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Introduction
MRI brain images are always of low contrast, which makes it difficult to identify 
which area the information at the boundary of brain images belongs to. To alleviate 
such a problem, image boundary detection plays a vital role in medical image seg-
mentation  [1, 2], as unclear boundaries can worsen brain segmentation results. Yet, 
given the low quality of brain images and blurry image boundaries, boundary detec-
tion in the context of brain image segmentation remains a research challenge. Results 
of existing segmentation models can be influenced by blurry image boundaries, which 
is due to bad boundary pixel differentiation  [3]. In brain segmentation, boundary 
refers to the area that divides brain regions. For example, the dividing area between 
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the white region (WM) and grey region (GM) of the brain is considered as a bound-
ary. The boundary is crucial in brain segmentation, since if it is unclear, the boundary 
information between WM and GM would also be unclear.

Despite the research invested to improve boundary detection and brain segmen-
tation, these two problems were addressed independently. Moreover, extracting 
features at the image boundary remains challenging, since those features can be mis-
leading, since they might mix properties of different brain regions [4]. Many models 
were proposed to detect or segment human brain tissues  [5–7]. Despite the highly 
reported performance of these models, they suffer from an extreme problem concern-
ing the extraction of local details in ambiguous boundaries [8–10]. Much research has 
addressed such a problem [8, 11, 12]. Traditional methods that are atlas-based are not 
accurate and not robust [13]. Also, deep learning models were introduced to address 
this problem, yet, ambiguous boundaries have not been sufficiently resolved. What 
complicates the detection of image boundaries for brain tissues segmentation is the 
low contrast and unclear boundaries between WM and GM. Figure 1 shows an exam-
ple of ambiguous boundaries between WM and GM.

Therefore, in this paper, we propose a boundary detection-based model for brain 
image segmentation. In particular, we focus on the boundary information between 
WM and GM, especially for low contrast images. First, we design a boundary seg-
mentation network for detecting and segmenting brain tissues. Second, we design 
a boundary information module (BIM) to help distinguish between the boundaries 
of three different brain tissues. Finally, we add a boundary attention gate (BAG) to 
each output layer of the encoder of our transformer to capture more informative 
local details. We evaluate our proposed model on two datasets of brain tissue images: 
infant and adult brains. Our model achieves higher results (i.e., a Dice Coefficient 
(DC) accuracy of up to 5.3% ) compared to the state-of-the-art models. In addition, 
our model is less complex and performs faster than the state-of-the-art models. In 
summary, this paper makes the following contributions:

• We design a network model that performs both boundary detection and brain tis-
sues segmentation to improve the segmentation accuracy.

• We design a boundary information module (BIM) to distinguish the boundaries of 
different brain tissues.

Fig. 1 Examples show the ambiguous boundaries between WM and GM 
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• We design a boundary attention gate (BAG) to capture more local details about brain 
tissues.

The rest of this paper is organized as follows. Section 2 presents the prior models related 
to the boundary detection of brain segmentation. Section 3 presents the design of our 
proposed model. Section 4 presents our experimental design and evaluation. Section 5 
presents our evaluation results and discusses the strengths and limitations of our model. 
Finally, Sect. 6 concludes the paper and discusses future work.

Related work
This section reviews the state-of-the-art techniques for boundary detection and brain 
segmentation. In Table 1, we provide a summary of the recent works in medical imaging.

Boundary detection

Boundary detection has recently been an active research problem for which many tech-
niques have been proposed to extract boundary information, thus mitigating the prob-
lem of ambiguous boundaries  [14–16]. However, the problem of unclear boundaries 
between (WM) and (GM) remains challenging due to the low contrast of MRI images. 
This problem has also been studied extensively [17–19]. The main focus of these stud-
ies was on mixed features between WM and GM, in which the boundary information 

Table 1 Summary of the state‑of‑the‑art techniques in medical image

Publication Method Purpose

Guoqiang et al. [23] GVF Segmentation of brain MRI image with GVF 
snake model

Lei et al. [24] Clustering method MR brain image segmentation

Somasundaram et al. [25] Intensity thresholding Brain portion segmentation from MRI

Jiao et al. [26] MI − GAN Brain image segmentation based on bilat‑
eral symmetry information

Jimenez et al. [27] 3DCycleGAN Data‑driven brain MRI segmentation sup‑
ported on edge confidence and a priori 
tissue information

Tan Ou et al. [28] Atlas Automatic segmentation of human brain 
images

Snell et al. [29] Active surfaces Model‑based segmentation of the brain 
from 3‑D MR

Lei et al. [24] Clustering method MR brain image segmentation

Yao et al. [30] Adjustable method High effective medical image segmentation

Zhang et al. [31] Active volume model with shape priors 3D segmentation of rodent brain structures

Liya et al. [32] Object detection Feature extraction and morphological 
operations

Mallick et al. [33] Intelligent technique CT brain image segmentation

Zhou et al. [34] Encoder–decoder networks Low‑contrast medical image segmentation

Qu et al. [35] FCD detection Estimating blur at the brain gray‑white mat‑
ter boundary

Shen et al. [36] Fully convolutional networks Neuronal boundary detection

Chakraborty et al. [37] An integrated approach Boundary finding in medical images

Khaled et al. [17] 3D, FCN + MIL + G + K Brain tissues segmentation

Khaled et al. [38] Multi‑stage GAN Brain tissues segmentation
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of these two regions is unclear and hard to identify. Specifically, the research conducted 
in [12, 20–22] focused on skin lesions segmentation from dermoscopy images in which 
the contrast between the lesion and normal skin is fairly low. Features used in [12, 21, 
22] to detect boundaries achieved a significant improvement to the state-of-the-art tech-
niques. To deal with the global context to segment lesion from normal skin, Blackmon 
et al. [8] proposed a model to help segmenting lesions. To improve boundary detection 
results, whereas Andrews et al.  [9] proposed a novel unsupervised pre-training frame-
work using boundary-aware preserving learning.

Despite the effort invested in boundary detection, little attention was paid to applying 
it to brain tissues segmentation, which is usually affected by unclear boundary areas.

Brain segmentation

There have been many proposed models (e.g.,  [38, 39]) for brain tissues segmenta-
tion. These models divided the brain image into multiple regions. For example, [40, 
41] divided the brain into eight regions), whereas [42, 43] divided the brain into three 
regions. Dolz et al. [44] proposed 3D and fully CNN for the segmentation of the subcor-
tical brain structure. Later on, Bao and Chung [7] have improved the model proposed 
by Dolz et al. using a multi-scale structured CNN with label consistency. Jin et al. [45] 
have also proposed CNNs models with the use of residual connections to segment white 
matter hyperintensity from T1 and flair images. Their models outperformed previous 
models with an overall dice coefficient of 0.75% on H95 and 27.26% on an average sur-
face distance. Fechter et al. [6] also used fully CNNs for brain segmentation. Using five 
datasets, they obtained dice coefficient ranging between 0.82 and 0.91 for each dataset. 
de Brebisson and Montana [46] proposed a random walker approach driven by a 3D fully 
CNN for different tissue classes. Their model was able to segment the esophagus using 
CT images. Ma et  al.  [47] proposed a visual detection of cells in brain tissue slice for 
patch clamp system.

Khaled et  al. proposed two brain tissues segmentation models, one using 
FCN + MIL + G + K [17] and another using a multi-stage GAN model [38]. They evalu-
ated their models on two infants and adults brain images and obtained good segmenta-
tion results, expressed by dice coefficients of up to 94% for segmenting GM and WM.

Despite the effort invested in brain tissue segmentation, segmentation results still suf-
fer from mixed tissue information caused by unclear image boundaries, which confuses 
models in precisely identifying what features belong to which region of the brain.

Highlights on related work

Unlike previous work, our objective in this paper is to solve the problem of unclear 
boundaries in brain segmentation. In particular, the state-of-the-art techniques either 
performed boundary detection or image segmentation, independently, thus not consid-
ering the fusion of both detection and segmentation in one model. Hence, in this paper, 
we design a boundary segmentation network for detecting and segmenting images of 
brain tissues. Then, we design a boundary information module (BIM) to distinguish 
boundaries from the three different brain tissues. After that, we add a boundary atten-
tion gate (BAG) to the encoder output layers of our transformer to capture more inform-
ative local details.
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Method
We propose a model in which we take advantage of the connection between both boundary 
detection and brain segmentation. To this end, we design a boundary segmentation net-
work for the detection and segmentation of brain tissues. Then, we design the boundary 
information module (BIM) to distinguish boundaries of the three different brain tissues. 
Figure 2 gives an overview of architecture of our proposed model. We use the ResNet50 
network [48] to extract feature maps from input images. Inspired by the excellent success 
of region proposal networks (RPN), we use it in our model to generate a bbox detector and 
mask detector. Then, the model has two branches: one for detection, which follows the non 
maximum suppression (NMS), and another for segmentation, which follows the trans-
former whose architecture is shown in detail in Fig. 3. Table 2 lists all the symbols we refer 
to in this paper.

Boundary information module (BIM)

Feature maps are obtained from the segmentation branch and detection branch, and R 
channels are consider. Feature maps are divided into groups M where each group maintains 
a vector at every position.

(1)X = {xcls1 , . . . , xclss }, xclsi ∈ RC/G

Fig. 2 An overview of the proposed model

Fig. 3 The architecture of our model’s transformer
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The global statistical feature is used to approximate the vector by a spatial averaging 
function, (Fgp) , as follows.

To measure the similarity between vectors and features, we generate the correlation 
coefficient, (ci) , as follows.

Normalization is then used to avoid the biased magnitude of ci , as follows.

where ǫ = 1e − 6.
Two parameters, α and β , are used to represent the identification and localization of fea-

tures, as follows.

where xmask
i  denotes the segmentation feature vector and σ denotes the sigmoid 

function.
The output of BIM is represented as follows.

(2)g = Fgp = 1/s

s

i=1

xmask
i ,

(3)ci = ||g || ||xclsi || cos(θ i)

(4)c̄i = ci − µc/σc + ǫ,

(5)ai =αc̄i + β ,

(6)Xmask
i =xmask

i . σ(ai),

(7)X = {xmask
i , . . . , xmask

s }, xmask
i ∈ Rc

Table 2 List of symbols referred to in this paper

Symbol Definition

WM White matter

GM Gray matter

CSF Cerebrospinal fluid

Conv Convolutional

LeReLU Activation function

E Expected value

DC Dice Coefficient

MRI Magnetic resonance imaging

T1 Subject‑1‑to‑subject‑10

T Subject‑11‑to‑subject‑23

Vauto Automated segmentation

Vref Reference segmentation

BIM Boundary information module

DICE Dice loss function

CE Cross‑entropy loss function
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Loss functions

Loss functions are related to two parts: the boundary detection part and the segmenta-
tion part. A Dice loss function (�DICE) is used to reduce the difference between the 
ground truth and the segmentation map (Lseg ) . A cross-entropy loss function (�CE) is 
used to minimize the difference between the ground truth and predicted-key map (LMap)

.

where SGT is the ground truth and Spred is the segmentation map.

where MGT is the ground truth key patch map and Mpred is the predicted-key map.

Boundary aware transformer

To improve boundary detection and the extraction of boundary information in brain 
segmentation with ambiguous boundaries, we use a transformer, in which a BAG is 
added to the end of its encoder layer. As shown in Fig. 2, BAG consists of a key patch 
map generator. The generator takes the transformed feature as input and generates a 
binary patch map as output. The boundary-aware transformed feature is represented as 
follows.

where + and ∗ denote the element-wise addition and channel-wise multiplication, 
respectively.

Experiments
This section presents our experimental design and evaluation. First, we give a more 
detailed description of the datasets used in our experiments. Then, we describe the Dice 
Coefficient (DC) of the segmentation evaluation. Finally, we describe our experimental 
setup.

Overview of the datasets

Datasets

In our experiments, we use two datasets for evaluating our model: the MICCAI iSEG 
infant dataset and MRBrainS adult dataset. The MICCAI iSEG-2017 dataset contains 
training and testing data of 6-month infants, whereas the MRBrainS-2013 dataset con-
tains training and testing data for adults. The two datasets are obtained from different 

(8)lseg =�DICE(SGT, Spred),

(9)liMap =�DICE(MGT,Mpred),

(10)Lwhole =

n+1∑

i=1

liMap + Lseg,

(11)V i−1
= MSA(Zi−1)+MLP(MSA(Zi−1)),

(12)Zi
= V i−1

+ (V i−1
∗ M̂i−1),
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organizations, and there are significant differences between images in the infant dataset 
and the adult dataset in terms of image data characteristics, such as the bunch of tables 
images and the number of available modalities. In addition, both datasets were used to 
evaluate the previous models in this context.

The MICCAI iSEG‑2017 dataset

The aim of the evaluation framework1 introduced by the MICCAI iSEG organizers is 
to compare segmentation of WM, GM and CSF on T1 and T2. The training dataset con-
tains 10 images, named T1-1 through T1-10, T2-2 through T2-10, and a ground truth. 
The testing dataset contains 13 images, named T-11 through T-23. Figure 4 shows an 
example of the MICCAI iSEG dataset. Table 3 shows the parameters used to create T1 
and T2. Two different times were used to create T1 and T2, which are the longitudinal 
relaxation time and transverse relaxation time.

The MRBrainS‑2013 dataset

The MRBrainS dataset2 contains 20 subjects on T1, T2, and FLAIR. The dataset contains 
five subjects for as a training set and 15 subjects as a testing set. In this dataset, adult 
brain images has multiple regions to segment, including (a) white matter lesions, (b) 
basal ganglia, (c) lateral ventricles, (d) cortical gray matter, (e) peripheral cerebrospinal 
fluid, (f ) white matter, (g) cerebellum, and (h) brain stem.

Dice coefficient (DC)

We use the Dice Coefficient (DC) metric for evaluating our model. This metric assesses 
how effective and robust the model is. DC has been widely used as a benchmark in the 
literature to compare brain segmentation models. The DC is given by the following 
equation (defined in [49]):

Fig. 4 An example of the MICCAI iSEG dataset (T1, T2, manual reference contour)

Table 3 Parameters used to generate T1 and T2

Parameter TR/TE Flip angle Resolution

T1 1900/4.38 ms 7 1×1×1

T2 7380/119 ms 150 1.25×1.25×1.25

1 http:// iseg2 017. web. unc. edu.
2 https:// mrbra ins13. isi. uu. nl/ resul ts. php.

http://iseg2017.web.unc.edu
https://mrbrains13.isi.uu.nl/results.php
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where Vref denotes for the reference segmentation, Vauto denotes for the automated seg-
mentation. DC values are given in the range of [0, 1], where 1 denotes a perfect overlap 
and 0 denotes a complete mismatch.

Experiment environment

We implement our proposed model using Python TensorFlow on a computer with a 
NVIDIA GPU and the Ubuntu 16.04 operating system. We train and test our model on 
each of the two datasets independently.

Results and discussion
This section discusses the evaluation results of our model compared to the state-of-the-
art models.

Analysis of the results

Table 4 shows the performance of our model on the MICCAI SEG dataset, compared 
to the state-of-the-art models. The results show that our model achieved high results 
compared to the state-of-the-art models. In particular, we observe an increase in the 
accuracy of segmenting the GM using our model. This result suggests that BIM has con-
tributed the improved distinction between the boundaries for GM. However, for seg-
menting CSF and WM, we observe that the result of our model was 1% lower than those 
proposed in [17] and [38], which is likely due to the inclusion of some irrelevant infor-
mation of the GM in CSF and WM. This encourages us to further improve the bound-
ary detection to carefully account for the features missed by our current model. Besides, 
we plan in the future to apply boundary detection to multi-stage segmentation models, 
given their current high accuracy even when no boundary detection is adopted.

Table  5 shows the performance of our model on the MRBrainS dataset, compared 
to the state-of-the-art models. We observe an increase in the accuracy of segmenting 
both the GM and WM using our model. This result suggests that BIM has contributed 

(13)DC(Vref,Vauto) =
2Vref

⋂
Vauto|

|Vref| + |Vauto|

Table 4 Segmentation performance in Dice Coefficient (DC) obtained on the MICCAI iSEG dataset 
achieved by our model (with and without BIM), compared to the state‑of‑the‑art models

The best performance for each tissue class is highlighted in bold

Model Dice Coefficient (DC) accuracy

CSF (%) GM (%) WM (%)

Özgün et al. [50] 91.2 86.1 84.1

Dong et al. [51] 83.5 85.2 86.4

Konstantinos et al. [51] 90.3 86.8 84.3

Mahbod et al. [52] 85.5 87.3 88.7

3D, FCN + MIL + G + K [17] 94.1 90.2 89.7

Multi‑stage [38] 95.0 94.0 92.0
Ours (with BIM) 94.0 94.3 91.0

Ours (without BIM) 90.0 89.0 86.0
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the improved distinction between the boundaries for the GM and WM. Once again, we 
observe that our model performs 1% lower than the multi-stage model in segmenting 
CSF, thus suggesting a limitation of our boundary detection at that region of the brain. 
Figure 5 visualizes the results of our model on the images used as a validation set. As we 
can see, the segmentation results achieved by our model are fairly close to the manual 
reference contour (i.e., ground truth) provided by the MICCAI iSEG organizers. Addi-
tionally, we observe an improvement of segmentation accuracy between WM and GM.

Ablation experiment

In the context of research, where deep learning is employed, an ablation experiment is 
important to describe a model and give a better understanding of the model’s perfor-
mance. The ablation study helps reveal the effectiveness of BIM in our model.

Effectiveness of BIM To demonstrate the effectiveness of BIM, we run our model with-
out BIM on both datasets and compare the results with the state-of-the-art models 
in the last rows of Tables 4 and 5. We observe that BIM helped our model distinguish 
between the boundaries of the three brain tissues. In particular, BIM improved segmen-
tation accuracy by 4.0–5.3%.

Execution time

Table 6 shows the execution time (in minutes) and the standard deviation (SD) for our 
model on the MRBrainS dataset, compared to the state-of-the-art models. We observe 

Table 5 Segmentation performance in Dice Coefficient (DC) obtained on the MRBrainS dataset 
achieved by our model (with and without BIM), compared to the state‑of‑the‑art models

The best performance for each tissue class is highlighted in bold

Model Dice Coefficient (DC) accuracy

CSF (%) GM (%) WM (%)

Özgün et al. [50] 83.9 88.9 89.4

Dong et al. [51] 83.5 85.4 88.9

Mahbod et al. [52] 85.5 87.3 88.7

Marijn et al. [53] 85.5 87.3 88.7

3D,FCN+MIL+G+K [17] 94.1 90.2 89.7

Multi‑stage [38] 93.0 93.0 88.0

Our model (with BIM) 92.0 95.0 93.0
Our model (without BIM) 89.0 90.0 90.0

Fig. 5 Visualization results on MRBrainS dataset
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that our model is faster than all the state-of-the-art models, except one where our model 
took a few minutes long. We conjecture that such longer execution time is likely due to 
the additional steps required for boundary detection, which added some level of com-
plexity to proposed model. Still, given the better segmentation results of our model, 
accuracy should be given more preference than efficiency, since the gap in execution 
time is not considerably large.

Highlights of our model

Boundary detection for brain segmentation To the best of our knowledge, our proposed 
model is the first attempt to apply boundary detection for the segmentation of brain tis-
sues, which has shown a significant improvement to segmentation results. Our model 
outperformed previous models not only in terms of segmentation accuracy, especially 
for segmenting GM and WM, but also in terms of execution time.

BIM+BAG Our model adopts the BIM and BAG mechanisms to focus on bounda-
ries while performing the segmentation tasks. The BIM + BAG addition to our model 
shows a positive effect to the effectiveness of our model. Still, these two mechanisms 
may have introduced some level of complexity to our model, but still performs faster 
than all the state-of-the-art models, except one. Nevertheless, we believe that more pref-
erence should be given to producing better segmentation results regardless of execution 
time. Hence, sacrificing efficiency for a better accuracy is a viable option.

Accuracy on two different datasets Our model is evaluated on two completely different 
datasets of brain images, one for infants and one for adults. Each of these datasets con-
tains a limited number of images with low contrast. Yet, our models shows high results 
for segmenting brain tissues, most particularly the GM and WM, which outperformed 
the state-of-the-art models in this context.

Limitations and future work

Limited dataset Our model is evaluated on datasets including infant and adult images. 
However, these images are limited and of poor quality, which could have influenced the 
performance of our model. Future research should consider extending the evaluation of 
boundary detection+segmentation on additional, more realistic datasets.

Network design Our model employs ResNet50 to extract feature maps from input 
images and RPN to generate a bbox detector and mask detector. However, these 

Table 6 Average execution time (in minutes) and standard deviation (SD) on the MRBrainS dataset

The fastest model is highlighted in bold

Model Time (SD)

Özgün et al. [50] 15.40 (0.16)

Dong et al. [51] 19.23 (0.20)

Mahbod et al. [52] 17.6 (0.18)

Marijn et al. [53] 18.4 (0.15)

3D, FCN + MIL + G + K [17] 5.9 (0.11)
Multi‑stage [38] 22.61 (0.21)

Our model (with BIM) 10 (0.3)

Our model (without BIM) 9 (0.14)
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networks might not be the best alternative for this particular problem. Future work 
should investigate other networks (CNN, RNN, Unit Network, etc.)

Further improvement of boundary detection Our models achieved a higher perfor-
mance, compared to the state-of-the-art models, for segmenting GM and WM. How-
ever, the performance of our model compared to the multi-stage model was lower on 
CSF. This indicates that there is still room for improve segmentation accuracy by consid-
ering more sophisticated boundary detection and/or applying it to other segmentation 
models.

Model complexity It can be argued that our model has become more complex with the 
additional networks and layers employed to perform boundary detection followed by tis-
sue segmentation. However, our model shows better efficiency, expressed by the faster 
execution times compared to the state-of-the-art models. Still, we aim in the future to 
optimize our model further to mitigate the accuracy versus efficiency trade-off by reduc-
ing any level of complexity.

Conclusion
In this paper, we proposed a boundary detection-based model for brain image segmen-
tation. To this end, we designed a boundary segmentation network for detecting and 
segmenting brain tissues. Then, we designed a boundary information module (BIM) 
to distinguish boundaries from the three different brain tissues. After that, we added a 
boundary attention gate (BAG) to the encoder output layers to capture more informa-
tive local details. We evaluated our proposed model on two datasets of brain tissue 
images, including infant and adult brains. Our evaluation results of our model show bet-
ter performance (a Dice Coefficient (DC) accuracy of up to 5.3% compared to the state-
of-the-art models) in detecting and segmenting brain tissue images, which proves the 
importance of boundary detection for brain segmentation tasks.

We plan in the future to expand the evaluation of our model to consider additional 
datasets with more brain images and tissues. We also plan to extend our model to per-
form segmentation of pathological brain and skin lesion dermoscopy images. Moreover, 
we plan to investigate other networks than RPN (e.g., Cascade Mask R− CNN  net-
works) to further improve segmentation accuracy. Finally, We plan to develop a frame-
work to support boundary detection in other segmentation models.

Abbreviations
G  Generator
D  Discriminator
z  Noise
G(z)  Generated data
x  Real data
WM  White matter
GM  Gray matter
CSF  Cerebrospinal fluid
Conv  Convolutional
LeReLU  Activation function
GAN  Generative adversarial network
E  Expected value
DC  Dice Coefficient
MRI  Magnetic resonance imaging
T1  subject‑1‑to‑subject‑10
T2  subject‑11‑to‑subject‑23
Vauto  Automated segmentation
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Vref  Reference segmentation
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