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Abstract 

Background:  Self-interacting proteins (SIPs), two or more copies of the protein that 
can interact with each other expressed by one gene, play a central role in the regula‑
tion of most living cells and cellular functions. Although numerous SIPs data can be 
provided by using high-throughput experimental techniques, there are still several 
shortcomings such as in time-consuming, costly, inefficient, and inherently high in 
false-positive rates, for the experimental identification of SIPs even nowadays. There‑
fore, it is more and more significant how to develop efficient and accurate automatic 
approaches as a supplement of experimental methods for assisting and accelerating 
the study of predicting SIPs from protein sequence information.

Results:  In this paper, we present a novel framework, termed GLCM-WSRC (gray level 
co-occurrence matrix-weighted sparse representation based classification), for predict‑
ing SIPs automatically based on protein evolutionary information from protein primary 
sequences. More specifically, we firstly convert the protein sequence into Position 
Specific Scoring Matrix (PSSM) containing protein sequence evolutionary informa‑
tion, exploiting the Position Specific Iterated BLAST (PSI-BLAST) tool. Secondly, using 
an efficient feature extraction approach, i.e., GLCM, we extract abstract salient and 
invariant feature vectors from the PSSM, and then perform a pre-processing operation, 
the adaptive synthetic (ADASYN) technique, to balance the SIPs dataset to generate 
new feature vectors for classification. Finally, we employ an efficient and reliable WSRC 
model to identify SIPs according to the known information of self-interacting and non-
interacting proteins.

Conclusions:  Extensive experimental results show that the proposed approach 
exhibits high prediction performance with 98.10% accuracy on the yeast dataset, and 
91.51% accuracy on the human dataset, which further reveals that the proposed model 
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could be a useful tool for large-scale self-interacting protein prediction and other bioin‑
formatics tasks detection in the future.

Keywords:  Self-interacting proteins, Protein sequence, Gray level co-occurrence 
matrix, Sparse representation

Introduction
Cells are the fundamental units of the structure and function in the organism. Typically, 
a small cell may contain many thousands of proteins. Protein, as an essential substance 
in cells, affects the cells by interacting with other components, which plays a vital role in 
maintaining normal physiological functions in living organisms. In these interactions, 
protein–protein interactions (PPIs) have always been a hot spot for studying biologi-
cal processes and thus have received widespread attention from more scholars. To fully 
understand both cell functions and biological phenomena, it is imperative to consider 
such an interesting and key question, namely, whether and how proteins interact with 
their partners, which is a special type of PPIs that are called self-interacting proteins 
(SIPs). SIPs are those proteins that have more than two copies of the protein that can 
actually interact with each other, among which the two SIP partners are the same copies 
and that can be expressed as the same gene. Hence, it can cause problems in the forma-
tion of homo-oligomer [1, 2]. Researchers found that homo-oligomerization has been an 
essential function of many biological processes, particularly in enzyme activation, signal 
transduction, immune response and gene expression regulation [3–5]. Previous works 
have demonstrated that SIPs play a critical role in the evolution of cellular physiologi-
cal functions and protein interaction networks (PINs), which will also facilitate us to 
enhance our understanding of cellular functions through a systematic approach as well 
as provide a theoretical basis for developing novel drug targets and drug design meth-
ods [6–8]. Additionally, SIPs can effectively improve the stability of proteins and avoid 
the denaturation of proteins through decreasing its surface area. Consequently, it has 
become increasingly important to design an efficient and reliable computational method 
as a complement to the traditional experimental method for identifying SIPs.

Previously, numerous studies have been devoted to develop computational-based 
approaches for PPIs prediction [9, 10]. For instance, Wang et al. [11] presented a com-
putational method for predicting PPIs from protein sequences by combining the Zernike 
moments descriptor with the probabilistic classification vector machines model. Zahiri 
et al. [12] introduced a sequence-based evolutionary information model named PPIevo 
for predicting PPIs, which extracts features from the position-specific scoring matrix 
of protein sequences and the results show that it has a better prediction performance 
in detecting PPIs. Huang et al. [13] proposed a novel computational method to predict 
PPIs. The proposed method was applied to global encoding on substitution matrix rep-
resentation of protein sequences with the combination of weighted sparse representa-
tion classifier. In order to construct a sequence-based multiple classifier system for 
identifying PPIs, Xia et al. [14] adopted auto-correlation descriptors as a feature extrac-
tion algorithm to code both interacting and non-interacting protein pairs. An et al. [15] 
reported a method that used gray wolf optimization algorithm for generating feature 
vectors from protein sequences and adopted K-fold cross-validation as well as the rel-
evance vector machine classifier to identify PPIs by considering the features of local and 
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global of protein interaction positions. Shi et  al. [16] proposed an efficient computa-
tional model based on protein sequences to predict PPIs by integrating correlation coef-
ficient feature representation of protein sequences and support vector machine (SVM) 
classifier. Wang et al. [17] developed a pure biological language processing approach for 
the prediction of PPIs, which employed biological sequence features called bio-to-vector 
(Bio2Vec) as a novel representation and used the convolution neural network (CNN) to 
execute classification. Liu et al. [18] presented an approach called SPAR (self-interacting 
Protein Analysis serveR) to predict PPIs. The SPAR combined critical residues substitu-
tion (CRS) and tenfold cross-validation with the random forest algorithm for detecting 
PPIs. The SPAR obtained a good prediction performance in cross-species application. 
Nevertheless, although these methods can be used for predicting PPIs and have yielded 
some good prediction results, they also have some limitations. First, these computational 
models of PPIs are not fully applicable to the prediction of SIPs, and even if they can be 
predicted, the prediction results are usually not very effective. Second, compared with 
the computational models of PPIs, the existing computational models of SIPs are rela-
tively few, and these models tend to ignore the problem of unbalanced data sets in SIPs, 
so the prediction performance of the models can be further improved by introducing 
reasonable computer techniques to deal with the problem of unbalanced data in the task 
of SIPs prediction. Therefore, it is particularly important to explore efficient and stable 
computational methods for large-scale SIPs detection by automated means nowadays.

In this paper, we put forward a novel computational scheme that integrates the 
gray level co-occurrence matrix (GLCM) feature extraction algorithm, adaptive syn-
thetic (ADASYN) technique with weighted sparse representation based classification 
(WSRC) model for predicting SIPs from protein primary sequence information. We 
first transformed the SIPs sequences into position specific scoring matrices (PSSM) 
that can contain protein evolutionary information. Second, a novel feature descrip-
tor called gray level co-occurrence matrix is employed to abstract salient and invari-
ant feature vectors from the PSSM, and then the ADASYN technique is applied to 
balance the training dataset to create new feature vectors for classification. Finally, 
the optimized features are fed into the WSRC model to detect whether a protein is 
interacting or non-interacting with itself. The proposed model was performed on two 
benchmark SIPs datasets including yeast and human, which obtained high average 
accuracies of 98.10% and 91.51% using the five-fold cross-validation, respectively. 
Meanwhile, the comparison results, validated experimentally by the SVM-based 
method and other existing methods, reveal that the proposed model is effective and 
robust, and it is suitable for detecting potential SIPs.

The rest of the paper is organized as follows. In “Methods” section, we first introduce 
a highly reliable dataset for SIPs prediction, then give the evolutionary matrix repre-
sentation, the position specific scoring matrix, and finally describe the proposed com-
putational methods, which include adaptive synthetic sampling approach, gray level 
co-occurrence matrix (GLCM) feature descriptors, and weighted sparse representation 
based classification. In “Results and discussion” section, we give evaluation metrics for 
the prediction of SIPs, and discuss the prediction performance of the proposed model as 
well as compare it with other existing computational models through several compari-
son experiments. In “Conclusion” section, we give the conclusion of the paper.
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Methods
Dataset

In this experiment, to construct a high reliability data source, we accessed the Uniprot 
database and downloaded human protein sequence data with a number of 20,199 from the 
database [19]. As we know, protein–protein interaction data can be collected from various 
databases, including BioGRID [20], DIP [21], InnateDB [22], IntAct [23] and MatrixDB [24]. 
In order to obtain the SIPs dataset required for the experiment, it is necessary to collect the 
PPIs data that can interact with itself in advance, that is, the data only contain the identical 
two interacting protein sequences, whose interaction type is referred to as ‘direct interac-
tion’ in relational databases. In this way, we finally established 2994 human self-interacting 
protein sequences that were used to construct the experimental datasets.

To evaluate the prediction performance of the proposed model scientifically and effi-
ciently, we screened the 2994 human SIPs datasets by the following three steps: [18] Firstly, 
we only retained those protein sequences with a length of more than 50 residues and less 
than 5000 residues from the whole human proteome. Secondly, to ensure the high qual-
ity of the SIPs data, we constructed the positive dataset used for this experiment, which 
has to meet at least one of the following three conditions: (a) There have been reported 
at least two publications for protein self-interaction; (b) The protein is referred to as a 
homo-oligomer (containing homodimer and homotrimer) in UniProt; (c) It is revealed by 
at least one small-scale experiment or two types of large-scale experiments. Finally, for con-
structing the human negative dataset, we remove all known SIPs from the entire human 
proteome (including proteins annotated as more extensive ‘physical association’ and ‘direct 
interaction’. Hence, the human dataset in this experiment consisted of 1441 SIPs and 15,938 
non-SIPs. In addition, we also created the yeast dataset employing the same strategy, which 
contained 710 positive sample SIPs and 5511 negative sample non-SIPs.

Position specific scoring matrix

As a useful tool, position specific scoring matrix (PSSM) is formed through a set of 
sequences with structural or sequence similarity and was proposed by Gribskov et al. [25]. 
Meanwhile, it contains both the position information and evolutionary information of pro-
tein sequences, which is commonly employed to detect distantly related proteins. In addi-
tion, the PSSM is also widely applied in other areas such as prediction of membrane protein 
types [26], DNA-binding proteins prediction [27], prediction of protein structural classes 
[28], and drug-target interactions prediction [29] as well as obtaining excellent prediction 
results. Thus, considering that PSSM can preserve the evolutionary information of protein 
sequences as much as possible, we used it for predicting SIPs in this study. In this experi-
ment, we employed Position Specific Iterated BLAST (PSI-BLAST) tool [30] to transform 
each protein sequence into a PSSM, and the vectors represented by these matrices can then 
be used to substitute protein sequences. Given a protein sequence, its PSSM may be repre-
sented as an H × 20 matrix, which can be denoted as below:

where the row H on the M matrix indicates the length of a given protein sequence, and 
20 indicates a total of 20 amino acids due to the fact that each protein sequence con-
sists of 20 types of amino acids. Next, for the query protein sequence, PSSM assigns a 

(1)M = {Mαβ : α = 1 . . .H ,β = 1 . . . 20}
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score Mαβ to the β th amino acid in the α th position by computing a position frequency 
matrix of each nucleotide in each position, so that the score Mαβ can be represented as:

where p(α, k) stands for a matrix whose elements are the mutation value between two 
different amino acids, and q(β , k) stands for the value of the Dayhoff’s mutation matrix 
between β th and k th amino acids.

In summary, to create experimental datasets for predicting SIPs and obtain highly and 
widely homologous information, PSI-BLAST was employed to generate the PSSM for 
each protein sequence in this paper. Here, the e-value parameter and iteration number 
of PSI-BLAST were set to 0.001 and 3, respectively. Eventually, we can express the PSSM 
of each protein sequence as a 20-dimensional matrix consisting of M × 20 elements.

Adaptive synthetic sampling method

Adaptive synthetic (ADASYN), an oversampling approach of processing the minority 
classes, was first introduced by He et  al. [31] for learning from imbalanced data sets. 
The essential idea of ADASYN is to employ a systematic approach, weighted distribu-
tion for specific minority categories of observations, to adaptively generate different 
numbers of synthetic observations in accordance with their distribution. By balancing 
original data sets with large differences between positive and negative samples, this algo-
rithm can synthesize more observations from the minority classes that are relatively dif-
ficult to classify and fewer observations from the minority classes that are fairly easy to 
classify, thus addressing the class imbalance problem [32]. Not only does the ADASYN 
algorithm reduce the bias caused by class imbalance, but also adaptively shifts the classi-
fication decision boundary for the classifier toward those minority observations that are 
relatively difficult to classify.

Suppose Do is an original dataset consisting of N samples, in which ns denotes the 
number of observations in the minor class (interacting pairs) and nl denotes the number 
of observations in the major class (non-interacting pairs). The steps of ADASYN algo-
rithm are briefly introduced below.

(1) Evaluate the level of class imbalance between samples below:

(2) To obtain new data Dn for the whole minority class, the ADASYN approach will 
generate some minority class observations into the original data set Do . The total num-
ber of synthetic observations to be generated can be computed as:

where α ∈ [0, 1] is a parameter, which is employed to identify the desired balance level 
after generating the synthetic observations. If α=1, it means that a new data set whose 
samples of classes are fully balanced will be created after generating the synthetic 
observations.

(2)Mαβ =
20

k=1

p(α, k)× q(β , k)

(3)I = ns
/
nl , I ∈ (0, 1]

(4)C = α(nl − ns)
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(3) For every small instance xi, (xi ∈ ns) in each minority class, find its k-nearest neigh-
bors in the n-dimensional space using the Euclidean distance method, and then we can 
calculate the ratio ri defined as:

where ri ∈ [0, 1] and �i is the number of observations that are contained in the majority 
class, namely the k-nearest neighbors of xi.

(4) Normalize the value of ri to a density distribution r̂i according to the following 
equation, while making the sum of all r̂i values equals 1.

(5) For every small instance xi in the minor class, the number of synthetic observations 
which need to be generated is calculated as:

(6) By selecting an instance xj from the k-nearest neighbors of xi in the minor class, we 
finally can generate a new synthetic observation according to the following formula:

where � denotes a random number between 0 and 1, xj is one of the nearest neighbor 
observations of xi, 

(
xj − xi

)
 represents the difference vector in n-dimensional spaces, 

and si is the new synthetic observation. Therefore, the ADASYN approach can automati-
cally vote on the number of synthetic observations which need to be generated for each 
minority observation by utilizing a density distribution as a criterion.

Gray level co‑occurrence matrix (GLCM) features descriptor

In the process of classifying interacting and non-interacting protein pairs using a com-
putational approach, a good feature extraction algorithm is essential for predicting 
SIPs efficiently and accurately. Although PSSM can effectively represent the evolution-
ary information of proteins, different proteins may contain different sequence lengths, 
which makes the size of the constructed PSSM inconsistent and cannot be directly used 
to compose the feature vectors of protein sequences. Thus, in this paper, we use GLCM 
to extract protein evolutionary information from PSSM to obtain the same length of fea-
ture vector descriptors. The GLCM algorithm, a classical texture-based feature extrac-
tion method, was introduced by Haralick et  al. [33], which is widely employed in a 
variety of different tasks, especially for extracting spatial variation of the matrix in image 
processing applications. A GLCM is generated by computing the pixel brightness values 
(gray levels) that have specific values and a specified spatial relationship in an image. 
This spatial relationship is defined by a parameter pair (ϑ , d) in which ϑ and d repre-
sent the direction of two pixels and the separation distance between two pixels, respec-
tively, which denotes the pixel of interest and the pixel that is horizontally adjacent to 
it. Typically, we need to define a set of parameter pairs (ϑ , d) and combine them with 
GLCM matrices to describe the rotational invariance of the GLCM by employing a set of 

(5)ri = �i/k , i = 1, . . . , ns

(6)r̂i = ri/

ns∑

i=1

ri

∑
i

r̂i = 1

(7)ci = Cr̂i

(8)si = xi +
(
xj − xi

)
× �
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rotational parameters. Generally, this parameter is set to eight orientations and spaced 
to π/4 radians apart. The number of gray values Ng , as an integer, denotes the number 
of unique brightness values presented in the image. Normally, the image is scaled from 
[0, 255] to [0,Ng ] before calculating the GLCM, where Ng indicates the gray level and also 
determines the size of the gray level co-occurrence matrix [34].

In this experiment, the prominently used texture features of PSSM are extracted by 
using the GLCM algorithm, including contrast, correlation, energy, and homogeneity, 
which were defined by Haralick et al. [33]. The feature expressions of GLCM are shown 
below. Here, the variable P(i, j) in each expression denotes the value at the (i, j)th posi-
tion in a grey level co-occurrence matrix.

where µx, µy, σx, σy are the averages and the variances of the row and column, respec-
tively, which are defined as follows:

As a result, we obtained a set of 60-dimensional statistical feature vectors from the 
PSSM of each protein sequence, using the GLCM feature extraction algorithm. In order 
to reduce the redundancy of features and computational burden, we first normalize 
all input feature vectors using the zero-mean normalization method. Second, consid-
ering the existence of unbalanced data samples, these feature vectors are fed into the 
ADASYN algorithm to generate new training samples to construct a relatively balanced 
data set so as to obtain an efficient and robust prediction model. Finally, the obtained 
new training features from the ADASYN algorithm are fed into the classification model 
for further feature classification.

Weighted sparse representation based classification

Currently, machine learning algorithms used to construct classification models 
including Naive Bayes, decision trees and sparse representation classifiers, have been 
widely used in many fields. Sparse representation classifier (SRC), a popular non-
parametric algorithm that is extensively applied in machine learning, was originally 

(9)contrast =
∑Ng−1

i,j=0
(i − j)2P(i, j)

(10)correlation =
∑Ng−1

i,j=0

(i − µx)
(
j − µy

)
P(i, j)

σxσy

(11)µx =
∑Ng−1

i,j=0 i · P(i, j) µy =
∑Ng−1

i,j=0 j · P(i, j)

(12)σx =
√∑Ng−1

i,j=0 (i − µx)
2 · P(i, j) σy =

√∑Ng−1

i,j=0

(
j − µy

)2 · P(i, j)

(13)energy =
∑Ng−1

i,j=0
P(i, j)2

(14)homogeneity =
∑Ng−1

i,j=0

P(i, j)

1+ (i − j)2
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proposed by Wright et  al. [35], which is analogous to the nearest neighbor and the 
nearest subspace approaches [36, 37]. The basic idea of SRC is to represent the indi-
vidual test set by linearly combining the whole training set from original sample data. 
Then the sparsest representation of the individual test set is found in the dictionary. 
Finally, the new tests are assigned to the category with the minimum residual accord-
ing to those representations. Although SRC has achieved good experimental results 
in many applications such as face recognition and text classification [38, 39], its pre-
diction accuracy and classification effectiveness can be further enhanced. The SRC 
algorithm is briefly described as follows.

Considering a training instance set T ∈ Rd×n, where d means the dimension of fea-
ture vectors and n means the number of training instances. Let k denote the class 
number in the instance dataset. The nk instances belonging to the kth class can be 
expressed as a submatrix Tk =

[
lk1, lk2 . . . lknk

]
, then the whole training set can be 

further rewritten as T =
[
T1 T2 . . . TK

]
, where K  denotes the class number of 

the whole instance. Assuming that there is a new testing instance x ∈ Rd belong-
ing to the kth class, the sparse representation is to find such a column vector 
α =

[
αk ,1,αk ,2, . . . ,αk ,nk

]
 which satisfies the following condition:

When representing the entire training instance set, this equation can be further 
rewritten as follows:

According to the sparse representation method, we note that the nonzero entries in 
α0 are only related to the kth class, which can be denoted as

Next, in the SRC algorithm, we need to solve the following l0-norm minimization 
problem:

Since the solution of α̂0 is an NP-hard problem, we need to optimize this problem. 
When α is sufficiently sparse, the problem can be solved in this way by solving the l1
-minimization problem instead of solving the l0-minimization directly.

To avoid the occlusion problem and enhance the generalization capability of the 
SRC algorithm, the l1-norm minimization is further extended to the following sta-
ble l1-norm minimization problem by introducing ε, a threshold of the reconstruction 
error.

Subsequently, the given test instance x is assigned to class k by computing the smallest 
reconstruction residual, which can be expressed as follows:

(15)x = αk ,1lk ,1 + αk ,2lk ,2 + · · · + αk ,nk lk ,nk

(16)x = Tα0

(17)α0 =
[
0, · · · , 0,αk ,1,αk ,2 · · ·αk ,nk , 0, · · · , 0

]T

(18)α̂0 = arg min � α �0 subject to x = Tα

(19)α̂1 = arg min � α �1 subject to x = Tα

(20)α̂1 = arg min � α �1 subject to � x − Tα �≤ ε
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where T α̂k
1 is the reconstructed value that is obtained from the training instance of class 

k , rk denotes the residual, and K  is the class number of the whole instance. Finally, the 
class with the minimum residual will be obtained, which will be used as the prediction 
label of the test instance x.

In this study, a new classification model, weighted sparse representation-based classifier 
(WSRC), is used to predict SIPs based on a novel feature extraction description of protein 
sequences. WSRC is a variant of the traditional sparse representation classifier, which can 
enhance the classification performance of prediction models [40]. WSRC utilizes the dis-
tance information to represent the test samples and assigns weights to the samples in the 
training set, whereas the typical SRC does not explore the distance or similarity relation-
ship from individual training samples to the test samples. However, previous research has 
confirmed that the locality of data is also more essential than sparsity in some cases [41, 42]. 
According to this assumption, the WSRC model needs to integrate the locality structure of 
the data based on the traditional sparse representation in order to evaluate the importance 
of each training instance in representing the testing instance. WSRC employs the Gauss-
ian kernel distance that can capture the nonlinear information within the original dataset 
to calculate the weights. For the given two instances, s1 and s2, the distance based on the 
Gaussian kernel between them is as follows:

where σ is the Gaussian kernel width that needs to be specified in advance in the experi-
ment. Using Gaussian kernel distance as a nonlinear mapping to compute weights, 
WSRC can effectively capture the locally nonlinear information within the dataset. By 
this way, the WSRC algorithm will turn to solve the following l1-norm minimization 
problem:

and more specifically,

where W  is a block-diagonal matrix and nk is the number of the training samples in the 
kth class. Similarly, to simplify this problem, the WSRC algorithm will further turn to 
solve the stable l1-norm minimization problem, which can be expressed as follows:

where ε > 0 is a threshold, namely the tolerance value of the reconstruction error using 
a linear combination of the training samples to denote the test samples.

(21)rk(x) =� x − T α̂k
1 �, k = 1, 2, . . . ,K

(22)dG(s1, s2) = e−�s1−s2�2/2σ 2

(23)α̂1 = arg min � Wα �1 subject to x = Tα

(24)diag(W ) =
[
dG

(
x, t11

)
, . . . , dG

(
x, tknk

)]T

(25)α̂1 = arg min � Wα �1 subject to � x − Tα �≤ ε
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Results and discussion
Performance evaluation

In order to assess the effectiveness and feasibility of the proposed method in this paper, 
we used the following measures, namely accuracy (Acc.), sensitivity (Sen.), specificity 
(Spe.), precision (Pre.) and Matthews correlation coefficient (MCC), as the prediction 
performance indicators of the model in this experiment, which are expressed as:

In the above formula, where TP represents true positives, meaning the count of those 
samples that have interacted pairs are predicted correctly by the model, FP represents 
false positives, meaning the number of those samples that are true non-interacting pairs 
are judged to be interacting pairs by the model, TN represents true negatives, meaning 
the number of those samples that have true non-interacting pairs are predicted correctly 
by the model, and FN represents false negatives, meaning the count of those samples 
that are true interacting pairs are judged to be non-interacting pairs by the model. Addi-
tionally, to clearly visualize the performance of our model for predicting SIPs classifi-
cation results, we also plotted the receiver operating characteristic curve (ROC) and 
computed the AUC (area under the ROC) and the AUPR (area under the precision-
recall curve) as an important evaluation metric [43]. The main workflow of the proposed 
model is shown in Fig. 1.

Performance of the proposed method

In this study, we used two standard datasets, namely yeast and human for validating 
the performance of the proposed model in predicting SIPs. For the sake of preventing 
the overfitting phenomenon affecting the prediction results as much as possible, we 
employed a five-fold cross-validation method in the experiment and separated the origi-
nal SIPs experimental dataset into the training set and independent test set. Here, taking 
the yeast dataset as an example, we described it in detail by splitting the entire data-
set into five non-overlapping parts, where 4 parts are used as training samples and the 
remaining 1 part is taken as testing samples. After this, we can obtain five separate mod-
els and can then perform five separate SIPs experiments utilizing the proposed method. 

(26)Acc. = TP + TN

TP + TN + FP + FN

(27)Sen. = TP

FN + TP

(28)Spe. = TN

FP + TN

(29)Pre. = TP

TP + FP

(30)MCC = TP × TN − FP × FN√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )



Page 11 of 18Li et al. BMC Bioinformatics          (2022) 23:518 	

In the end, the experimental results achieved by our method on the yeast dataset were 
represented as the mean and standard deviation of five predicted outcomes. Similarly, 
the same strategy was also applied to the human dataset.

As shown in Tables 1 and 2, the proposed method for predicting SIPs combined with 
five-fold cross-validation yielded satisfying results on yeast and human datasets. From 
Table 1, it is evident that the overall accuracies of these five experiments are above 97% 
for the yeast dataset. More specifically, the accuracies of five experiments are 98.23%, 
98.07%, 97.35%, 98.23% and 98.63%, respectively. The average accuracy is 98.10%, the 
average sensitivity is 87.17%, the average specificity is 99.51%, the average precision is 
95.87%, and the average MCC is 90.51%, with standard deviations of 0.47%, 2.08%, 0.26%, 
2.09% and 2.09%, respectively. Similarly, our method also obtained better experimental 

Fig. 1  Flow chart of the proposed model for predicting potential SIPs

Table 1  Five-fold cross-validation prediction results using the WSRC-based method on the yeast 
dataset

Testing set Acc. (%) Sen. (%) Spe. (%) Pre. (%) MCC (%)

1 98.23 89.51 99.54 96.67 92.13

2 98.07 87.14 99.46 95.31 90.22

3 97.35 84.25 99.09 92.48 87.10

4 98.23 86.23 99.73 97.54 90.85

5 98.63 88.71 99.73 97.35 92.26

Average 98.10 ± 0.47 87.17 ± 2.08 99.51 ± 0.26 95.87 ± 2.09 90.51 ± 2.09

Table 2  Five-fold cross-validation prediction results using the WSRC-based method on the human 
dataset

Testing set Acc. (%) Sen. (%) Spe. (%) Pre. (%) MCC (%)

1 92.40 11.61 99.13 52.54 25.32

2 91.80 14.03 98.56 45.88 26.46

3 91.19 10.96 98.55 41.03 22.64

4 91.02 13.20 98.46 44.94 25.61

5 91.15 13.95 98.46 46.15 26.54

Average 91.51 ± 0.58 12.75 ± 1.40 98.63 ± 0.28 46.11 ± 4.14 25.31 ± 1.58
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results on larger human datasets. The accuracies of each experiment are 92.40%, 91.80%, 
91.19%, 91.02% and 91.15%, respectively. The values of average accuracy, sensitivity, 
specificity, precision and MCC are 91.51%, 12.75%, 98.63%, 46.11% and 25.31%, respec-
tively, with the corresponding standard deviations of 0.58%, 1.40%, 0.28%, 4.14% and 
1.58%, respectively. Meanwhile, the ROC and AUPR curves plotted by our model for 
detecting SIPs on yeast and human datasets are shown in Figs. 2 and 3. Among them, the 
average AUC values of the model on yeast and human datasets are 99.10% and 70.45%, 
respectively, and the average AUPR values of the model on yeast and human datasets are 
85.21% and 15.75%, respectively. In these figures, y-axis and x-axis refer to true positive 
rate (TPR) and false positive rate (FPR), respectively. In addition, these high assessment 
standard values and relatively small standard deviations in the experimental results indi-
cate that the proposed method, as a computational method, is accurate and reliable in 
predicting SIPs.

Prediction performance of the support vector machine‑based method

It is remarkable that the proposed model achieved better prediction performance on two 
benchmark datasets and can be used to detect SIPs fairly well. However, Support Vector 
Machine (SVM), as a widespread data mining algorithm, has strong practicality both in 
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Fig. 2  The ROC and AUPR performance of WSRC-based method on yeast SIPs dataset
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Fig. 3  The ROC and AUPR performance of WSRC-based method on human SIPs dataset
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machine learning and in pattern recognition, which has an excellent prediction perfor-
mance especially in dealing with classification and regression problems [44]. Hence, to 
better understand the predictive performance of our classifier, we try to adopt the most 
popular SVM instead of WSRC to perform SIPs, which is a comparison experiment for 
the proposed method. Specifically, the same feature extraction method was employed 
in conjunction with the SVM classifier to execute the prediction of SIPs on yeast and 
human datasets, respectively. Here, we carry out the SVM classification task employing 
the LIBSVM toolbox [45], which can be downloaded from website https://​www.​csie.​ntu.​
edu.​tw/​~cjlin/​libsvm/. For ensuring fairness, we optimized the relevant parameters of 
the SVM by selecting the radial basis function as the kernel function. The parameters c 
and g were set to 0.5 and 1, respectively, on the yeast dataset, and the parameters c and g 
were set to 4 and 8, respectively, on the human dataset, which was determined by using 
the grid search method and other parameters were set as default values.

Tables 3 and 4 summarized the predicted results of SIPs using two classifiers in com-
bination with the fivefold cross-validation method on the yeast and human datasets. As 
seen from Table 3, the GLCM-SVM method obtained an average accuracy of 95.60% on 
the yeast dataset, wherein the accuracies of the five models are 95.42%, 95.34%, 94.77%, 
96.54%, and 95.90% respectively. Nevertheless, the GLCM-WSRC approach achieved an 
average accuracy of 98.10% in predicting SIPs, which is indeed 2.5% larger than the aver-
age accuracy gained by the SVM approach. Likewise, as shown in Table 4, the GLCM-
SVM method yielded an average accuracy of 87.86% on the human dataset, of which 
the accuracies of the five experiments are 88.40%, 87.74%, 87.71%, 87.42%, and 88.01% 

Table 3  Five-fold cross-validation prediction results using the SVM-based method on the yeast 
dataset

Model Testing set Acc. (%) Sen. (%) Spe. (%) Pre. (%) MCC (%)

GLCM-SVM 1 95.42 95.68 95.38 75.61 82.97

2 95.34 92.14 95.74 73.30 80.30

3 94.77 92.47 95.08 71.43 79.16

4 96.54 94.20 96.84 78.79 84.63

5 95.90 93.55 96.16 72.96 80.94

Average 95.60 ± 0.66 93.61 ± 1.42 95.84 ± 0.69 74.42 ± 2.87 81.60 ± 2.19

GLCM-WSRC Average 98.10 ± 0.47 87.17 ± 2.08 99.51 ± 0.26 95.87 ± 2.09 90.51 ± 2.09

Table 4  Five-fold cross-validation prediction results using the SVM-based method on the human 
dataset

Model Testing set Acc. (%) Sen. (%) Spe. (%) Pre. (%) MCC (%)

GLCM-SVM 1 88.40 23.60 93.80 24.05 27.11

2 87.74 24.46 93.24 23.94 27.64

3 87.71 22.95 93.65 24.91 27.38

4 87.42 22.77 93.60 25.37 27.58

5 88.01 22.59 94.21 26.98 27.94

Average 87.86 ± 0.37 23.27 ± 0.76 93.70 ± 0.35 25.05 ± 1.23 27.53 ± 0.31

GLCM-WSRC Average 91.51 ± 0.58 12.75 ± 1.40 98.63 ± 0.28 46.11 ± 4.14 25.31 ± 1.58

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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respectively. The highest accuracy rate obtained based on the SVM model is 2.62% lower 
than the minimum accuracy rate achieved based on the WSRC model as compared to 
the predicted results of the WSRC method on the human dataset. The predictive perfor-
mance of the ROC and AUPR curves based on the SVM method on the yeast and human 
datasets is shown in Figs. 4 and 5. Among them, the average AUC values of the model 
on yeast and human datasets are 98.96% and 69.35%, respectively, and the average AUPR 
values of the model on yeast and human datasets are 69.87% and 14.88%, respectively. 
Consequently, it can be seen from these evaluation metrics that the experimental results 
obtained by the WSRC classifier are superior to those obtained by the SVM classifier 
in detecting SIPs, which further indicates that the proposed computational model can 
provide a useful supplementary tool for predicting SIPs, as well as other bioinformatics 
tasks.

Comparison with other methods

Currently, several computational models based on protein sequences have been pro-
posed to detect SIPs. In this section, to further objectively evaluate the superior per-
formance of our model, we compared it with the following six methods that have been 
shown to achieve a good prediction performance on the same two standard datasets. 
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Fig. 4  The ROC and AUPR performance of SVM-based method on yeast SIPs dataset
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Fig. 5  The ROC and AUPR performance of SVM-based method on human SIPs dataset
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These existing methods include SLIPPER [46], CRS [18], SPAR [18], DXECPPI [47], 
PPIevo [12] and LocFuse [48], which are all classical methods designed to detect SIPs. 
The comparison results between the proposed method and these six methods are clearly 
given in Tables  5 and 6, which indicated the good performance of our method, using 
ADASYN algorithm, GLCM feature extraction, and WSRC classifier to predict SIPs in 
this paper, as compared to the previous computational methods. From Table 5, we can 
see that the proposed method yielded a high accuracy of 98.10% when detecting the SIPs 
of the yeast dataset, which is significantly higher than the six existing methods obtaining 
relatively low accuracies between 66.28% and 87.46%. Furthermore, compared with the 
other methods, the proposed method achieves relatively low standard deviations with 
respect to these evaluation metrics, which also implies that our model has a more robust 
predictive performance in predicting SIPs. At the same instant, we obtained relatively 
good prediction results from Table 6 when detecting the SIPs of the human dataset. The 
accuracy of the proposed predictor is 91.51%, which is 60.61% higher than the DXECPPI 
method, 13.47% higher than the PPIevo method, and 10.85% higher than the LocFuse 
method. These comparison results further demonstrate that the proposed method is 
capable of efficiently predicting SIPs from protein sequences.

The main reasons for the proposed method yielding better prediction results come 
from the following points: (1) PSSM can contain protein evolutionary information. (2) 
The GLCM feature extraction algorithm can accurately capture useful knowledge from 
the PSSM. (3) The ADASYN method can efficiently integrate training features to balance 
the training sample set and reduce the impact of noise. (4) WSRC can effectively discover 
differences between different types and improve the prediction performance for the 
classification tasks dealing with interacting and non-interacting proteins, by integrating 

Table 5  Predictive performance of seven different methods on yeast dataset

Model Acc. (%) Spe. (%) Sen. (%) MCC (%)

SLIPPER 71.90 72.18 69.72 28.42

DXECPPI 87.46 94.93 29.44 28.25

PPIevo 66.28 87.46 60.14 18.01

LocFuse 66.66 68.10 55.49 15.77

CRS 72.69 74.37 59.58 23.68

SPAR 76.96 80.02 53.24 24.84

Proposed method 98.10 99.51 87.17 90.51

Table 6  Predictive performance of seven different methods on human dataset

Model Acc. (%) Spe. (%) Sen. (%) MCC (%)

SLIPPER 91.10 95.06 47.26 41.97

DXECPPI 30.90 25.83 87.08 8.25

PPIevo 78.04 25.82 87.83 20.82

LocFuse 80.66 80.50 50.83 20.26

CRS 91.54 96.72 34.17 36.33

SPAR 92.09 97.40 33.33 38.36

Proposed method 91.51 98.63 12.75 25.31
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both sparsity and data locality structure into traditional SRC. (5) Compared with other 
methods, WSRC can automatically obtain a good prediction result in detecting SIPs, 
which is mainly due to the fact that it could keep the same parameters in all SIPs experi-
ments and does not require much manual intervention to adjust its parameters.

Conclusion
Recently, the rise of machine learning techniques constantly promotes highly inter-
disciplinary research in different fields such as protein–protein interaction prediction, 
drug-target interaction prediction, and drug-disease association prediction. In this 
study, we present a novel computational method named GLCM-WSRC, which com-
bines GLCM feature extraction algorithm, ADASYN technique with WSRC classifica-
tion model for predicting SIPs based on protein evolutionary information from protein 
primary sequences. Specifically, each protein sequence was transformed into a PSSM, 
a two-dimensional matrix that can contain protein evolutionary information, by using 
the PSI-BLAST method. The GLCM algorithm is then employed to capture the valuable 
information from these PSSMs and form feature vectors of the proteins, after which the 
ADASYN technique is applied to balance the training data set to form new feature vec-
tors used as the input of classifier from the obtained GLCM feature vectors. Finally, the 
weighted sparse representation based classification machine learning strategy is adopted 
to predict SIPs. Promising experimental results reveal that the constructed model is fea-
sible and efficient when dealing with the classification task of interacting and non-inter-
acting pairs of protein sequences, which achieves better prediction performances than 
other existing works on the same benchmark dataset. Thus, our work provides a useful 
tool for large-scale self-interacting protein prediction, which is beneficial for the detec-
tion of other bioinformatics tasks in the future.
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