUC of 0.787 and 0.823, respectively. The final integrated two-step 
model produced an AUC of 0.795 (accuracy = 0.733, sensitivity = 0.716, and specific-
ity = 0.744) (Table 1).

Model validation with FDA‑approved GPCR drugs

To validate our model under different experimental conditions, we used FDA-approved 
GPCR-targeting drugs. Data for 134 drugs were collected, of which data for 63 drugs 
with ligand-binding types and SMILES (simplified molecular input line entry system) 
descriptors were used for the model validation procedures.

Our T-model predicted that 52 of 63 (82.5%) drugs could interact with GPCRs. 
According to the A-model, 44 of the 52 GPCR-target drugs (84.6%) were correctly cat-
egorized as agonists or antagonists. Consequently, 44 out of 63 (69.8%) FDA-approved 
GPCR-targeting drugs were correctly classified into their respective groups (GPCR-
agonist, GPCR-antagonist, GPCR-nontarget) (Table 2). In addition to the positive data, 
our T-model was also tested on negative dataset. To this end, we collected 1278 GPCR-
nontarget drugs (out of 14,594 drugs) from DrugBank database. After excluding ligands 
for which descriptors were not calculated by Dragon software, we retained 982 drugs 

Table 1  Performance parameters of the two-step binary-class models

1 Positive predictive value
2 Negative predictive value
3 Harmonic means of PPV and sensitivity
4 Matthews correlation coefficient
5 Area under the ROC curve
6 The performance values were measured with micro-average

Model Accuracy Sensitivity Specificity PPV1 NPV2 F13 MCC4 AUC​5

T-model 0.726 0.699 0.744 0.652 0.783 0.675 0.439 0.787

A-model 0.758 0.780 0.744 0.647 0.849 0.707 0.510 0.823

Integrated6 0.733 0.716 0.744 0.651 0.797 0.682 0.454 0.795
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Table 2  Model evaluation using FDA-approved GPCR drugs

Drug name Target FDA-approved 
action

T-model-
predicted action

A-model-
predicted action

References

Beclometasone 
dipropionate

Glucocorticoid 
receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Adenosine Adenosine recep‑
tor A1

GPCR-agonist GPCR-nontarget GPCR-agonist [16]

Regadenoson Adenosine recep‑
tor A2a

GPCR-agonist GPCR-target GPCR-agonist [16]

Nicardipine Alpha-1A adrener‑
gic receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Oxymetazoline Alpha-2B adrener‑
gic receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Prazosin Alpha-1A adrener‑
gic receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Apraclonidine Alpha-2A adrener‑
gic receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Dexmedetomi‑
dine

Alpha-2A adrener‑
gic receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Acebutolol Beta-1 adrenergic 
receptor

GPCR-agonist GPCR-nontarget GPCR-antag‑
onist

[16]

Mirabegron Beta-3 adrenergic 
receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Candesartan Type-1 angioten‑
sin II receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Pentagastrin Gastrin/cholecys‑
tokinin type B 
receptor

GPCR-agonist GPCR-nontarget GPCR-agonist [16]

Maraviroc C–C chemokine 
receptor type 5

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Biperiden Muscarinic acetyl‑
choline receptor 
M1

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Propantheline Muscarinic acetyl‑
choline receptor 
M1

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Umeclidinium Muscarinic acetyl‑
choline receptor 
M1

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Nabilone Cannabinoid 
receptor 2

GPCR-agonist GPCR-target GPCR-agonist [16]

Zafirlukast Cysteinyl leukot‑
riene receptor 1

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Dopamine Dopamine D2 
receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Ambrisentan Endothelin-1 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Bosentan Endothelin-1 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Vorapaxar Proteinase-acti‑
vated receptor 1

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Baclofen Gamma-amin‑
obutyric acid 
type B receptor 
subunit 2

GPCR-agonist GPCR-nontarget GPCR-agonist [16]

Estradiol Estrogen receptor 
alpha

GPCR-agonist GPCR-nontarget GPCR-agonist [16]

Levodopa Dopamine D1 
receptor

GPCR-agonist GPCR-target GPCR-agonist [16]
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Table 2  (continued)

Drug name Target FDA-approved 
action

T-model-
predicted action

A-model-
predicted action

References

Dronabinol Cannabinoid 
receptor 1

GPCR-agonist GPCR-nontarget GPCR-agonist [16]

Bumetanide Solute carrier fam‑
ily 12 member 1

GPCR-antagonist GPCR-target GPCR-agonist [16]

Nicotinic acid Hydroxycarboxylic 
acid receptor 3

GPCR-agonist GPCR-target GPCR-agonist [16]

Suvorexant Orexin receptor 
type 1

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Cetirizine Histamine H1 
receptor

GPCR-antagonist GPCR-target GPCR-agonist [16]

Betazole Histamine H2 
receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Clozapine Dopamine D2 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Frovatriptan 5-hydroxy‑
tryptamine recep‑
tor 1D

GPCR-agonist GPCR-target GPCR-agonist [16]

Eletriptan 5-hydroxy‑
tryptamine recep‑
tor 1D

GPCR-agonist GPCR-target GPCR-agonist [16]

Ergotamine 5-hydroxy‑
tryptamine recep‑
tor 1D

GPCR-agonist GPCR-target GPCR-antag‑
onist

[16]

Amoxapine Sodium-depend‑
ent serotonin 
transporter

GPCR-antagonist GPCR-nontarget GPCR-antagonist [16]

Lurasidone Dopamine D2 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Chloroquine Glutathione 
S-transferase A2

GPCR-antagonist GPCR-target GPCR-agonist [16]

Tasimelteon Melatonin recep‑
tor type 1A

GPCR-agonist GPCR-target GPCR-agonist [16]

Niclosamide DNA GPCR-antagonist GPCR-nontarget GPCR-antagonist [16]

Levocabastine Histamine H1 
receptor

GPCR-antagonist GPCR-target GPCR-agonist [16]

Naltrexone Delta-type opioid 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Anileridine Mu-type opioid 
receptor

GPCR-agonist GPCR-target GPCR-antag‑
onist

[16]

Alfentanil Mu-type opioid 
receptor

GPCR-agonist GPCR-target GPCR-antag‑
onist

[16]

Cangrelor P2Y purinocep‑
tor 12

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Treprostinil Prostacyclin 
receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Indomethacin Prostaglandin G/H 
synthase 2

GPCR-antagonist GPCR-target GPCR-agonist [16]

Prostaglandin E1 Prostaglandin 
E2 receptor EP2 
subtype

GPCR-agonist GPCR-target GPCR-agonist [16]

Prostaglandin E2 Prostaglandin 
E2 receptor EP2 
subtype

GPCR-agonist GPCR-nontarget GPCR-agonist [16]

Misoprostol Prostaglandin 
E2 receptor EP3 
subtype

GPCR-agonist GPCR-target GPCR-agonist [16]
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as GPCR-nontarget drugs. 808 of 982 GPCR-nontarget drugs (82.3%) were correctly 
predicted by our T-model (Additional file 2). Though our study considered a relatively 
small sample size, our results clearly showed that the integrated two-step RF models had 
a high and balanced prediction accuracy. Future studies should consider the practical 
compatibility of virtual screening with larger sample size datasets and more complex 
models associated with signaling pathways.

Conclusion
Because the GPCRs are involved in diverse cellular signaling transductions and there-
fore play essential and important roles in pharmaceutical research, they have long been 
considered as prime targets for drug discovery. However, unlike other cellular proteins, 
experimental screening of GPCR structure–function and ligand-identification is expen-
sive and time-consuming. Machine learning-based approaches have recently gained 
popularity in GPCR-based virtual drug discovery. In this study, we developed in-silico 
models to predict GPCR-agonists and GPCR-antagonists with reasonably high accu-
racy. The key contribution of this work is two folds: first one is presenting a GPCR-type 
independent classification model that could classify both GPCR agonists and antago-
nists together, regardless of the GPCR types, and second is using over 14,000 of publicly 
available ligand-target interaction data that could make the model more accurate and 

Table 2  (continued)

Drug name Target FDA-approved 
action

T-model-
predicted action

A-model-
predicted action

References

Latanoprost Prostaglandin 
F2-alpha receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Epoprostenol P2Y purinocep‑
tor 12

GPCR-agonist GPCR-target GPCR-agonist [16]

Sonidegib Smoothened 
homolog

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Aprepitant Neurokinin 1 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [16]

Iloprost Prostacyclin 
receptor

GPCR-agonist GPCR-target GPCR-agonist [16]

Droxidopa Alpha-1A adrener‑
gic receptor

GPCR-agonist GPCR-target GPCR-agonist [5]

Naloxegol Mu-type opioid 
receptor

GPCR-antagonist GPCR-nontarget GPCR-agonist [5]

Netupitant Neurokinin 1 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [5]

Olodaterol Beta-2 adrenergic 
receptor

GPCR-agonist GPCR-target GPCR-agonist [5]

Rolapitant Neurokinin 1 
receptor

GPCR-antagonist GPCR-target GPCR-antagonist [5]

Selexipag Prostacyclin 
receptor

GPCR-agonist GPCR-target GPCR-agonist [5]

Pimavanserin 5-hydroxy‑
tryptamine recep‑
tor 2A

GPCR-agonist GPCR-target GPCR-agonist [5]

Naldemedine Mu-type opioid 
receptor

GPCR-antagonist GPCR-nontarget GPCR-antagonist [5]

Note that incorrectly predicted events are shown in bold
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could be used in future similar studies. Although our prediction models require further 
testing, they could be applied in drug discovery technologies to predict putative GPCR-
binding ligands from millions of unlabeled chemical compounds.

Methods
Data acquisition

We acquired pharmacological datasets relating to ligand-activity-target relationships 
from the GtoPdb (https://​www.​guide​topha​rmaco​logy.​org) [8], including data for over 
1700 drug targets with over 9000 related ligands, and the CODA network database [9], 
including drug–drug target associations with related molecular, phenomic, and anatom-
ical variables. Out of 14,659 human ligand-target interactions, 4590 ligand-target pairs 
were analyzed in this study and included both a ligand-binding type (e.g., agonist and 
antagonist) and a SMILES descriptor.

We collated a list of the FDA-approved GPCR-targeting drugs [5, 16] and screened 
the DrugBank database [17] for ligand-binding types and SMILES descriptors related to 
these drugs.

ECFP4 fingerprints were calculated using Dragon software (version 7.0.10) [18], and 
the Tanimoto index [19] was used to determine the similarity between ligands.

Feature selection

Dragon software (version 7.0.10) [18] was used to calculate the chemical and physical 
properties (molecular descriptors) of chemicals from their SMILES as an input. These 
chemoinformatic properties include 1D descriptors, such as the number of atom types 
and structural fragments of the molecule, and 2D descriptors, such as structural fea-
tures, logP, and connectivity indices [18, 20].

We applied the Boruta packages (version 7.0.0) [21] with default parameters to obtain 
the best subset of descriptors. To screen the key features in each class, the FSelector 
package [22] in R software was used.

Machine learning model and performance evaluation

We applied a RF machine learning model, using the randomForest function in the R ran-
domForest package [23]. For the main two parameters, the number of random explana-
tory variables for splitting each tree node, mtry, and the number of trees, ntree, were set 
at number of features and 100, respectively.

To validate the constructed RF model, we used the LOO-CV for method selection 
[24]. To obtain the performance measurement values (true positive, TP; true negative, 
TN; false positive, FP; false negative, FN) of the integrated two-step models, a micro-
average calculation [25] was used.

Abbreviations
AUC​	� Area under the ROC curve
BPS	� British pharmacological society
CODA	� Context-oriented directed associations
ECFP4	� Extended connectivity fingerprints of bond diameter 4
FDA	� Food and drug administration
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