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Abstract 

Background:  Image segmentation in fluorescence microscopy is often based on 
spectral separation of fluorescent probes (color-based segmentation) or on significant 
intensity differences in individual image regions (intensity-based segmentation). These 
approaches fail, if dye fluorescence shows large spectral overlap with other employed 
probes or with strong cellular autofluorescence.

Results:  Here, a novel model-free approach is presented which determines bleaching 
characteristics based on dynamic mode decomposition (DMD) and uses the inferred 
photobleaching kinetics to distinguish different probes or dye molecules from autoflu-
orescence. DMD is a data-driven computational method for detecting and quantifying 
dynamic events in complex spatiotemporal data. Here, DMD is first used on synthetic 
image data and thereafter used to determine photobleaching characteristics of a 
fluorescent sterol probe, dehydroergosterol (DHE), compared to that of cellular auto-
fluorescence in the nematode Caenorhabditis elegans. It is shown that decomposition 
of those dynamic modes allows for separating probe from autofluorescence without 
invoking a particular model for the bleaching process. In a second application, DMD 
of dye-specific photobleaching is used to separate two green-fluorescent dyes, an 
NBD-tagged sphingolipid and Alexa488-transferrin, thereby assigning them to different 
cellular compartments.

Conclusions:  Data-based decomposition of dynamic modes can be employed to 
analyze spatially varying photobleaching of fluorescent probes in cells and tissues for 
spatial and temporal image segmentation, discrimination of probe from autofluores-
cence and image denoising. The new method should find wide application in analysis 
of dynamic fluorescence imaging data.

Keywords:  Spatiotemporal modeling, Fluorescence, Photobleaching, Live-cell 
microscopy, Autofluorescence, Matrix methods
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Background
Image segmentation in fluorescence microscopy is an important image processing step 
to discriminate different image regions into spatially distinct sets. It is either based on 
differences in intensity of one fluorescent probe, e.g., DAPI intensity is selective for the 
nucleus but not found in other organelles, or on using distinct dyes for each subcellu-
lar compartment. Selective detection of different fluorescent molecules in intracellular 
organelles requires differences in emission wavelength (color) but this approach fails if 
spectral properties of dyes are very similar. Spectral unmixing can overcome this limita-
tion to some extend but only, as long as the excitation or emission peaks of individual 
fluorophores differ by at least 30 nm [1]. Dye-specific properties, such as fluorescence 
lifetime can also be employed for selective separation of different probes or of probe 
from autofluorescence [2], but this requires special equipment not being available in 
many cell biological laboratories. Acquisition of spatio-temporal image data, i.e., videos, 
allows for including temporal information into the segmentation process. In principle, 
this should allow one to infer the contribution of several fluorophores or probe versus 
autofluorescence even in the same image region.

Photobleaching kinetics of, for example organelle markers, can be used as temporal 
information to segment intracellular organelles or to distinguish probe intensity from 
autofluorescence [3]. This is particularly important, if excitation and fluorescence spec-
tra of a probe and of autofluorescence overlap strongly and can hardly be distinguished 
based on intensity differences. One such application is the analysis of sterol trafficking 
in the nematode Caenorhabditis elegans (C. elegans). C. elegans is a sterol-auxotroph 
organism, which is often employed to study the molecular basis of lipid transport and 
metabolic regulation on a systemic level [4–6]. Almost the entire sterol pool of this nem-
atode can be replaced by feeding these worms with the fluorescent natural sterol dehy-
droergosterol (DHE), allowing for observing sterol uptake and transport by microscopy 
[7, 8]. To detect DHE selectively and to distinguish it from cellular autofluorescence in 
the ultraviolet, we made use of the much faster photobleaching of the sterol compared to 
autofluorescence of subcellular structures, particularly of gut granules [8, 9]. Pixel-wise 
fitting of a mathematical decay model to the bleaching kinetics allows for image segmen-
tation and for detecting heterogeneous bleaching of probes in subcellular organelles [10, 
11]. From such a model, other parameters, such as the integrated probe intensity can be 
inferred, and image background can be detected and corrected for [3, 10, 12, 13]. The 
success of model-based bleaching analysis for the above-described applications depends 
on accurate modeling of the bleaching process. As the underlying photophysics can be 
complex and is not directly accessible from first principles, particularly not for the het-
erogeneous intracellular environment, the mathematical decay models used to describe 
photobleaching must be considered as empirical fitting functions with some mechanistic 
underpinning [10, 14, 15]. To account for complex bleaching mechanisms, distributions 
of rate constants are often invoked in the modeling process, whose mechanistic inter-
pretation is difficult [10, 11, 16, 17]. On the other hand, multi-exponential fitting suf-
fers from the well-known non-orthogonality of real exponential functions, making that 
fluorescence decays cannot be uniquely represented by the sum of exponential functions 
with real exponents [18]. Moreover, the fit quality of any model depends on minimizing 
movement of the specimen, since displacement of for example organelles during imaging 
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will reduce fitting accuracy. This can only be partly alleviated by temporal and/or spatial 
filtering techniques, which comes to the price of eventual loss of resolution. A recent 
study combined the analysis of photobleaching characteristics with spectral unmix-
ing and employed a non-negative matrix factorization to separate several fluorescent 
probes with nearly identical emission spectra [19]. This study demonstrated the poten-
tial of including fluorophore bleaching characteristics into spectral separation methods 
for live-cell imaging. But it was limited by the fact that for each fluorescent probe, only 
a single bleaching fingerprint was considered. Many studies have shown, however, that 
photobleaching of fluorescent probes in complex environments like cells is heterogene-
ous [3, 11, 20–23]. In addition, uneven illumination and variations of refractive index 
can contribute to locally varying photobleaching kinetics in wide field and confocal 
microscopy [10, 12, 24, 25]. Together, this demands a full spatiotemporal description 
of the photobleaching characteristics for proper image segmentation and separation of 
spectrally indistinguishable fluorophores.

Dynamic mode decomposition (DMD) is a novel computational approach to extract 
dynamic information from large spatiotemporal datasets, such as images. DMD can be 
considered as a combination of principal component analysis (PCA) or singular value 
decomposition (SVD) with Fourier transformation in time [26, 27]. Originating in fluid 
mechanics as a method to determine coherent flow patterns, DMD is increasingly 
applied in computer vision and biomedical imaging [26, 28]. For example, DMD has 
been used to detect video shots or to separate foreground from background in image 
sequences [27, 29, 30]. It has also been used to segment images of kidneys and detect 
functional brain states by magnetic resonance imaging [31, 32]. Based on a spectral 
decomposition of the transfer or Koopman operator, DMD allows not only for detecting 
characteristic dynamic patterns in high-dimensional data sets, but also to dissect experi-
mentally determined dynamics into individual dynamic modes. In this study, it is shown, 
how DMD can be employed to determine photobleaching characteristics of fluorescent 
probes and to distinguish probe fluorescence from cellular autofluorescence. This paper 
is organized as follows; first, the theory behind DMD is briefly reviewed, second, the 
method is applied to synthetic data of differently bleaching regions in simulated images. 
Third, an example of bleaching analysis in intact animals is given, where it is shown that 
the characteristic photobleaching of DHE can be detected by DMD and distinguished 
from cellular autofluorescence in C. elegans. Fourth, it is demonstrated that DMD of the 
distinct photobleaching kinetics of two green-emitting fluorescent probes can be used to 
distinguish them in living cells. Specifically, an NBD-tagged sphingolipid and Alexa488-
tagged transferrin (Alexa488-Tf), an endocytosis marker, are employed, and DMD of 
their photobleaching kinetics allows for their unequivocal assignment to different sub-
cellular organelles. Finally, the findings are discussed and brought into perspective for 
future applications of DMD in image analysis for life science applications.

Results
Theory of DMD applied to fluorescence photobleaching

Let I(x, y, t) be a video image sequence of fluorescence intensity, I, as a function of spatial 
coordinates, x, y ∈ Rn and time, t ∈ Rm. For the purpose of this study, this image sequence 
is supposed to contain the spatial distribution of some fluorescence probe in a living 
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specimen, in which the fluorescence intensity decays over time due to photobleach-
ing. Images have been acquired at discrete and constant time intervals, Δt, given by 
the microscope acquisition time. DMD is based on identifying the transfer operator 
between snapshots of the data measured at different instances of time, allowing one to 
determine the time evolution of a dynamic system. The time evolution considered here 
is the bleaching kinetics used for spatiotemporal segmentation of fluorescence images. 
In DMD, this is formulated as a matrix separation problem aimed to separate image 
regions with slowly or non-changing fluorescence intensity from regions experiencing 
more rapid photobleaching. To determine the low-rank structure of continuously vary-
ing fluorescence intensity in distinct image regions, the time-lapse image stack must first 
be reshaped into a space–time data matrix. Specifically, each image of dimension x times 
y is reshaped into a column vector (with n = x∙y elements), a so-called DMD snapshot, 
and the obtained vectors are stacked together over the m time points to create a single 
matrix of size n times m (i.e., a data matrix X ∈ Rn∙m. Figure 1A). Reshaping of each image 
into a column vector, xk  , is carried out in a row-wise manner, i.e., all x pixels of the first 
row, u1 = (u11, u12, …, u1x) get stacked into the first x elements of the column vector, xk  , 
followed by the next row of the image, u2 = (u21, u22, …, u2x) and so on, until uy = (uy1, uy2, 
…, uyx). This is illustrated in Fig. 1A, B (blue symbols and arrows) for a 5 × 3 image size. 
Those image column vectors become arranged in an n × m data matrix X consisting of m 
columns, each representing one time point of the original image sequence [28, 31]:

(1)X = [x1, x2, · · · , xk , . . . xm]

Fig. 1  Workflow for dynamic mode decomposition of bleaching kinetics in fluorescence microscopy. A 
video sequence with decaying intensity I(x, y, t) in m frames representing time points t = 1, … m (A) gets 
first reshaped into a space–time matrix in which each video frame having x pixels in each row uy (here y = 3) 
gets reshaped into m columns with y times x elements each of a space–time matrix X (B and see Eq. 1). 
Following the procedure described in Eq. 2–11 the system matrix describing the fluorescence dynamics 
gets dimensionally reduced using a SVD and rank truncation to capture the dominant dynamics in the 
system. Subsequently, spectral decomposition of this truncated system matrix provides the dynamic modes 
(eigenfunctions), mode amplitudes and eigenvalues, which together approximate the original space–time 
matrix X (C). Reconstruction of the video sequence is achieved by reversing the reshaping procedure 
described in panel A. In this example, a rank-3 approximation of the system matrix is illustrated. See text for 
further explanations
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Here, the index k = 1,…, m indicates the frame number resembling the time axis of the 
video sequence. Note that this image reshaping procedure is entirely reversible (and only 
one line of code in NumPy [33]), such that location information between adjacent pixels 
is preserved. Having reshaped the image data, we want to find a mapping between dis-
crete time steps Δt from state x(k∙Δt) = xk to xk+1 as:

Here, A is a matrix which describes the advancement of the system in time and which 
resembles the Koopman or transfer operator for measurements g(xk) = xk [26]. We want 
to approximate A solely from the given data. For that, we define the discrete time-shifted 
states of our system as two new matrices, X1, X2 ∈ Rn∙(m−1):

and

With that the system corresponding to Eq. (2) becomes X2 = A∙X1, from which we can 
find A by minimizing the Frobenius norm, �·�F [26]:

We can find the pseudoinverse of the first data matrix, Xinv
1  , by using a SVD of X1 into 

unitary matrices U ∈ Rn∙(m−1), V*∈ R(m−1)∙(m−1) with singular values in the diagonal matrix 
Σ ∈ R(m−1)∙(m−1):

Since the data matrices, X1 and X2 have typically many more rows n (i.e., pixels for 
each image) than columns (m-1) (i.e., time points), there are at most (m-1) non-zero sin-
gular values and corresponding singular vectors and therefore, the matrix A will have 
at most rank (m-1), but in practice it is calculated up to rank r <  < (m-1). Thus, one can 
approximate A by calculating its projection onto the left singular vectors, i.e., the col-
umn vectors of U and truncating at rank r to only keep the governing dynamics of the 
system. We get using a similarity transformation [26, 29]:

Here, U’, V’ and Σ’ are rank r approximations of the full matrices, U, V and Σ, and * 
indicates the complex conjugate transpose of a given matrix (which is the transpose for a 
real matrix). The similarity transformation of Eq. 7 reduces the size of the system matrix 
from A ∈ R(m−1)∙(m−1) to A’∈ Rr∙r and resembles the dimension reduction used in PCA [26]. 
But in contrast to PCA, which is only used for spatial matrix decomposition, in DMD 
the system matrices A and A’ contain spatial and temporal information. Having defined 
the reduced system matrix, one can solve the following eigenvalue problem to deter-
mine the eigenvalues describing the temporal evolution of the studied system by spectral 
decomposition of A’. First, one gets the eigenvalues from the matrix Λ:

(2)xk+1 = A · xk

(3)X1 = [x1, x2, · · · , xm−1]

(4)X2 = [x2, x3, · · · , xm]

(5)A := argmin�X2 − A · X1�F = X2 · X
inv
1

(6)X1 = U ·� · V ∗

(7)A
′ = U

′∗ · A ·U ′ = U
′∗ · X2 · V

′ ·�′−1
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Here, the matrix W contains the eigenvectors of A’, providing a coordinate transforma-
tion which diagonalizes A’ thereby decoupling the system dynamics. Importantly, these 
eigenvalues and the corresponding eigenfunctions collected in the matrix, Φ, are the 
same as for the full matrix A [26]:

Using this spectral decomposition of the transfer matrices A and A’, respectively, we 
can express the dynamics of our system as linear combination of eigenfunctions, φj, (also 
called DMD modes  or mode weights), corresponding eigenvalues, λj (so-called DMD 
eigenvalues) and mode amplitudes b, which are just the components of each eigenfunc-
tion in a given direction. This leads for discrete-time systems to:

And by using the continuous eigenvalues ω = ln(λ/Δt), the Fourier modes, Eq. (10) can 
be written as [27]:

Here, x(t) is a vector of images (x, y index omitted for brevity) as a function of time, t, 
describing the time evolution of the entire system as sum of dynamic modes, φj, mode 
amplitudes, bj, and time-dependent exponential functions (Fig. 1C). The eigenvalues, ωj, 
resemble the complex Fourier modes of the system where the real part describes the 
mode’s decay or increase, while the imaginary part describes mode oscillations. By this 
approach, the spatiotemporal image data can be decomposed in a purely data-driven 
manner, revealing dynamic properties of the system. In the following it is shown, how 
DMD can be used to discriminate differently bleaching fluorescent species in an image 
stack, first on synthetic data and then on experimental image stacks containing bleach-
ing fluorophores and autofluorescence, respectively.

DMD of synthetic bleach stacks

To assess the potential of DMD to capture the dynamics of photobleaching in micros-
copy images, synthetic image stacks with known bleach rates were used. A rectangular 
region consisting of a slowly bleaching species (rate constant k0 = 0.01  s−1) contained 
a circular area with a faster bleaching species (rate constant k1 = 0.05  s−1) and a third 
elliptical region with a very fast bleaching species (rate constant k2 = 0.15  s−1). Thus, 
the three regions have the same initial intensity but differ in their bleaching kinetics. 
Accordingly, classical segmentation algorithms, such as Otsu, Triangle, Minimum or Li 
thresholding can only separate the rectangle from the background [34], but those algo-
rithms fail in segmenting the circular and elliptical region when applied to the first frame 

(8)A′ ·W = � ·W

(9)� = X2 · V
′ ·�′−1 ·W

(10)xk =

r

j=1

ϕj · �
k−1
j · bj

(11)x(t) =

r∑

j=1

ϕj · e
ωj ·t · bj
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of the bleach stack (Additional file 1: Fig. S1A and Additional file 2: Fig. S2–Additional 
file 4: Fig. S4).

Applying such algorithms to partially bleached frames (e.g., #10, 20 or 30) allows for 
segmenting the rectangular region but not the circular or elliptical region with only 
minor differences between the used thresholding methods (Additional file 1: Figs. S1B, 
C and Additional file  2: Fig. S2–Additional file  4: Fig. S4). When applying multi-Otsu 
thresholding to selected frames of the simulated bleach stack, all three regions could be 
segmented and separated from the background for frame #10, but not for frame #20 or 
frame #30, where the elliptical region could not be identified (Additional file 5: Fig. S5). 
Thus, without prior knowledge about which frame to analyze and the number of regions 
to be identified, segmentation of individual frames of a bleach stack is insufficient.

It needs methods which account for the entire bleaching dynamics in an image 
stack simultaneously, such as DMD, for proper image segmentation and separa-
tion of several fluorophores in the same sample. DMD of this bleach stack was car-
ried out using an automated threshold determination based on the highest singular 
values, which resulted in a rank-3 approximation of the full data matrix [35]. That 
means, only three dynamic modes are needed to capture the relevant dynamics in 
this system. As shown in Fig. 2, such a rank-3 approximation of the system matrix is 

Fig. 2  Comparison of simulated and reconstructed bleach stacks. A, selected frames (#1, #25, #50, #75 and 
#100) are plotted for the simulated bleach stack (left column) and the reconstructed image stack obtained 
from the DMD of the synthetic image series (middle column). Right column, absolute error between 
simulation and reconstruction. The intensity range is color-coded between 0 and 255 intensity units. One can 
see that DMD approximates the simulated images very well and is also efficient in removing image noise. 
B, integrated intensity of original (blue symbols) and reconstructed image stacks (red symbols). C, mean 
intensity in color-coded boxes (see #50 in A for location of regions of interest, ROI) for original (red, yellow 
and cyan lines) and reconstructed video stacks (blue, green and pink lines)
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sufficient to describe the image data adequately. Its dynamics is very well captured 
by the reconstruction with both, the integrated intensity of the whole stack and the 
mean intensity in selected regions, both being in good agreement with the original 
data. The rank-truncation in the DMD reconstruction of this simulated bleach stack 
has the additional benefit that most noise is removed, such that the different regions 
can be better discerned than in the simulated original data (Fig. 2A). Thus, DMD can 
be used to denoise the bleach stacks, which improves the ability to segment regions 
based on bleaching kinetics (Fig. 3). All three dynamic modes contain negative val-
ues and have negative mode amplitudes, such that their product according to Eq. 11 
gives exponential decays from initially positive values (Fig.  3A, B). Accordingly, the 
more negative the pixel values in the 2D maps of dynamic modes are (blue in Fig. 3A), 
the higher is the contribution of this region to the mode decay. For Mode 1, this is 
the rectangular region (Fig.  3A), which has the slowest mode dynamics (Fig.  3B, 
blue line), in accordance with its slow bleaching kinetics (Fig.  2A, C). For Mode 2, 
most negative values are found in the elliptical region (Fig. 3A), which has the fastest 
mode dynamics (Fig. 3B, red line) and also the fastest bleaching kinetics (Fig. 2A, C). 
Mode 3 has the most negative values in the circular region (Fig.  3A), which has an 
intermediate mode dynamic (Fig.  3B, green line). This agrees with the intermediate 

Fig. 3  Dynamic mode decomposition enables accurate segmentation of synthetic bleach stacks. A rank-3 
approximation of the full matrix A was employed to decompose the simulated bleaching kinetics. A, 2D map 
of dynamic modes, i.e., Mode 1 (φ1), Mode 2 (φ2) and Mode 3 (φ3). B, mode dynamics for each of the three 
modes and C, eigenvalues for each mode, ω1 to ω3, plotted on the unit circle. D, histogram of each dynamic 
mode (compare panel A) with threshold intensity value determined by the Minimum method indicated 
as red line. E, result of binary segmentation with white being foreground and black being background. 
While thresholding Mode 1 segments the slowly bleaching rectangular region, thresholding Mode 2 
isolates the elliptical region with fast bleaching kinetics. Thresholding Mode 3 isolated the circular region 
with intermediate bleaching kinetics. F, reconstructed mode dynamics according to Eq. 11 for Mode 1 (left 
column), Mode 2 (middle column) and Mode 3 (right column)
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bleaching rate constant defined for this region (Fig. 2A, C). Thus, DMD captures the 
individual bleaching dynamics of different image regions very well. There are three 
real eigenvalues, one for each mode (Fig.  3C). The eigenvalues are upon logarith-
mic scaling (Eq. 12) equal to ω1 = − 0.009 s, ω2 = − −0.128 s and ω3 = − 0.05 s for 
dynamics modes 1, 2 and 3, respectively. This is similar but not identical to the eigen-
values used in the simulations, i.e., to − k0 = − 0.01 s−1 for the rectangular region (≈ 
ω1),  − k2 = − 0.15 s−1(≈ ω2) for the elliptical region and − k1 = − 0.05 s−1 ((≈ ω3) for 
the circular area of the simulated bleach stack, respectively. Note that these eigenval-
ues are not expected to precisely resemble the rate constants used in the simulations, 
since DMD is not a model fitting technique. Instead, the dynamics at each pixel posi-
tion is described as the sum of all three dynamic modes multiplied by the exponen-
tials and mode weights (see Eq. 11). Image regions, which are not or only very little 
contributing to a given mode, have zero or very small entries in their 2D map of the 
corresponding dynamic mode (Fig.  3A). Based on this feature, the dynamic modes 
can be used to threshold bleach stacks, thereby segmenting the images into regions 
of different bleaching dynamics despite identical intensities in the first image. This is 
illustrated in Fig. 3D, E for the simulated bleach stack, in which the Minimum-based 
thresholding method was used to segment Mode 1 into background and rectangular 
region (without circle and ellipse) as foreground, Mode 2 into elliptical region and 
background and Mode 3 into circular region and background, respectively [34, 36].

Image thresholding was applied separately to Mode 1, 2 and 3 of the DMD of the syn-
thetic bleach stack and compared to ground truth images for the rectangular region 
without circle and ellipse inscribed (Ground truth 1), the elliptical region (Ground truth 
2) and the circular region (Ground truth 3). The Jaccard index, J, and the Dice score, D, 
are provided for different thresholding methods; compare to Fig. 3E.

Segmentation quality is very high as inferred from measuring the Jaccard index 
( J (y, ỹ) ) and Dice score ( D(y, ỹ) , Eqs.  13 and 14), which both provided values of 1.0, 
i.e., a perfect overlap [37]. A systematic analysis of all employed thresholding methods 

Table 1  Quantification of segmentation accuracy of DMD for the three different image regions

Method Ground truth 1 vs. mode 1 Ground truth 2 vs. mode 2 Ground truth 
3 vs. mode 3

Triangle J = 0.999 J = 0.996 J = 0.998

D = 0.999 D = 0.998 D = 0.999

Minimum J = 1.000 J = 1.000 J = 1.000

D = 1.000 D = 1.000 D = 1.000

Isodata J = 1.000 J = 1.000 J = 1.000

D = 1.000 D = 1.000 D = 1.000

Li J = 1.000 J = 1.000 J = 1.000

D = 1.000 D = 1.000 D = 1.000

Mean J = 1.000 J = 0.651 J = 0.606

D = 1.000 D = 0.789 D = 0.755

Otsu J = 1.000 J = 1.000 J = 1.000

D = 1.000 D = 1.000 D = 1.000

Yen J = 0.995 J = 0.988 J = 0.988

D = 0.997 D = 0.994 D = 0.994
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confirms this conclusion (see Table 1). For comparison, pixel-wise bleach rate fitting of 
the bleach stack using a mono-exponential decay function provides precise estimates of 
the rate constants and a comparable reconstruction quality as DMD (not shown) [8]. 
However, this method allows only for segmentation of one region by the Minimum 
method (i.e., either the rectangular region, when using the time constant image with 
J
(
y, ỹ

)
= 0.999,D

(
y, ỹ

)
= 0.999 or the elliptical region, when using the reciprocal, i.e., 

the rate constant image with J
(
y, ỹ

)
= 1.00,D

(
y, ỹ

)
= 1.00 , Additional file  2: Fig. S2–

Additional file 4: Fig. S4 and Additional file 6: Fig. S6). Similarly, other histogram-based 
segmentation methods fail in correctly identifying all three regions based on the time 
constant or rate constant maps provided by PixBleach (Additional file 2: Fig. S2–Addi-
tional file 4: Fig. S4 and Additional file 7: Fig. S7). When applying multi-Otsu threshold-
ing [38], the circular and elliptical region could be separated based on the rate constant 
image in PixBleach [8], but the method failed to segment the rectangular region in par-
allel (Additional file  8: Fig. S8). In contrast, the sum of Mode 2 and 3 determined by 
DMD could be segmented into all four regions, though with lower accuracy then when 
thresholding the three different modes individually (compare Fig. 3 and Additional file 8: 
Fig. S8). In summary, DMD-based segmentation of image stacks based on differences 
in bleaching kinetics outcompetes classical thresholding methods and is at least on par 
with other bleaching-based approaches for image segmentation. DMD has the additional 
advantage that each dynamic mode can be separately visualized and analyzed. This is 
illustrated in Fig.  3F, which shows that multiplying each mode with the correspond-
ing mode amplitudes and exponentials of eigenvalues according to Eq. 11 provides the 
time-evolution of each dynamic mode. One can clearly see that Mode 1 captures regions 
with the slowest dynamics (the rectangular area without inscribed circle and ellipse) and 
Mode 2 those with the fastest dynamics (the elliptical area). Mode 3 is comprised of pix-
els with intermediate decay dynamics (the circular area). This is in very good agreement 
with the segmentation results and demonstrates that the reconstructed dynamic modes 
correctly capture the bleaching dynamics in each individual image region. Thus, apply-
ing DMD to bleach stacks makes that additional image segmentation using e.g., thresh-
olding methods is not strictly necessary anymore. This is a very important conclusion of 
this study, as it provides a new paradigm for isolating different fluorophores solely based 
on their characteristic bleaching kinetics, even if there is no difference in intensity.

DMD of experimental image stacks of photobleaching in C. elegans

To assess, whether DMD can be used to segment real experimental data, C. elegans nem-
atodes labeled with the intrinsically fluorescent sterol DHE were repeatedly imaged. Our 
earlier studies showed that DHE’s fluorescence emission strongly overlaps with auto-
fluorescence of nematodes in the ultraviolet region of the spectrum, but also that DHE 
bleaches much faster than autofluorescence [8, 9]. To decompose the differential bleach-
ing of probe and autofluorescence, image stacks were analyzed by DMD using a rank-5 
approximation of the full data matrix. Strikingly, the reconstructed image stack contain-
ing the information from all five dynamic modes perfectly matches the original data, 
and the decreasing integrated intensity of both image stacks coincides closely (Fig. 4A, 
B). Also, the bleaching kinetics in individual regions perfectly coincides for the original 
image stack and the DMD reconstruction (i.e., intensity decay profiles differ by less than 
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0.2% for all intensities and therefore overlap in the curves, Fig. 4C). DMD of this fluo-
rescence image series resulted in two complex eigenvalues, which describe two degener-
ated modes with oscillating dynamics (Fig. 5A, ‘Mode 1 and 2’ and C). In addition, there 
are three real eigenvalues smaller than one, corresponding to decaying dynamic modes, 
which describe the bleaching kinetics of DHE and autofluorescence respectively (Fig. 5B 
‘Mode 3–5’ and C). Inspection of the mode weights confirms this interpretation (Fig. 6); 
Mode 1 and 2 contain non-zero imaginary parts, which account for the slight lateral 
displacement of the nematodes during imaging (Fig. 6A, B). Such movement cannot be 
entirely prevented despite anesthetizing the animals before imaging, and it can impact 
the fit quality in pixel-wise bleach rate fitting [8]. In contrast, in DMD one can account 
for some movement of subcellular structures without compromising the bleaching anal-
ysis. Mode 3–5 describe the decaying intensity, as inferred from the mode weights which 
all have only real entries (Fig. 6C–E). These modes have real eigenvalues, smaller than 
one and decaying mode amplitudes (Fig. 5B, C). Mode 3 described the slowly decaying 
autofluorescence, while Mode 4 and 5 describe bleaching of the fluorescent sterol DHE. 
This interpretation is supported by comparing the outcome of DMD with bleach-rate fit-
ting, which shows that significant bleaching takes place in the region of the oocytes and 

Fig. 4  Comparison of experimental and reconstructed bleach stacks of DHE in C. elegans. A, B montage 
of selected frames (i.e., frame (#1, #25, #50, #75 and #100) of the experimental fluorescence stack of DHE 
labeled C. elegans (left column) and of the reconstructed image stack obtained from the DMD of rank 5 (right 
column). Right column, absolute error between original stack and DMD reconstruction. The intensity range is 
identically scaled in 16-bit format. B, integrated intensity of original (blue symbols) and reconstructed image 
stacks (red symbols). C, mean intensity in color-coded boxes (see #50 in A for location of regions of interest, 
ROI) for original (red, yellow and cyan lines) and reconstructed video stacks (blue, green and pink lines). 
Note that intensities of the DMD reconstruction perfectly coincide with the intensities of the original stack; 
therefore, only the line colors of the reconstruction are visible. Bar, 20 µm. See text for further details
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Fig. 5  Dynamic mode amplitudes and eigenvalues of fluorescence images of DHE-labeled nematodes. A, 
B, real part of mode amplitudes of a rank-5 DMD of the experimental bleach stacks of DHE labeled C. elegans 
with two oscillatory modes (Mode 1 and 2, A) and three exponentially decaying amplitudes (Mode 3–5, B). 
C, eigenvalues λ1 to λ5 plotted on the unit circle. The first two eigenvalues have non-zero imaginary part (see 
also the corresponding oscillatory amplitudes in A). Eigenvalues 3–5 are real and smaller than one, describing 
decaying intensities in the bleach stacks

Fig. 6  Dynamic modes of C.elegans bleach stacks and comparison with pixel-wise fitting. A–E, mode 
weights for DMD modes 1–5. The real part of mode weights is shown in left panels (‘Real’), while the 
imaginary parts are shown in right panels (‘Imag’). F, bleach rate fitting using a stretched exponential 
function with bleaching amplitudes (right panel), time constant map (middle panel) and background 
fluorescence (right panel). The amplitude image in F shows the distribution of the rapidly bleaching DHE, 
while the background image resembles most of the autofluorescence
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intestinal cells, where the DHE resides (see ‘Amplitude’ image in Fig. 6F), closely resem-
bling the mode weight images for Mode 4 and 5 (Fig. 6D, E).

We and others showed previously that oocytes are particularly sterol-rich cells in C. 
elegans, since the ingested sterols are essential for steroid hormone production to con-
trol developmental transitions [7, 8, 39, 40]. Pixel-wise bleach rate fitting identifies 
autofluorescence as non-bleaching, i.e., constant background term (Fig. 6F). That back-
ground map is very similar to the real peart of the weight image of Mode 3 of the DMD 
(compare Fig. 6C, left panel and F, right panel). Having decomposed the entire dynam-
ics in the bleach stacks of nematodes, DMD allows for separate inspection and analysis 
of each dynamic mode. This makes it possible to separate autofluorescence from DHE 
intensity and thereby to segment the images into different fluorescence contributions. 
From the DMD one can calculate image stacks representing the individual dynamic 
modes as a decomposition of the entire bleaching dynamics in the original image stacks 
(see Eqs. 11 and 12).

From that, one can clearly infer cellular autofluorescence from Mode 3 and more rap-
idly decaying DHE fluorescence from Mode 4 and 5, respectively (Fig.  7). Clearly, the 
sum of Mode 4 and 5 resembles the total DHE fluorescence, which bleaches much faster 
than cellular autofluorescence. Accordingly, DMD allows for segmentation of image 
structures based on their dynamics, which makes it possible that one pixel contains 
information from both dynamic structures, just to different extent, as visualized in a 

Fig. 7  DMD of C. elegans bleach stacks allows for discrimination of autofluorescence from DHE probe 
intensity. A, montage of individual dynamic modes shown as every second image of the corresponding 
image stacks. Dynamic mode 3 (‘DMD3’) resembles cellular autofluorescence of nematodes (upper row in 
A), while dynamic mode 4 and 5 (‘DMD4’ and ‘DMD5’) constitute DHE fluorescence (two middle rows in A). 
The sum of mode 4 and 5 shows the total DHE fluorescence (lower row in A). B–D, color overlay of mode 
decomposition with mode 3 resembling autofluorescence in red and sum of mode 4 and 5 representing DHE 
fluorescence in green. B, first frame, C, 10th frame and D, 20th frame of this color representation of the DMD, 
showing the rapid bleaching of DHE fluorescence (green) compared to autofluorescence (red). Bar, 20 µm
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color overlay of the decomposed bleaching dynamics (Fig. 7B–D). This is not straightfor-
ward to implement in pixel-based fitting, where pixel overlap of two regions can only be 
accounted for by bi-exponential fitting, which often fails, when the signal-to-noise ratio 
in image regions gets to small [8]. In addition, DMD but not pixel-wise fitting provides 
the bleaching dynamics of each fluorescent entity as separate image stacks.

To further explore the potential of DMD for discriminating probe fluorescence from 
autofluorescence control experiments were carried out using C. elegans mutants, which 
lack gut granules and have therefore reduced autofluorescence [41]. DMD of these stacks 
allows for a very good reconstruction quality similar to wild-type cells (Additional file 9: 
Fig. S9A). The remaining autofluorescence in these animals was estimated as the slowest 
bleaching dynamic mode (Mode 1 with eigenvalue ω1 = − 1∙10–5 s; Additional file 9: Fig. 
S9B and C), as in control animals (compare with Figs. 4, 5, 6 and 7). Both, DHE fluo-
rescence and remaining autofluorescence overlapped in the intestine of those animals, 
as inferred from co-localization with eGFP-tagged rab5, a marker for early endosomes, 
abundantly expressed in the intestine of C. elegans (Additional file 9: Fig. S9D) [42]. Co-
localization was particularly pronounced in the basolateral domain of intestinal epi-
thelial cells, a region, where early recycling endosomes reside in C. elegans [43]. Since 
recycling endosomes are known to be sterol-rich in epithelial cells of various organisms, 
this is a further validation of our method [44, 45]. DHE was additionally detected in the 
pharynx region and the lumen of the intestine, as expected, since the nematodes acquire 
the sterols by feeding [7, 8].

DMD of experimental image stacks of mammalian cells labeled with two green‑fluorescent 

probes

To further explore the potential of the method, DMD was used to discriminate two 
fluorescence tagged molecules, which are spectrally indistinguishable, but show differ-
ent bleaching kinetics in living cells. BHK cells were labeled with two green emitting 
fluorescence probes; the iron-transporting protein transferrin tagged with an Alexa488-
dye, which is very photostable (Additional file  10: Fig. S10) and the membrane probe 
C6-NBD-SM, which bleaches much faster (Additional file 11: Fig. S11). Alexa488-Tf will 
bind to the transferrin receptor and become internalized by clathrin-mediated endocy-
tosis followed by recycling from early sorting and recycling endosomes [46]. The latter 
is also called the endocytic recycling compartment (ERC) and appears as perinuclear 
enrichment of small vesicles in Chinese hamster ovarian (CHO) and BHK cells [47, 48]. 
C6-NBD-SM is a fluorescent sphingolipid probe, which has been shown to be targeted 
to the ERC and recycled from the cell with very similar kinetics as Tf, which is why this 
fluorescent lipid probe is often seen as ‘bulk membrane recycling marker’ [47, 49–51]. 
Thus, both probes accumulate in the perinuclear ERC, but to different extent. While the 
majority of C6-NBD-SM remains in the plasma membrane (PM), almost the entire pool 
of Alexa488-Tf will accumulate in the ERC in this experiment. By loading C6-NBD-SM 
onto albumin, the lipid probe can be rapidly inserted into the PM, followed by its endo-
cytosis and trafficking through the endocytic recycling pathway together with fluores-
cent Tf [51]. Such co-trafficking is normally assessed in two-color fluorescence imaging 
experiments, in which the emission color of the fluorescent probes is separated using 
suitable filter combinations [49–51].



Page 15 of 23Wüstner ﻿BMC Bioinformatics          (2022) 23:334 	

Using different colors for two endocytic markers limits the number of additional chan-
nels to be available for other probes to two on most wide field and confocal microscopy 
systems (e.g., there is typically an additional blue filter set for DAPI and an infrared fil-
ter cube for another organelle marker). By decomposing the different bleaching kinet-
ics of the two green emitting endocytic probes, Alexa488-Tf and C6-NBD-SM using 
DMD, their intracellular distribution can be determined using only one filter set (Fig. 8). 
As shown in Fig. 8A, the green fluorescence bleaches rapidly in the PM, where a major 
portion of C6-NBD-SM resides but much slower in the ERC, where the majority of the 
more photostable Alexa488-Tf is located. This notion is sustained by DMD of image 
stacks of cells labeled with only Alexa488-Tf (Additional file 10: Fig. S10) or only with 
C6-NBD-SM (Additional file  11: Fig. S11). The heterogeneous bleaching dynamics of 
doubly labeled cells can be decomposed by DMD into five dynamic modes, three of 
which show fast decay (Mode 1, 3 and 4; Fig. 8C). Mode 2 is almost constant and has 
an eigenvalue, λ2, close to one (corresponding to ω2 ≈ 0.00; Eq. 12, Fig. 8D), while Mode 
5 decays slowly (dashed blue and straight red line in Fig. 8C). From the corresponding 
mode weight maps, one sees that Mode 1, 3 and 4 have intensity in the PM and in the 
ERC, while Mode 2 and 5 have non-zero intensities almost exclusively in the perinuclear 
area (Additional file 12: Fig. S12). Based on these observations, the sum of Mode 1, 3 
and 4 are assigned to the lipid marker C6-NBD-SM, while the sum of Mode 2 and 5 are 
assigned to Alexa488-Tf. The intracellular distribution of C6-NBD-SM and Alexa488-Tf 
overlaps in the perinuclear ERC but only very little the PM (see color overlay in Fig. 8B 
with C6-NBD-SM in green and Alexa488-Tf pseudo-colored in red). Clearly, while 

Fig. 8  DMD of bleach stacks of BHK cells labeled with two green probes, Alexa488-Tf and C6-NBD-SM. BHK 
cells were labeled with 4 µM C6-NBD-SM and with 20 µg/ml Alexa488-Tf, both emitting in green, as described 
in Materials and Methods. A, montage of selected frames (every 5th frame) of such double labeled cells. B, 
reconstruction of DMD of the bleach stack in A with the sum of dynamic modes 1, 3 and 4 shown in green 
(resembling the fast-bleaching C6-NBD-SM) and sum of dynamic mode 2 and 5 (resembling the slowly 
bleaching Alexa488-Tf ) shown in red. Bar, 20 µm. C, mode amplitudes and D, eigenvalues of the DMD plotted 
on the unit circle



Page 16 of 23Wüstner ﻿BMC Bioinformatics          (2022) 23:334 

C6-NBD-SM bleaches rapidly (Fig. 8B, green), Alexa488-Tf does bleach as well but much 
more slowly (Fig. 8B, red). Both conclusions are confirmed from stacks of single-labeled 
cells (Additional file 10: Fig. S10 and Additional file 11: Fig. S11). In pixel-wise bleach 
rate fitting one cannot separate the rapidly bleach lipid probe from the slowly bleach-
ing Alexa488-Tf, which instead would be assigned to the background term (Additional 
file  12: Fig. S12F). These results demonstrate the potential of DMD in decomposing 
photobleaching dynamics for efficient separation of different fluorophores in live-cell 
microscopy.

Discussion
In this study, it is shown that image segmentation and separation of spectrally indistin-
guishable fluorophores in live-cell microscopy can be achieved by DMD of their pho-
tobleaching kinetics. This is demonstrated first on synthetic image stacks with simulated 
photobleaching and thereafter on two different experimental data sets. In all cases, 
DMD can decompose the photobleaching kinetics properly, allowing for clear separa-
tion of probe from autofluorescence or of different fluorescent dyes in the same sample. 
One can therefore envision that DMD of probe photobleaching can be combined with 
spectral unmixing, thereby increasing the number of probes which can be detected in 
parallel [1, 19]. Additionally, DMD can compensate for noise and small movement arte-
facts, making it a powerful computational tool for analyzing photobleaching in live-cell 
imaging experiments in the future. There is a strong interest in developing novel fluores-
cent probes for biomedical imaging applications. Here, a concern is often that prolonged 
fluorescence imaging of dynamic processes in living cells can lead to photo destruction 
of fluorophores [52]. Therefore, it is important to determine photobleaching character-
istics of fluorescent dyes under various conditions, either for optimizing probe design or 
for optimizing imaging conditions [14, 20, 53, 54]. For example, sensitive single molecule 
imaging and super-resolution microscopy critically depends on development of bright 
and photostable fluorophores and here, DMD of dye photobleaching in cells can be very 
useful for designing improved organic fluorophores [55]. DMD will also be useful in dis-
criminating different fluorophores based on their characteristic bleaching propensities, 
for multi-color super-resolution microscopy [56]. Similarly, optimizing photosynthetic 
antenna systems for light harvesting applications in photovoltaics demands photostable 
pigment structures, and analysis of their photo destruction using imaging-based DMD 
can be combined with other approaches such as lifetime and absorption measurements 
as well as electron paramagnetic resonance spectroscopy in the future [57].

Furthermore, photobleaching kinetics also report about environmental impacts on 
a fluorophore, since in many cases, photobleaching kinetics is inversely related to the 
fluorescence lifetime of a fluorophore. For example, if a nearby acceptor molecule can 
receive the energy of an excited fluorophore due to Förster resonance energy transfer 
(FRET), its excited-state lifetime gets reduced and accordingly its bleaching propensity 
lowered, since photobleaching can only take place from an excited state. Therefore, pho-
tobleaching kinetics of the donor molecule can report about FRET efficiencies, similar as 
lifetime imaging [22, 58, 59]. Under conditions, where lifetime imaging is not feasible or 
at least very difficult, e.g., for weakly emitting UV probes, analysis of donor photobleach-
ing kinetics is a very useful approach and here DMD is a good tool for their analysis. The 
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same applies to quenching studies, in which a dynamic quencher is used to determine 
the accessibility of a fluorescent probe, for example when analyzing the permeability of 
the fungal cell wall [60], or the transbilayer distribution of a membrane probe between 
the two PM leaflets [61–64]. Dynamic quenching shortens the fluorescence lifetime 
and thereby slows the photobleaching of the quenched dye [10, 13, 65], which can be 
detected by DMD of its photobleaching kinetics. The extent of photobleaching is often 
directly proportional to the occupation of the triplet state of a fluorophore, from which 
reaction with singlet oxygen and thereby photooxidation can take place. This concept is 
used in photodynamic therapy, where light-induced production of reactive oxygen spe-
cies is used to kill tumor cells selectively [66–68]. Here, control of the photobleaching 
process is essential, and DMD of photobleaching kinetics can become a useful tool in its 
analysis.

Conclusions
A new computational method is presented to analyze photobleaching kinetics of fluo-
rescent entities in microscopy images of living cells in a purely data-driven manner. It is 
shown that the decomposition of photobleaching kinetics into dynamic contributions 
allows for image segmentation, image denoising and discrimination of different fluo-
rescent probes and autofluorescence on a pixel-by-pixel basis. This novel approach can 
be combined with spectral unmixing and FRET studies, for example as part of large-
scale image-based screens to assess organelle and marker distribution in multi-color 
experiments.

Materials and methods
Materials

N-[6-[(7-nitro-2-1,3-benzoxadia-zol-4-yl)amino]-dodecanoyl]-sphingosine-1-phospho-
choline (C6-NBD-SM) was obtained from Avanti Polar Lipids (Alabaster, AL). DHE was 
purchased from SIGMA Chemical (St. Louis, MA). Buffer medium contained 150 mM 
NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5mM glucose and 20m MHEPES (pH 7.4). 
Alexa488-protein labeling kit was purchased from Molecular Probes (ThermoFisher). 
Transferrin was iron loaded as described previously [69]. The succinimidyl ester of 
Alexa-588 was conjugated to the iron-loaded transferrin to get Alexa488-Tf following 
the manufacturer’s instructions. C6-NBD-SM was loaded onto fatty-acid free bovine 
serum albumin (BSA) following our previously published procedure [70]. BHKasc cells 
were kindly provided by Dr. Kirsten Sandvig, Cancer Center, Norwegian Radiation Hos-
pital, University of Oslo, Norway. Gut granule loss (glo-) mutant strains of C.elegans 
were kindly provided by Dr. Greg Hermann, Department of Biology, Lewis and Clark 
College, Portland, OR, USA.

Labeling and imaging of nematodes

Wild-type C. elegans or glo-mutant strains or were cultured, labeled with DHE and 
imaged on a UV-sensitive wide field microscope, exactly as described previously [8]. 
Images of nemtatodes were acquired in the UV channel (335 nm (20 nm bandpass) exci-
tation filter, 365 nm dichromatic mirror and 405 nm (40 nm bandpass) emission filter) 
with an acquisition time of 500 ms and no pause between acquisitions.
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Culture, labeling and imaging of Baby hamster kidney (BHK) cells

BHKasc cells were grown in DMEM supplemented with 7.5% heat-inactivated FCS, 
2  mM  l-glutamine, 100  units/ml penicillin, 100  µg/ml streptomycin, 0.2  mg/ml gene-
ticin, and 2 µg/ml tetracycline [71]. Three days prior to the experiments, the cells were 
seeded on microscope slide dishes and kept in the same medium until the experiments. 
Cells were labeled with 4 µM C6-NBD-SM for 5 min at 37 °C and washed three times 
with buffer medium. Subsequently, cells were labeled with 20  µg/ml Alexa488-Tf for 
30 min at 37 °C and washed three times with buffer medium. In separate control experi-
ments, cells were either labeled just with C6-NBD-SM, washed, and chased for 30 min 
or just with Alexa488-Tf for 30 min at 37 °C and washed three times with buffer medium 
before imaging on a widefield microscope, as described for imaging of nematodes, just 
with standard fluorescein filter sets ([470-nm, (20-nm bandpass) excitation filter, 510-
nm longpass dichromatic filter and 537-nm (23-nm bandpass) emission filter]).

Image simulation, segmentation and data analysis

To validate the procedure synthetic bleach stacks with known bleaching characteris-
tics were generated using the Macro language of ImageJ (https://​imagej.​nih.​gov/​ij/), as 
described previously [8, 72]. Specifically, an 8-bit image stack with a background of ran-
dom intensities with mean intensity equal to 10 was generated in which a rectangular 
region of mean intensity 190 contained one circles and one ellipse with mean intensity 
of 190 each. The intensity decayed monoexponentially in the rectangular region exclud-
ing circle and ellipse with rate constant k0 = 0.01 s−1, in the circular area with rate con-
stant k1 = 0.05 s−1 and in the elliptical region with rate constant k2 = 0.15 s−1. DMD and 
accompanying analysis was carried out in Python using Jupyter notebooks (https://​jupyt​
er.​org/) and PyDMD, a python library for DMD calculations [73]. In brief, upon SVD of 
the image data matrix with either a pre-defined rank or matrix-specific optimal rank, the 
DMD modes are calculated. Eigenvalues determined for a rank-r decomposition of the 
system matrix A, λj, for j = 1,…, r, are logarithmically scaled and divided by the interval 
time (i.e. the acquisition time for bleach stacks, Δt):

Using the calculated dynamic modes, φj, and their amplitudes, bj,  the time evolution 
of each dynamic mode is calculated according to Eq.  11, above. For pixel-wise bleach 
rate fitting a plugin to ImageJ, PixBleach, was used [8, 74]. Both methods were compared 
by calculating the root mean square error (RMSE) between data and model. Image seg-
mentation was carried out using a variety of classical region-based thresholding meth-
ods (i.e., Otsu, Isodata, Li, Yen, Mean, Minimum and Triangle) implemented in skimage 
(http://​scikit-​image.​org) using the skimage.filters.try_all_threshold method [34, 75]. 
While the Otsu method attempts to minimize the weighted sum of within-class vari-
ances of foreground and background pixels [34, 36], Isodata determines the threshold 
as the average intensity of two identified clusters based on the image histogram [76]. Li 
and Yen are entropy-based thresholding methods; Li and Lee (1993) minimize the cross-
entropy between original and binarized image [77], while Yen et al. define and maximize 
the entropic correlation of foreground and background pixels [78]. Mean, Minimum and 
Triangle similarly employ the shape and moments of histograms for image thresholding 

(12)ωj = log
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[34, 79, 80]. All of the above thresholding methods were also applied individually, and 
the segmentation quality was assessed using the Jaccard index, J, defined as:

Here, A is the binary image generated by a given thresholding method (i.e., the pre-
dicted segmentation) and B is the ground truth binary image (i.e., the true segmenta-
tion), both considered as sets of pixels. The numerator in Eq.  13 is the number of 
observations in both sets, while the denominator is the number of observations in either 
set [37]. In addition, the Dice score, D, was calculated between segmented and ground 
truth image according to:

It also quantifies the pixel-wise degree of similarity between the predicted and ground 
truth segmentation. Both, J and D, can take values between 0 (no overlap) and 1 (perfect 
overlap) [37]. Addtional files 13, 14, 15, 16, 17, 18 contain simulated and experimental 
bleach stacks, on which the analysis, desribed here, was based.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04881-x.

Additional file 1: Fig. S1. Comparison of image thresholding methods for segmentation of synthetic bleach stacks. 
Several standard thresholding methods, (i.e., Isodata, Li, Mean, Minimum, Otsu, Triangle and Yen method [34]) were 
assessed in their ability to correctly segment the three image regions of the synthetic bleach stacks. Based on the 
first image of the stack, all methods could segment the rectangular region from the background but could not 
dissect the circular and elliptical region (A). Based on the 10th frame of the bleach stack, Isodata, Li, Mean, Minimum 
and Otsu could segment the rectangular region without the elliptical region, but only the Triangle and Yen method 
could additionally separate the circular region (B). Similar results were found for the 20th and 30th image frame (C 
and D and Fig. S2).

Additional file 2: Fig. S2. Jaccard index and Dice score for image segmentation of rectangular region from the 
synthetic bleach stack using standard thresholding methods. A, the rectangular region without enclosed circular 
and elliptical region as ground truth image (white is foreground, black is background). B, Jaccard index, upper rows, 
and Dice score, lower rows, were calculated for the indicated thresholding methods applied to the 1st, 10th, 20th 
and 30th frame of the bleach stack as well as for the rate constant and time constant images derived from pixel-wise 
bleaching analysis in PixBleach relative to the ground truth image.

Additional file 3: Fig. S3. Jaccard index and Dice score for image segmentation of elliptical region from the 
synthetic bleach stack using standard thresholding methods. A, the elliptical region as ground truth image (white 
is foreground, black is background). B, Jaccard index, upper rows, and Dice score, lower rows, were calculated for 
the indicated thresholding methods applied to the 1st, 10th, 20th and 30th frame of the bleach stack as well as for 
the rate constant and time constant images derived from pixel-wise bleaching analysis in PixBleach relative to the 
ground truth image.

Additional file 4: Fig. S4. Jaccard index and Dice score for image segmentation of circular region from the synthetic 
bleach stack using standard thresholding methods. A, the circular region as ground truth image (white is foreground, 
black is background). B, Jaccard index, upper rows, and Dice score, lower rows, were calculated for the indicated 
thresholding methods applied to the 1st, 10th, 20th and 30th frame of the bleach stack as well as for the rate con-
stant and time constant images derived from pixel-wise bleaching analysis in PixBleach relative to the ground truth 
image.

Additional file 5: Fig. S5. Multi-Otsu thresholding of synthetic bleach stack shows varying results depending on 
which frame is analyzed. Multi-Otsu thresholding was applied to the 1st, 10th, 20th and 30th frame of the bleach 
stack [38]. For the 1st frame (A), only two regions could be distinguished (brown is foreground, dark blue is back-
ground). For the 10th frame (B), four regions could be distinguished (brown, yellow and light blue are foreground 
of the rectangular, circular and elliptical region, respectively; dark blue is background). For the 20th frame (C) and 
30th (D), three regions could be distinguished (brown and light green are foreground of the rectangular and circular 
region, respectively; dark blue is background). Left panels are original images of the synthetic stack, middle panels 
are histograms with identified threshold indicated in red, right panels are thresholding results with color-labeled 
regions.

(13)J (A,B) =
⌈A ∩ B⌉

⌈A ∪ B⌉

(14)D(A,B) =
2 · ⌈A ∩ B⌉

⌈A⌉ + ⌈B⌉
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Additional file 6: Fig. S6. Minimum-based thresholding of time and rate constant maps derived from pixel-wise 
fitting of exponential decay functions to synthetic bleach stack. Pixel-wise bleach rate fitting was applied to the 
synthetic bleach stack as described in Materials and methods [8]. The resulting time constant image (A and B) and 
rate constant image (C and D) were segmented using the Minimum threshold method. Left panel in A and C shows 
the time and rate constant maps, respectively, and right panels show the corresponding histograms. Left panels in B 
and D show segmentation results with foreground in white and background in black. Right panels in B and D show 
histograms with identified threshold indicated in red.

Additional file 7: Fig. S7. Comparison of image thresholding methods for segmentation of time and rate constant 
maps derived from pixel-wise fitting of exponential decay functions to synthetic bleach stack. Several standard 
thresholding methods, (i.e., Isodata, Li, Mean, Minimum, Otsu, Triangle and Yen method [34]) were assessed in their 
ability to correctly segment the three image regions of the time (A) and rate constant maps (B) derived from pixel-
wise fitting of exponential decay functions to the synthetic bleach stack.

Additional file 8: Fig. S8. Multi-Otsu thresholding of DMD and pixel-wise bleach rate fitting outputs of synthetic 
bleach stack. Multi-Otsu thresholding was applied to Mode 3 of the DMD (A), to the sum of Mode 1 and 3 (B), to the 
sum of Mode 2 and 3 (C) and to the rate constant map derived from pixel-wise fitting of exponential decay functions 
to the synthetic bleach stack (D) [38]. Left panels are the original analyzed images, middle panels are histograms with 
identified threshold indicated in red, right panels are thresholding results with color-labeled regions. The number 
of identified regions for each image equals the number of red lines plus one (i.e., three regions in A and B and four 
regions in C and D).

Additional file 9: Fig. S9. Dynamic mode decomposition of fluorescence images of DHE-labeled glo-mutant nema-
todes with reduced autofluorescence. A, montage of selected images of original (upper row) and reconstructed 
(lower row) image sequence shown as every fifth image of the corresponding image stack. The lowest panel shows 
the absolute error between original and reconstructed image sequence with same intensity scaling. First five eigen-
values of space-time matrix of experimental image sequence (B) and corresponding dynamic modes (C) determined 
by DMD. Sum of dynamic mode 1, 3, 4 and 5 resemble total DHE fluorescence (upper left panel in green in D). Mode 
2 resembles cellular autofluorescence of nematodes (upper right panel in red in D). These worms also express eGFP-
rab5 as marker for early and recycling endosomes in their intestine (lower left panel in blue in D). Some of the DHE 
and autofluorescence signal overlap with eGFP-rab5 in the intestine (lower right panel in D). E, color overlay of mode 
decomposition with dynamic mode 2 resembling autofluorescence in red and sum of mode 1, 3, 4 and 5 represent-
ing DHE fluorescence in green. Bar, 20 μm.

Additional file 10: Fig. S10. Dynamic mode decomposition of image stacks containing Alexa488-Tf labeled cells. 
BHK cells were labeled with 20 μg/ml Alexa488-Tf for 30 min, washed with buffer medium and imaged on a wide 
field fluorescence microscope. A, selected frames of an image stack acquired with 0.3 sec acquisition time and 
without pause. Images are identically scaled; bar 10 μm. B, C, DMD of this image stack using a rank-5 approximation 
to the full transfer matrix. B, mode weights and C, mode amplitudes as function of time.

Additional file 11: Fig. S11. Dynamic mode decomposition of image stacks containing C6-NBD-SM labeled cells. 
BHK cells were labeled with 4 μM C6-NBD-SM for 30 min, washed with buffer medium and imaged on a wide field 
fluorescence microscope. A, selected frames of an image stack acquired with 0.3 sec acquisition time and without 
pause. Images are identically scaled; bar 10 μm. B, C, DMD of this image stack using a rank-5 approximation to the 
full transfer matrix. B, mode weights and C, mode amplitudes as function of time.

Additional file 12: Fig. S12. Mode weights for DMD of image stacks of BHK cells labeled with C6-NBD-SM and 
Alexa488-Tf. BHK cells were labeled with 4 μM C6-NBD-SM and with 20 μg/ml Alexa488-Tf, both emitting in green, 
as described in Materials and Methods. BHK cells were labeled with 4 μM C6-NBD-SM for 30 min, washed with buffer 
medium and imaged on a wide field fluorescence microscope. Mode weights for DMD of rank 5 of this data are 
shown. The real part of mode weights is shown in left panels (‘Real’), while the imaginary parts are shown in right 
panels (‘Imag’). F, bleach rate fitting using a stretched exponential function with bleaching amplitudes (right panel), 
time constant (middle panel) and background term (left panel).

Additional file 13: Simulated bleach stack. Raw data set 1 used in the analysis shown in Figs. 2 and 3. Photobleach-
ing was simulated using single-exponential decay functions as described in Materials and Methods.

Additional file 14: Experimental bleach stack of C. elegans labeled with DHE. Raw data set 2 used in the analysis 
shown in Figs. 4–7. C. elegans was labeled with DHE, and images were acquired with 0.5 sec acquisition time and 
without pause as described in Materials and Methods.

Additional file 15: Experimental bleach stack of glo-mutant C. elegans labeled with DHE. Raw data set 3 used in 
the analysis shown in Fig. S5. C. elegans glo-mutant expressing eGFP-rab5 was labeled with DHE, and images were 
acquired with 1.0 sec acquisition time and without pause as described in Materials and Methods.

Additional file 16: Experimental bleach stack of BHKasc cells double-labeled with C6-NBD-SM and Alexa488-Tf. Raw 
data set 4 used in the analysis shown in Figs. 8 and S12. BHKasc cells were labeled with C6-NBD-SM and Alexa488-TF, 
and images were acquired with 0.3 sec acquisition time and without pause as described in Materials and Methods.

Additional file 17: Experimental bleach stack of BHKasc cells labeled with Alexa488-Tf. Raw data set 5 used in the 
analysis shown in Fig. S10. BHKasc cells were labeled with Alexa488-TF, and images were acquired with 0.3 sec acqui-
sition time and without pause as described in Materials and Methods.

Additional file 18: Experimental bleach stack of BHKasc cells labeled with C6-NBD-SM. Raw data set 6 used in the 
analysis shown in Fig. S11. BHKasc cells were labeled with C6-NBD-SM, and images were acquired with 0.3 sec acqui-
sition time and without pause as described in Materials and Methods.



Page 21 of 23Wüstner ﻿BMC Bioinformatics          (2022) 23:334 	

Acknowledgements
DW acknowledges technical assistance from Tanja Christensen, BMB, SDU, Denmark.

Author contributions
DW is the sole author of this manuscript, so DW has carried out the work described in this study and has made the 
figures and written and reviewed the manuscript. The author read and approved the final manuscript.

Funding
DW acknowledges funding from the Villum foundation (Grant No. 73288).

Availability of data and materials
All data analyzed during this study are included in this published article [and its supplementary information files]. The 
datasets generated and/or analyzed during the current study are also available in the GITHUB repository, (https://​github.​
com/​Danie​lW-​alt/​Photo​bleac​hing).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
I declare that the author has no competing interests as defined by BMC, or other interests that might be perceived to 
influence the results and/or discussion reported in this paper.

Received: 2 February 2022   Accepted: 3 August 2022

References
	1.	 McRae TD, Oleksyn D, Miller J, Gao YR. Robust blind spectral unmixing for fluorescence microscopy using unsuper-

vised learning. PLoS ONE. 2019;14(12): e0225410.
	2.	 Niehorster T, Loschberger A, Gregor I, Kramer B, Rahn HJ, Patting M, Koberling F, Enderlein J, Sauer M. Multi-target 

spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods. 2016;13(3):257–62.
	3.	 Ghauharali RI, van Driel R, Brakenhoff GJ. Structure-oriented fluorescence photobleaching analysis: a method for 

double fluorescent labeling studies. J Microsc. 1997;185(3):375–84.
	4.	 Entchev EV, Kurzchalia TV. Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans. Semin 

Cell Dev Biol. 2005;16:175–82.
	5.	 Mörck C, Olsen L, Kurth C, Persson A, Storm NJ, Svensson E, Jansson JO, Hellqvist M, Enejder A, Faergeman NJ, et al. 

Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode 
Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2009;106(43):18285–90.

	6.	 Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. Genome-wide RNAi analysis of Caeno-
rhabditis elegans fat regulatory genes. Nature. 2003;421:268–72.

	7.	 Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FR, Kurzchalia TV. Distribution and 
transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell. 2001;12:1725–36.

	8.	 Wüstner D, Landt Larsen A, Færgeman NJ, Brewer JR, Sage D. Selective visualization of fluorescent sterols in Caeno-
rhabditis elegans by bleach-rate based image segmentation. Traffic. 2010;11(4):440–54.

	9.	 Wüstner D, Sage D. Multicolor bleach-rate imaging enlightens in vivo sterol transport. Commun Integr Biol. 
2010;3(4):1–4.

	10.	 Wüstner D, Christensen T, Solanko LM, Sage D. Photobleaching kinetics and time-integrated emission of fluorescent 
probes in cellular membranes. Molecules. 2014;19(8):11096–130.

	11.	 Koppel DE, Carlson C, Smilowitz H. Analysis of heterogeneous fluorescence photobleaching by video kinetics imag-
ing: the method of cumulants. J Microsc. 1989;155(2):199–206.

	12.	 Ghauharali RI, Hofstraat JW, Brakenhoff GJ. Fluorescence photobleaching-based shading correction for fluorescence 
microscopy. J Microsc. 1998;192(2):99–113.

	13.	 Hirschfeld T. Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Appl 
Opt. 1976;15:3135–9.

	14.	 Eggeling C, Widengren J, Rigler R, Seidel CAM. Photobleaching of fluorescent dyes under conditions used for single-
molecule detection: evidence of two-step photolysis. Anal Chem. 1998;70(13):2651–9.

	15.	 Widengren J, Mets Ü, Rigler R. Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and 
experimental study. J Phys Chem. 1995;99:13368–79.

	16.	 Solie TN, Small EW, Isenberg I. Analysis of nonexponential fluorescence decay data by a method of moments. 
Biophys J. 1980;29(3):367–78.

	17.	 Steinbach PJ, Chu K, Frauenfelder H, Johnson JB, Lamb DC, Nienhaus GU, Sauke TB, Young RD. Determination of rate 
distributions from kinetic experiments. Biophys J. 1992;61(1):235–45.

	18.	 Istratov AA, Vyvenko OF. Exponential analysis in physical phenomena. Rev Sci Instrum. 1999;70(2):1233–57.
	19.	 Orth A, Ghosh RN, Wilson ER, Doughney T, Brown H, Reineck P, Thompson JG, Gibson BC. Super-multiplexed fluores-

cence microscopy via photostability contrast. Biomed Opt Express. 2018;9(7):2943–54.

https://github.com/DanielW-alt/Photobleaching
https://github.com/DanielW-alt/Photobleaching


Page 22 of 23Wüstner ﻿BMC Bioinformatics          (2022) 23:334 

	20.	 Song L, Hennink EJ, Young IT, Tanke HJ. Photobleaching kinetics of fluorescein in quantitative fluorescence micros-
copy. Biophys J. 1995;68(6):2588–600.

	21.	 Brakenhoff GJ, Visscher K, Gijsbers EJ. Fluorescence bleach rate imaging. J Microsc. 1994;175:154–61.
	22.	 Young RM, Arnette K, Roess DA, Barisas BG. Quantitation of fluorescence energy transfer between cell surface 

proteins via fluorescence donor photobleaching kinetics. Biophys J. 1994;67:881–8.
	23.	 Benson DM, Bryan J, Plant AL, Gotto AMJ, Smith LC. Digital imaging fluorescence microscopy: spatial heterogeneity 

of photobleaching rate constants in individual cells. J Cell Biol. 1985;100:1309–23.
	24.	 Van Oostveldt P, Verhaegen F, Messens K. Heterogeneous photobleaching in confocal microscopy caused by differ-

ences in refractive index and excitation mode. Cytometry. 1998;32(2):137–46.
	25.	 Zwier JM, van Rooij GJ, Hofstraat JW, Brakenhoff GJ. Image calibration in fluorescence microscopy. J Microsc. 

2004;216(1):15–24.
	26.	 Brunton SL, Kutz JN. Data-driven science and engineering: Machine learning, dynamical systems, and control. Cam-

bridge: Cambrudge University Press; 2019.
	27.	 Grosek J, Kutz N: Dynamic mode decomposition for real-time background/foreground separation in video. 2014. 

arXiv: 14047592.
	28.	 Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech. 2010;656:5–28.
	29.	 Bi C, Yuan Y, Zhang JW, Shi Y, Xiang Y, Wang Y, Zhang RH. Dynamic mode decomposition based video shot detection. 

IEEE Access. 2018;6:21397–407.
	30.	 Kutz JN, Fu X, Brunton SL, Erichson NB: Multi-resolution dynamic mode decomposition for foreground/background 

separation and object tracking. In: IEEE international conference on computer vision workshop, 2016.
	31.	 Tirunagari S, Poh N, Wells K, Bober M, Gorden I, Windridge D: Functional segmentation through dynamic mode 

decomposition: automatic quantification of kidney function in DCE-MRI images. arXivorg 2019.
	32.	 Casorso J, Kong X, Chi W, Van De Ville D, Yeo BTT, Liegeois R. Dynamic mode decomposition of resting-state and task 

fMRI. Neuroimage. 2019;194:42–54.
	33.	 Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, 

et al. Array programming with NumPy. Nature. 2020;585(7825):357–62.
	34.	 Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron 

Imaging. 2004;13:146–65.
	35.	 Gavish M, Donoho DL. The optimal hard threshold for singular values is 4/sqrt(3). IEEE Trans Inf Theory. 

2014;60(8):5040–63.
	36.	 Otsu N. A threshold selection method from gray level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.
	37.	 Eelbode T, Bertels J, Berman M, Vandermeulen D, Maes F, Bisschops R, Blaschko M. Optimization for medical image 

segmentation: theory and practice when evaluating with dice score and jaccard index. IEEE Trans Med Imaging. 
2020;39(11):3679–90.

	38.	 Liao P-S, Chen T-S, Chung P-C. A fast algorithm for multilevel thresholding. J Inf Sci Eng. 2001;17:713–27.
	39.	 Li J, Brown G, Ailion M, Lee S, Thomas JH. NCR-1 and NCR-2, the C. elegans homologs of the human Niemann-

Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development. 
2004;131(22):5741–52.

	40.	 Lee HJ, Zhang W, Zhang D, Yang Y, Liu B, Barker EL, Buhman KK, Slipchenko LV, Dai M, Cheng JX. Assessing choles-
terol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol. Sci 
Rep. 2015;5:7930.

	41.	 Schroeder LK, Kremer S, Kramer MJ, Currie E, Kwan E, Watts JL, Lawrenson AL, Hermann GJ. Function of the Caeno-
rhabditis elegans ABC transporter PGP-2 in the biogenesis of a lysosome-related fat storage organelle. Mol Biol Cell. 
2007;18(3):995–1008.

	42.	 Fares H, Grant B. Deciphering endocytosis in Caenorhabditis elegans. Traffic. 2002;3:11–9.
	43.	 Chen CC, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD. RAB-10 is required for endocytic recycling in 

the Caenorhabditis elegans intestine. Mol Biol Cell. 2006;17(3):1286–97.
	44.	 Wüstner D, Herrmann A, Hao M, Maxfield FR. Rapid nonvesicular transport of sterol between the plasma membrane 

domains of polarized hepatic cells. J Biol Chem. 2002;277:30325–36.
	45.	 Gagescu R, Demaurex N, Parton RG, Hunziker W, Huber LA, Gruenberg J. The recycling endosome of Madin-Darby 

canine kidney cells is a mildly acidic compartment rich in raft components. Mol Biol Cell. 2000;11:2775–91.
	46.	 Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol. 2004;5:121–32.
	47.	 Hao M, Maxfield FR. Characterization of rapid membrane internalization and recycling. J Biol Chem. 

2000;275:15279–86.
	48.	 Wüstner D, Solanko LM, Sokol E, Lund FW, Garvik O, Li Z, Bittman R, Korte T, Herrmann A. Quantitative assessment 

of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol. Chem Phys Lipids. 
2011;164(3):221–35.

	49.	 Mayor S, Presley JF, Maxfield FR. Sorting of membrane components from endosomes and subsequent recycling to 
the cell surface occurs by a bulk flow process. J Cell Biol. 1993;121:1257–69.

	50.	 Presley JF, Mayor S, Dunn KW, Johnson LS, McGraw TE, Maxfield FR. he End2 mutation in CHO cells slows the exit 
of transferrin receptors from the recycling compartment but bulk membrane recycling is unaffected. J Cell Biol. 
1993;122(6):1231–41.

	51.	 Presley JF, Mayor S, McGraw TE, Dunn KW, Maxfield FR. Bafilomycin A1 treatment retards transferrin receptor recy-
cling more than bulk membrane recycling. J Biol Chem. 1997;272(21):13929–36.

	52.	 Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. 
Methods Appl Fluoresc. 2020;8(2): 022001.

	53.	 Bernas T, Zaresbski M, Cook RR, Dobrucki JW. Minimizing photobleaching during confocal microscopy of fluorescent 
probes bound to chromatin: role of anoxia and photon flux. J Microscopy. 2004;215(3):281–96.

	54.	 Modzel M, Solanko KA, Szomek M, Hansen SK, Dupont A, Nabo LJ, Kongsted J, Wüstner D. Live-cell imaging of new 
polyene sterols for improved analysis of intracellular cholesterol transport. J Microsc. 2018;271(1):36–48.



Page 23 of 23Wüstner ﻿BMC Bioinformatics          (2022) 23:334 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	55.	 Isselstein M, Zhang L, Glembockyte V, Brix O, Cosa G, Tinnefeld P, Cordes T. Self-healing dyes-keeping the promise? J 
Phys Chem Lett. 2020;11(11):4462–80.

	56.	 Ronnlund D, Xu L, Perols A, Gad AK, Eriksson Karlstrom A, Auer G, Widengren J. Multicolor fluorescence nanoscopy 
by photobleaching: concept, verification, and its application to resolve selective storage of proteins in platelets. ACS 
Nano. 2014;8(5):4358–65.

	57.	 Lingvay M, Akhtar P, Sebok-Nagy K, Pali T, Lambrev PH. Photobleaching of chlorophyll in light-harvesting complex II 
increases in lipid environment. Front Plant Sci. 2020;11:849.

	58.	 Szabo G, Pine PS, Weaver JL, Kasari M, Aszalos A. Epitope mapping by photobleaching fluorescence resonance 
energy-transfer measurements using a laser scanning microscope system. Biophys J. 1992;61:661–70.

	59.	 Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor 
photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res 
Tech. 2006;69(11):933–9.

	60.	 Liu X, Pomorski TG, Liesche J. Non-invasive quantification of cell wall porosity by fluorescence quenching micros-
copy. Bio Protoc. 2019;9(16): e3344.

	61.	 Lehrer SS. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model 
compounds and of lysozyme by iodide ion. Biochemistry. 1971;10(17):3254–63.

	62.	 Hale JE, Schroeder F. Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluo-
rescence quenching of dehydroergosterol. Eur J Biochem. 1982;122(3):649–61.

	63.	 Mondal M, Mesmin B, Mukherjee S, Maxfield FR. Sterols are mainly in the cytoplasmic leaflet of the plasma mem-
brane and the endocytic recycling compartment in CHO cells. Mol Biol Cell. 2009;20(2):581–8.

	64.	 Solanko LM, Sullivan DP, Sere YY, Szomek M, Lunding A, Solanko KA, Pizovic A, Stanchev LD, Pomorski TG, 
Menon AK, et al. Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane. Traffic. 
2018;19(3):198–214.

	65.	 White JC, Stryer L. Photostability studies of phycobiliprotein fluorescent labels. Anal Biochem. 1987;161:442–52.
	66.	 Georgakoudi I, Foster TH. Singlet oxygen-versus nonsinglet oxygen-mediated mechanisms of sensitizer pho-

tobleaching and their effects on photodynamic dosimetry. Photochem Photobiol. 1998;67(6):612–25.
	67.	 Albro PW, Bilski P, Corbett JT, Schroeder JL, Chignell CF. Photochemical reactions and phototoxicity of sterols: novel 

self-perpetuating mechanisms for lipid photooxidation. Photochem Photobiol. 1997;66(3):316–25.
	68.	 Spikes JD. Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-

sulfonatophenyl)-porphine and uroporphyrin. Photochem Photobiol. 1992;55(6):797–808.
	69.	 Yamashiro DJ, Tycko B, Fluss SR, Maxfield FR. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi com-

partment in the recycling pathway. Cell. 1984;37:789–800.
	70.	 Wüstner D, Mukherjee S, Maxfield FR, Müller P, Hermann A. Vesicular and nonvesicular transport of phosphatidylcho-

line in polarized HepG2 cells. Traffic. 2001;2:277–96.
	71.	 Iversen TG, Skretting G, van Deurs B, Sandvig K. Clathrin-coated pits with long, dynamin-wrapped necks upon 

expression of a clathrin antisense RNA. Proc Natl Acad Sci U S A. 2003;100(9):5175–80.
	72.	 Wüstner D, Solanko LM, Lund FW, Sage D, Schroll JA, Lomholt MA. Quantitative fluorescence loss in photobleaching 

for analysis of protein transport and aggregation. BMC Bioinform. 2012;13:296.
	73.	 Demo N, Tezzele M, Rozza G. PyDMD: python dynamic mode decomposition. J Open Source Softw. 2018;3(22):530.
	74.	 PixBleach: Pixelwise analysis of bleach rate in time-lapse images. A plugin to ImageJ. http://​bigwww.​epfl.​ch/​algor​

ithms/​pixbl​each/.
	75.	 van der Walt SJ, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T. sci-kit image: 

image processing in Python. Peer J. 2014;2:e453.
	76.	 Ridler TW, Calvard S. Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern. 

1978;8:630–2.
	77.	 Li CH, Lee CK. Minimum cross entropy thresholding. Pattern Recogn. 1993;26(4):617–25.
	78.	 Yen JC, Chang FJ, Chang S. A new criterion for automatic multilevel thresholding. IEEE Trans on Image Process. 

1995;4(3):370–8.
	79.	 Prewitt JMS, Mendelsohn ML. The analysis of cell images. Ann N Y Acad Sci. 1966;128:1035–53.
	80.	 Zack GW, Rogers WE, Latt SA. Automatic measurement of sister chromatid exchange frequency. J Histochem Cyto-

chem. 1977;25(7):741–53.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://bigwww.epfl.ch/algorithms/pixbleach/
http://bigwww.epfl.ch/algorithms/pixbleach/

	Image segmentation and separation of spectrally similar dyes in fluorescence microscopy by dynamic mode decomposition of photobleaching kinetics
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Theory of DMD applied to fluorescence photobleaching
	DMD of synthetic bleach stacks
	DMD of experimental image stacks of photobleaching in C. elegans
	DMD of experimental image stacks of mammalian cells labeled with two green-fluorescent probes

	Discussion
	Conclusions
	Materials and methods
	Materials
	Labeling and imaging of nematodes
	Culture, labeling and imaging of Baby hamster kidney (BHK) cells
	Image simulation, segmentation and data analysis

	Acknowledgements
	References


