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Background
As the cost of DNA sequencing is decreasing, the number of available genome sequences 
is increasing at a fast pace [1–4]. DNA sequencing is also the fundamental step for tech-
nologies such as RNA sequencing and ChIP-Sequencing [5]. Currently, there are millions 
of genomic sequences available and many more are expected [6–8]. As the genomic data 
is used more prevalently in the clinic and in translational research [9, 10], the genetic 

Abstract 

Background:  The decreasing cost of DNA sequencing has led to a great increase in 
our knowledge about genetic variation. While population-scale projects bring impor-
tant insight into genotype–phenotype relationships, the cost of performing whole-
genome sequencing on large samples is still prohibitive. In-silico genotype imputation 
coupled with genotyping-by-arrays is a cost-effective and accurate alternative for 
genotyping of common and uncommon variants. Imputation methods compare the 
genotypes of the typed variants with the large population-specific reference panels 
and estimate the genotypes of untyped variants by making use of the linkage disequi-
librium patterns. Most accurate imputation methods are based on the Li–Stephens hid-
den Markov model, HMM, that treats the sequence of each chromosome as a mosaic 
of the haplotypes from the reference panel.

Results:  Here we assess the accuracy of vicinity-based HMMs, where each untyped 
variant is imputed using the typed variants in a small window around itself (as small as 
1 centimorgan). Locality-based imputation is used recently by machine learning-based 
genotype imputation approaches. We assess how the parameters of the vicinity-based 
HMMs impact the imputation accuracy in a comprehensive set of benchmarks and 
show that vicinity-based HMMs can accurately impute common and uncommon 
variants.

Conclusions:  Our results indicate that locality-based imputation models can be effec-
tively used for genotype imputation. The parameter settings that we identified can be 
used in future methods and vicinity-based HMMs can be used for re-structuring and 
parallelizing new imputation methods. The source code for the vicinity-based HMM 
implementations is publicly available at https://​github.​com/​harma​ncilab/​LoHaM​Mer.

Keywords:  Genotype imputation, Hidden Markov models, Forward–Backward 
algorithm, Viterbi algorithm

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Wang et al. BMC Bioinformatics          (2022) 23:356  
https://doi.org/10.1186/s12859-022-04896-4

BMC Bioinformatics

*Correspondence:   
arif.o.harmanci@uth.tmc.edu

1 Center for Precision Health, 
School of Biomedical Informatics, 
University of Texas Health 
Science Center, Houston, TX 
77030, USA
2 Department of Mathematics, 
Hanyang University, Seoul 04763, 
Republic of Korea
3 Center for Secure Artificial 
Intelligence For hEalthcare 
(SAFE), School of Biomedical 
Informatics, University of Texas 
Health Science Center, Houston, 
TX 77030, USA

https://github.com/harmancilab/LoHaMMer
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04896-4&domain=pdf


Page 2 of 26Wang et al. BMC Bioinformatics          (2022) 23:356 

data size is available in many different scenarios, even including the citizen scientists 
from the general population [11]. Genetic data is deposited widespread in many places 
(including personal computers and even phones) and it made its way well into the fields 
of recreational genetics [12]. This is made possible by extensive mapping of the genetic 
differences between populations and efficient methods that can sift through massive 
databases for searching for relatives [13]. These are made possible by population-scale 
projects such as UKBiobank [14].

One of the main uses of genetic data is performing genotype–phenotype associa-
tions using genome-wide association studies (GWAS or GWA study) [15–18]. For this, 
a large cohort is generated and the individuals are genotyped by sequencing. Next, the 
phenotype of interest (Intelligence quotient, height, body-mass index, blood glucose lev-
els, etc.) is measured from all the individuals. Finally, the measured genotypes for all the 
variants are tested for association with the GWA studies, most variants are found to be 
in intergenic regions out of the protein-coding exons. Thus, it is necessary to perform 
genotyping of the whole genome using, for example, whole-genome sequencing (WGS) 
to ensure that the causal variants can be accurately detected. Causal variants are the var-
iants that impact a coding or non-coding element (e.g. enhancers) and mechanistically 
affect the manifestation of a disease or cause a significant phenotypic difference between 
cases and controls. GWA studies usually detect a variant that is in linkage disequilibrium 
(LD) [19, 20] and the real causal variant that is most likely associated with the trait must 
be dissected by a fine-mapping procedure. This, however, is not cost-effective because 
large samples must be whole-genome sequenced [21]. To get around this, genotyping 
arrays are used for genotyping and decreasing the cost [22]. The genotyping arrays are 
designed to genotype only a sparse set of variants from the genome. These variants are 
then input to in-silico genotype imputation algorithms [23, 24], which impute and “fill-
in” the un-genotyped (or untyped for short) variants. The main idea behind the imputa-
tion algorithms is to make use of the known haplotype structure of the whole genome 
and estimate the genotypes of the untyped variants using the genotypes of typed- 
variants that are correlated at the haplotype level [25]. The haplotype structure arises 
because the alleles are inherited between generations by a limited number of crossing-
overs at the recombination hotspots between homologous chromosomes [26]. This 
causes long chunks of haplotypes to be inherited as a single unit between parents and 
children. Although the length of conserved chunks (identity-by-descent segments [27]) 
decreases as the relationship distance increases, it can still be detected even with 20–25 
generations of separation between individuals [28, 29]. The imputation algorithms focus 
on making use of conserved chunks of haplotypes (i.e., frequent haplotypes) that are 
shared among unrelated individuals in the population. Imputation methods are also used 
for imputing variants identified by the RNA sequencing and whole-exome sequencing 
and for fine mapping of the variants from association studies.

The current state-of-the-art imputation methods such as BEAGLE, Minimac, and 
IMPUTE suite make use of the hidden Markov model (HMM) [30–34] based approach 
that is developed by Li and Stephens [35–40]. HMM treats each haplotype as a “state” 
and analyzes the probabilities of all the “paths” that pass through the states to gener-
ate the alleles that are typed by the array [36]. This way, HMM-based methods can 
assign probabilities to the imputed genotypes using the probabilistic model imposed 
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by the Li–Stephens haplotype model. The HMM takes the typed variants and the refer-
ence panel as input and imputes all the variants that exist on the reference panel but are 
untyped by the genotyping array. While HMM models provide good accuracy of imputa-
tion, they may fail at imputation of rare variants as these variants are represented on at 
least as rare haplotypes [41]. However, as the size of reference panels increases, the rare 
variants can be more accurately predicted [42].

Here, we focus on Li–Stephens HMM-based imputation models and assess the per-
formance of “vicinity-based HMMs”, i.e., the HMM evaluates the paths over only a 
short stretch of variants around the untyped variants. While several methods have 
tested different parametrizations of the state-of-the-art methods, we implemented the 
vicinity-based HMM methods to have full control over how the parameters impact the 
imputation. Evaluation of the imputation parameters is justifiable since it has been pre-
viously shown that genome has varying “imputability” [43], i.e., some variants are more 
easily imputed while others are less imputable because of complex haplotype structures 
around them. Thus, it is useful to study the parameters of the vicinity-based models in 
detail for tuning the parameters of new resource intensive methods such as Deep Learn-
ing-based and secure imputation methods. In this study, we focus on the impact of dif-
ferent parameters related to vicinity-based imputation models and how they impact 
the accuracy of imputation. While we do not explicitly aim for generating the optimal 
vicinity-based imputation parameters for different regions in the genome, we provide 
evidence that the vicinity-based models with a fairly constrained set of parameters can 
provide good imputation accuracy even without a more extensive optimization over the 
genome. These parameters can serve as a starting point while searching for the vicinity-
specific imputation parameters that are optimal with respect to accuracy or other appli-
cation specific considerations, e.g. security-vs-performance.

The locality-based approaches have been used in different scenarios, for instance with 
linear imputation models and with Deep Learning-based imputation models [44–46], 
where the imputation is performed on the typed variants that are in the vicinity of the 
untyped variant. Also, IMPUTE and BEAGLE make use of a sliding-window, as long as 
40 centimorgans (cM) to cut corners in computation. This parameter was not extensively 
assessed in terms of its impact on imputation accuracy, especially for much shorter 
window lengths. We implemented the per-position posterior probability estimation 
(we refer to this as the “forward–backward” or “FB” method) by the forward–backward 
algorithm. We also implement the inference of the maximum-likelihood HMM path 
(referred to as the Viterbi method), which represents the most likely mosaic of refer-
ence haplotypes that gives rise to the genotypes of the typed variants. On these methods, 
we analyze the size of the window, positioning of the target within the window, and the 
number of typed variants on the window. We also report effect of population-specific 
imputation by analyzing different reference populations used in imputation. It should 
be noted that we focus on the phased genotype imputation problem, i.e., we assume that 
the genotypes are phased. This is a reasonable assumption since pre-phasing was shown 
to improve the time complexity of the imputation method substantially while conferring 
a very small performance penalty [39].

One of the main advantages of the locality-based approaches is that they can be con-
strained in terms of computational requirements without the need to load the whole 
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genome into memory or running the HMM inference methods on whole chromosomes 
or very long stretches. This way, the architecture of imputation algorithms on a cloud 
can be structured accordingly, for example, by using different models in different parts 
of the genome. On another front, the recent efforts to develop privacy-aware genotype 
imputation methods make use of the vicinity-based models to perform imputation while 
genotype data confidentiality is preserved [47, 48]. These methods can potentially serve 
as alternative for genotype imputation servers such as Michigan Imputation Server [49], 
which provide imputation-as-a-service. In these servers, the genotype data is processed 
in plain form and anyone can access the genotype data, which makes it fairly concerning 
to make use of these services when data is from vulnerable or underrepresented popula-
tions. As the genetic privacy is becoming an important topic of public discussion, it is 
necessary to develop more efficient imputation methods that can be used to build the 
imputation services with privacy-by-design principles. While there have been attempts 
(including our group) to build secure imputation tools [47, 48, 50, 51] using trusted 
execution methods and homomorphic encryption techniques [52], these methods are 
bound by computational requirements [53]. Therefore, our study can inform these meth-
ods about the locality parameters that must be considered and evaluated for decreasing 
computational requirements and maintaining the imputation accuracy while providing 
privacy and confidentiality for the genetic data. The implementation of the vicinity-
based HMMs, named LoHaMMer, is publicly available to download from https://​github.​
com/​harma​ncilab/​LoHaM​Mer.

Results
We briefly describe the HMM-based imputation techniques, the parameters, and the 
evaluation approach. We finally present the imputation accuracy evaluations.

Overview of the vicinity‑based HMMs

Genotype imputation is summarized in Fig. 1. The genotype imputation process takes as 
input the variant phased genotypes matrix, GM×V  , individuals. As we are evaluating the 
phased imputation process, G is pre-phased using a phasing algorithm such as Eagle [49] 
(Fig.  1a). Gi,j holds the phased genotype of the jth variant for the ith individual, i.e., 
G

(h)
i,j ∈ {0, 1,∅}, 1 ≤ i ≤ M, 1 ≤ j ≤ V  , where h indicates the paternal/maternal copy for 

the genotype, i.e. h ∈ {0, 1} . G(h)
i,j = ∅ indicates the missing genotype that will be imputed 

using the reference panel. We denote the set of indices of the untyped variants with 
j∅ = j|G

(h)
i,j = ∅  . Imputation also takes the reference genotype matrix containing 

HN×V  of N  haplotypes over the same V  variants that correspond to the columns of G . 
Similar to G , Hi,j ∈ {0, 1}, 1 ≤ i ≤ N , 1 ≤ j ≤ V .

Li–Stephens Markov model

Our evaluations use the Markov model defined by the standard Li–Stephens model [35], 
where the haplotypes of each query individual are modeled as a “mosaic of the refer-
ence haplotypes” such that pieces of reference haplotypes (consecutive variant alleles on 
a haplotype) are concatenated to each other. This model describes a probability distribu-
tion on possible “paths” that pass over the reference haplotypes (Fig. 1b, c). In this model, 

https://github.com/harmancilab/LoHaMMer
https://github.com/harmancilab/LoHaMMer
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the transitions between the haplotypes and errors on the haplotypes are probabilistic. In 
the simplest sense, the minimal number of haplotype transitions and allelic errors can be 
thought of as the most likely path that describes the query haplotype. The basic idea is to 
pin-down the typed variant alleles on the paths, and estimate the marginal probabilities of 
alleles at the untyped variants:

In this model, the haplotypes of the reference panel correspond to the states of the 
Li–Stephens Markov model. Each state (haplotype) emits an allele at a variant position 
1 ≤ j ≤ V  . In addition, the transitions between the states (i.e., the switches between hap-
lotypes) at variant j are dependent only on the genetic distance between the variants at 
indices j and 

(
j + 1

)
 . The genetic distance measures the probability of recombination tak-

ing place between these two variants. In the Markov model, recombination corresponds 
to a state-switch whereby the state (i.e., the haplotype) makes a transition to a new state. 
However, the recombinations occur as homologous chromosomes crossover in the course 
of meiosis. The rate of recombinations changes depending on the position on the genome, 
i.e., some parts of the genome are more likely to harbor recombinations than others. Thus, 
the prevalence of recombination events along the genome is quantified in terms of genetic 
distance that is measured in centimorgans (cM), a measure of recombination probability 
between two loci. Given two variants at indices 

(
j − 1

)
 and j , the probability of recombina-

tion is modeled as:

where P(R)
j  denotes the probability that there is a recombination event (i.e. Markov chain 

stays on the same state), Rj denotes the interpolated cumulative genetic distance of 

(1)∀j ∈ j∅;P
(
G

(h)
i,j = 0

)
=

∑
k

(
Probabilityofkthpathsuch

thatjthvariantalleleis0

)

(2)P
(R)
j =

1

N
×

(
1− exp

(
−4 × Ne ×

�Rj

N

))
,�Rj = Rj − Rj−1

(See figure on next page.)
Fig. 1  a Illustration of the local imputation setup. Query individual’s parental haplotype copies (“Hap. 0” 
and “Hap. 1”) are shown in two rectangles in top, which are strings of {0,1}. 0 and 1 indicate a reference and 
alternate allele, respectively, for corresponding variants. The untyped variants are indicated with “?” to indicate 
their alleles are not known. The genetic distance (in centimorgans) are shown with the blue arrow and is 
used to track the center position (indicated with ‘c’) of the window and the target untyped variant in focus 
(indicated with “t”). The reference haplotypes are shown in the box below wherein each row corresponds to a 
haplotype. Given the local window of radius lw the window is illustrated in the dashed rectangle whose center 
is shown at the genetic position c and for the target variant at position t  . The typed variants are shown in 
green rectangles and the untyped target is shown in the red rectangle, whose alleles on the query haplotypes 
are shown with question marks. b Illustration of the forward and backward variables for the emission of the 
allele sequence on “Haplotype 0”. For the 3rd haplotype at the untyped variant, the incoming paths (forward 
variable) are illustrated with green lines. Each green line stems from a haplotype (i.e., state) indicating the 
emission of one of the alleles on the corresponding haplotype. The dashed paths indicate an allelic mismatch 
between individual’s haplotype (Hap. 0) and the reference haplotype. These paths are penalized with allelic 
error probability ( ǫallele ) at the forward and backward variables. The incoming paths for variant positions further 
to the left are also shown, which depict the exponential increase in the number of paths that are evaluated in 
the hidden Markov model. The outgoing transitions on the right side of the target variant are shown with red 
lines. The self-transitions are shown with heavier lines compared to the non-self-transitions to depict that they 
have higher probabilities of occurrence, i.e., the probability of maintaining a haplotype is higher than creating 
a recombination event. c Two Viterbi paths are shown with the transitions along the haplotypes corresponding 
to the haplotypes of query individual, “Hap. 0” and “Hap. 1”
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variant at index j (See Methods for exact definition),  �Rj denotes the genetic distance 
between variants at indices 

(
j − 1

)
 and j , and Ne denotes the effective population size. It 

is important to note that the probability of recombination depends only on the position 

Fig. 1  (See legend on previous page.)
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of the variant and not the actual haplotype. This is widely used in HMM-based imputa-
tion methods to decrease computational costs. The probability of that a recombination 
does not take place can be computed from P(R)

j :

where all recombination events are accounted for and removed from 1 and P(NR)
j  indi-

cates that there is no recombination between variants at indices (j − 1) and j . From 
the above equation for P(R)

j  , Increasing population size implies a higher probability of 
recombination, i.e., larger effective population size indicates more complex recombina-
tion patterns as the probability of switching between haplotypes (or states) increases. 
Given the query individual’s phased genotypes, G(h)

i,j  and the reference haplotype data, 
Ha,j , HMM is defined based on these equations using the transition and emission prob-
abilities. The transition and emission probabilities are formulated as

where τj(b → a) denotes the transition probability from haplotype b to a at variant index 
j from the previous variant at index 

(
j − 1

)
 and ej

(
G

(h)
i,j , a

)
 denotes the emission proba-

bility of the allele G(h)
i,j  from the ath haplotype. The emission probability depends on the 

alleles of the query individual; if the allele on the ath haplotype matches query individu-
al’s allele, a high emission probability is assigned, otherwise allele error probability, ǫallele , 
is assigned as the emission probability.

Using the above equations and Li–Stephens Model, we use two approaches for inferring 
the haplotype states at every typed variant.

Inference of marginal state (haplotype) probabilities

First approach the estimation of per-typed-variant estimate of posterior probabilities of 
each haplotype and assignment of the forward–backward marginalization-based estimate 
of the alleles at the untyped variants (Fig. 1b). For this, we make use of the forward–back-
ward algorithm [54], which is a well-known dynamic programming algorithm that is used 
to efficiently compute the state probabilities at each step of the HMM as

where S(h)i,j  denotes the state (haplotype) of the HMM at variable index j for individual i ’s 
parental copy h ( h ∈ {0, 1} ), G(h)

i,[1,j] denotes the sequence of alleles for variants in [1, j] on 
individual i ’s parental copy h , and P

(
S
(h)
i,j = a,G

(h)
i,[1,j]

)
 is the forward-variable and it 

denotes the probability of emitting the allele sequence G(h)
i,[1,j] given that HMM is at state 

a at the variant position j . Backward-variable is similarly defined for the rest of the allele 

(3)P
(NR)
j = 1−

(
(N − 1)× P

(R)
j

)

(4)τj(b → a) =

{
P
(NR)
j ; a = b

P
(R)
j ; a �= b

(5)ej

(
G

(h)
i,j , a

)
=

{
ǫallele = 10−4;Ha,j �= G

(h)
i,j

1− ǫallele;Ha,j = G
(h)
i,j

(6)
P
(
S
(h)
i,j = a, G

(h)
i, [1,V ]

)
= P

(
S
(h)
i,j = a, G

(h)
i,[1,j]

)

︸ ︷︷ ︸
Forward Variable

×P
(
G

(h)
i,[j+1,V ]|S

(h)
i,j = a

)

︸ ︷︷ ︸
Backward Variable
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sequence that is backward of jth variant, i.e., G(h)
i,[j+1,V ] . The forward and backward varia-

bles are computed using efficient recursion relations (See Methods) [55, 56]. The relation 
in (6) follows from conditional independence of G(h)

i,[j+1,V ] and G(h)
i,[j+1,V ] , given S(h)i,j = a . 

After the forward and backward variables at each variant position j and for each state a 
are computed, we can estimate the posterior probability of each allele at each untyped 
position:

The untyped variant allele t ’s probability is estimated by marginalizing over the 
states a for which the corresponding haplotype has an allele t . As we describe below, 
we evaluate 2 different approaches for marginalizing over the haplotypes.

Maximum‑likelihood mosaic‑haplotype (Viterbi)

While forward–backward algorithm focuses on marginalizing at a specific vari-
ant, Viterbi algorithm aims to predict the most likely “path” along the haplotypes 
(Fig. 1c) so that one single haplotype is a “mosaic” of the reference haplotypes. Con-
ceptually, the forward–backward algorithm calculates the marginal probability of 
each haplotype at each variant while Viterbi analyzes the overall probability of all 
variants to identify the optimal mosaic haplotype. To compute the most likely hap-
lotype, the overall probability of the state sequence conditioned on the haplotype’s 
allele sequence is maximized. We denote this as

where P
(
S[1,V ],G

(h)
i,[1,V ]

)
 denotes joint probability of the state sequence S[1,V ] and the 

corresponding allele sequence of all variants in [1,V ] for ith individual that is emitted by 
the state sequence.  

⌣

S
(h)

i,[1,V ] denotes the state sequence that maximizes the probability for 
ith individual’s haplotype h (Fig.  1c). This state sequence represents the most likely 
mosaic haplotype that gives rise to the variant allelesG(h)

i,[1,V ] = (G
(h)
i,1 ,G

(h)
i,2 , . . . ,G

(h)
i,V ) . The 

state sequence can be inferred using a dynamic programming algorithm, namely the 
Viterbi algorithm [57] that efficiently identifies the maximum-likelihood state sequence 
similar to the forward algorithm.

After the most likely state sequence is computed using the Viterbi algorithm, 
we assign the alleles for untyped variants using the alleles that are on this state 
sequence:

Here, 
⌣

G
(h)

i,j  denotes the allele on the most likely haplotype for the untyped variant j that is 
assigned to individual i ’s haplotype h . The Viterbi algorithm does not immediately assign 
a score for each imputed allele. We aggregate the vicinity information to assign a score 
for the imputed allele.

(7)∀j ∈ j∅,P
(
G

(h)
i,j = t

)
=

∑
a≤N

P
(
S
(h)
i,j = a,Ha,j = t

)
, t ∈ {0, 1}

(8)
⌣

S
(h)

i,[1,V ] = argmax
S[1,V ]

{
P
(
S[1,V ],G

(h)
i,[1,V ]

)}

(9)∀j ∈ j∅,
⌣

G
(h)

i,j = H
⌣
S

(h)

i,j ,j
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Locality parameters of imputation

We evaluate the effect of changing parameters on the accuracy of genotype imputa-
tion. The forward–backward and Viterbi-based imputation algorithms sequentially 
analyze the variants while keeping track of the scores and probabilities for each state. 
They can be performed using all of the variants on each chromosome as the LD infor-
mation is confined generally to individual chromosomes and inter-chromosomal LD 
information, while detectable, are very weak [58]. These are out-of-scope of the impu-
tation methods that we evaluate. Using whole chromosomes in imputation enables the 
algorithm to integrate the linkage information from all positions on the chromosomes. 
On the other hand, the linkage information tends to decrease quickly while imputing an 
untyped variant, e.g., the identity-by-descent segment length (length of conserved hap-
lotypes) decreases quickly among generations (25 generations separation have on aver-
age 2 cM conservation [28]). This information can be integrated into forward–backward 
(Fig. 1b) and Viterbi-based (Fig. 1c) imputation by a sliding-window where the variants 
outside a local window are not used for imputation. This can help decrease the com-
putational requirements. For example, BEAGLE uses a large sliding window (length 30 
cMs) and merges the consecutive windows to infer the forward and backward variables. 
In our study, we run forward–backward and Viterbi algorithms solely on the local win-
dows around the untyped variants and use these “vicinity-based HMMs” to impute the 
untyped variants. For instance, if we are using a local window of length 0.5 centimor-
gan (cM), the most likely state sequence is computed only for the local vicinity of the is 
assigned using

where Rk denotes the interpolated cumulative genetic distance of variant k (See Meth-
ods). In (10), the state sequence, 

⌣

S
(h)

i,[k ,l] , is confined to the variant indices [k , l] whose 
genetic distance is approximately 0.5 cMs. The forward–backward computations are 
similarly confined to the local windows based on genetic distance cutoffs.

We test different local window lengths and evaluate the impact of window length on 
the allele imputation accuracy. We utilize a sliding window with lengths from 0.1 upto 
1 cMs and compute the imputation accuracy (See Metrics). Another important factor 
is the positioning of the untyped target variant within the local window (Fig. 1a). It is 
expected that the LD information can be integrated more accurately if the untyped vari-
ant is centered around the local window. It is, however, not clear to what extent “target-
to-center distance” affects the imputation accuracy. For each untyped target variant, we 
first identified the typed variants that will be used for imputation that satisfies the local 
window length and target-to-center distance criteria using Viterbi and forward–back-
ward approaches with the selected population size and allelic probability assignment 
procedure.

Evaluation setup and metrics

We use genotype data from the 1000 genomes Project’s Phase 3 [59]. We focus on 
the variants on chromosomes 19, 20, and 22 for extensive evaluation and exclude the 

(10)
⌣

S
(h)

i,[k ,l] = argmax
S[k ,l]

{
P
(
S[k ,l],G

(h)
i,[k ,l]

)}
, |Rk − Rl | ≈ 0.5cM
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multi-allelic SNVs and indels. Among these data, chromosome 22 is used to evaluate 
different parameter combinations. To decrease computational requirements with the 
parameter combinations, we focused on the region chr22:25,000,000–35,000,000. In the 
evaluations, we randomly selected 1000 individuals as the phased reference panel and 
200 individuals (with known genotypes) for estimating evaluation. After we evaluated 
the parameters, we selected the optimal parameter set and validated the imputation on 
chromosomes 19 and 20. To define the typed (tag) variants, we extracted the positions 
of the variants that are genotyped on the Illumina Duo 1 M genotyping array platform 
[60] as it was recently used in our previous study [47]. This enables us to perform evalu-
ations on a realistic test case as the Illumina’s array is used in several large-scale projects 
including the HAPMAP project [60]. We used all the variants that map to the positions 
that overlap with Illumina Duo platform as the typed variants and the remaining vari-
ants are assigned as untyped variants that are imputed. After extracting the variants, 
we phased the genotypes using EAGLE2 [49]. The phased typed variants are input to 
LoHaMMer with different parameters for imputation. After the untyped variants are 
imputed, (1)) Genotype concordance (all and non-reference genotypes), and (2) Preci-
sion-Recall curves based on the imputed probabilities. We compare the implemented 
locality-based HMMs with BEAGLE, which is used as the baseline method for imputa-
tion. The imputation accuracy is classified among variants with respect to the range of 
minor allele frequency (MAF) and with respect to the chromosomal position.

Evaluation of imputation accuracy with changing locality parameters

For assessing the imputation accuracy with changing parameters, the variants are clas-
sified into “common” (MAF > 0.05) and “uncommon” (MAF < 0.05) variants. We tested 
the impact of the 4 different parameters including window length ( lw ), target-to-center 
distance ( lc2t ), and number of typed variants in the window ( ntag ). Here, rather than 
computing all parameter combinations, we selected a range for each parameter and 
we evaluated the impact of one parameter while keeping others constant. We used (
lw ,Ne, lc2t , ntag

)
= (0.3, 104, 0.05, 10000) as the default parameter values. While ntag is 

set to a large value of 10,000, the number of local typed variants depend on the locality 
window length ( lw ). Figure 2a shows the distribution of number of typed variants with 
different window length parameter. For the longest tested window length of 1 cM (Bot-
tom panel in Fig. 2a), we observed that majority of the windows contain less than 1000 
typed variants. We also observed there is generally uniform coverage of typed variants 
along the chromosomes (Fig. 2b, Additional file 1: Fig. S1).

Local window length ( lw)

We first evaluated the impact of local window length on the imputation accuracy. 
We used local window lengths of lw ∈ {0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1} cM. Figure 3a, 
b show the non-reference genotype concordance distribution and the precision-
recall curve for non-reference genotypes of common variants for different window 
lengths. As expected, the accuracy increases with increasing window lengths. For 
window lengths above 0.3 cMs, we observed that there is around 0.5% increase in 
the non-reference genotype concordance when forward–backward and BEAGLE are 
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compared (Fig. 3a, Additional file 1: Fig. S2a). For the uncommon variants, the win-
dow lengths greater than 0.5 cMs exhibit very similar behavior as BEAGLE with 0.8% 
difference (Fig.  3c). The precision-recall curves for uncommon variants show that 
the curves are very close to each other above 0.3 cMs for non-reference genotypes 
(Fig.  3d). These results indicate that lw > 0.3 cM is the minimum window length 
with comparable accuracy as BEAGLE. For uncommon variants, we observed that 
concordance are at the high or low accuracy regimes (Fig. 3c) for both BEAGLE and 
LoHaMMer. The PR curves for all genotypes of uncommon variants demonstrate 
a fairly steady pattern of increase in the accuracy (Additional file 1: Fig. S2b) with 
fairly similar accuracy for lw > 0.3.

Target‑center distance ( lc2t)

The positioning of the target variant, lc2t (target-center distance), in the imputa-
tion window is another parameter that can impact imputation accuracy (Fig.  1a). 
We tested the imputation of accuracy with increasing target-center distance values, 
lc2t ∈ {0.02, 0.05, 0.1, 0.15} cM. We use genetic distance as the measurement of unit 
for these parameters since it is the most natural choice (Methods). Non-reference 
genotype concordance for common variants is shown for different center-target 
distance values indicating a visible impact of target-center distance (Fig. 4a, b). We 
observed that the imputation accuracy decreases as lc2t increases. This indicates that 
the haplotype and LD information from the two sides of the untyped variant should 
be balanced. For  lc2t < 0.15 cM, we observed that the local window-based imputa-
tion provides comparable accuracy. For uncommon variants, we observed a similar 
pattern in the terms of non-reference genotype PR curves (Fig. 4c, d). Similar results 
are found for non-reference concordance and all genotype PR curves (Additional 
file 1: Fig. S3a) and for uncommon variants (Additional file 1: Fig. S3b).

Fig. 2  Typed variant statistics. a The distribution of typed variant number for different window lengths for 
common untyped variants. b The number of typed variants for 1 cM window length over the chromosome 
5 coordinates. X-axis shows the chromosomal position and Y-axis shows the tag variant density. The 
centromere is indicated with a grey rectangle
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Maximum number of typed variants in window ( ntag)

The next set of parameters we tested are the number of typed variants that are used 
for imputation. For this, we subsampled the typed variants in each window such that 
the number of typed variants is bounded by the maximum number of typed variants. 
For this, we evaluated the impact of changing ntag ∈ {10, 50, 100, 200, 1000 }. The typed 
variants in the windows that harbor less than ntag typed variants are used as they are. 
Figure  5a, b show non-reference genotype concordance and PR curve, respectively. 
For ntag greater than 100 variants, we observed that the accuracy levels out with a 
slight increase, for common variants (Additional file 1: Fig. S4a). For uncommon vari-
ants, we observed that the genotype accuracy flattens out around ntag = 200 , and PR 
curves exhibit similar patterns although the imputation accuracy is fairly low for all 
parameter selections (Fig. 5c, d, Additional file 1: S4b). For uncommon variants, using 
all of the typed variants in the windows is more suitable as this parameter impact 
accuracy strongly.

Fig. 3  Effect of changing window length on accuracy. a Distribution of non-reference genotype 
concordance for changing window length ( lw ) for common variants. b The PR-curve for non-reference 
genotypes with respect to changing lw for common variants. c Distribution of non-reference genotype 
concordance for uncommon variants with respect to lw . d Non-reference genotype PR-curves for changing lw 
for uncommon variants



Page 13 of 26Wang et al. BMC Bioinformatics          (2022) 23:356 	

Ancestral mismatches between reference and query samples

We next tested how the mismatches between the genetic ancestries of query individuals 
and the individuals in the reference panel affect the accuracy. For this, we used indi-
viduals of European descent (Super population EUR) as the query individuals. We used 
4 other superpopulations as reference panels: Americas (AMR), African (AFR), East 
Asian (EAS), South Asian (SAS). As the baseline, we also used European panel as the 
matching reference panel in imputation. For each of the 5 query-reference panel pairs 
(including EUR as reference), we performed imputation on the common and uncom-
mon benchmarking variants on chromosome 22 using different window length param-
eters lw = {0.1, 0.5, 1, 1.5} . Figure  6 shows the non-reference concordance for different 
reference populations and window lengths. As expected, the accuracy is highest for the 
matching EUR reference population followed by AMR population, which is known to 
contain large amount of EUR admixture [61]. EAS reference panel exhibits the lowest 
imputation accuracy. While the increasing window length increases accuracy for all 

Fig. 4  Effect of changing target-to-center distance on accuracy. a Distribution of non-reference 
genotype concordance for changing target-center distance ( lc2t ) for common variants. b The PR-curve for 
non-reference genotypes with respect to changing lc2t for common variants. c Distribution of non-reference 
genotype concordance for uncommon variants with respect to changing lc2t . d Non-reference genotype 
PR-curves for changing lc2t for uncommon variants
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reference populations, we observed that highest improvement is attained for AFR refer-
ence population. This can potentially be underpinned by recent admixtures of the indi-
viduals from European and African descent [62]. In summary, our results show that the 
parameters may need to be re-parametrized when population-specific reference panels 
are used.

Time and memory requirements

We tested how the time and memory requirements of vicinity-based HMMs with 
respect to the increasing window length parameter. We measured the time and 
memory usage of forward–backward and Viterbi methods using window lengths of 
{0.02, 0.05, 0.1, 0.2, 0.3, 0.40.5, 1.0} centimorgans. The time (Fig.  7a) and memory usage 
(Fig. 7b) of both methods increase linearly with respect to window length. In general, 
Viterbi requires more time than forward–backward method. This stems from the fact 
that Viterbi method utilizes many inefficient branching operations that are necessary to 
identify the optimal paths in Viterbi recursions in (24). We would like to emphasize that 

Fig. 5  Effect of changing maximum typed variant numbers, ntag . a Distribution of non-reference genotype 
concordance for changing ntag , for common variants. ‘All’ indicates that all typed variants were used in 
imputation. b The PR-curve for non-reference genotypes with respect to changing ntag for common variants. 
c Distribution of non-reference genotype concordance for rare variants with respect to changing ntag . d 
Non-reference genotype PR-curves for changing ntag for uncommon variants
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our current implementation is optimized for ease of benchmarking. For example, we 
compute forward and backward variables from scratch for each window and this is not 
necessary since large number of windows overlap and the variables can be re-used. We 
discuss numerous approaches for optimizations in Discussion Section.

Accuracy on chromosomes 19 and 20

In order to validate and compare the vicinity-based HMM parameter accuracy on a sep-
arate dataset, we tested the parameters for the variants on chromosomes 19 and 20. We 
extracted the typed variants on the Illumina Duo array platform on chromosomes 19 
and 20. After this, we extracted 24,333 of 27,403 typed variants on chromosome 19 and 

Fig. 6  Impact of ancestral mismatches between reference panel and query individual. a The non-reference 
PR curves with changing window lengths for 5 different reference panels for common variants. Different 
colors correspond to different reference panel. Different dot shapes depict different window lengths. b PR 
curves for uncommon variants with respect to different reference panels (color) and window lengths (shape)

Fig. 7  Time (a) and memory usage (b) of forward–backward (FB) and Viterbi methods on benchmarking 
dataset for different window lengths shown in x-axis
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26,405 of the 28,319 typed variants on chromosome 20. The remaining variants (768,292 
variants on chr19 and 742,370 on chr20) are used as untyped variants that are imputed 
by vicinity-based HMM and by BEAGLE. We classified the variants with respect to MAF 
by separating variants into 4 different MAF ranges: 1) MAF ∈ [0, 0.005] (Very rare), 2) 
MAF ∈ [0.005, 0.01] (Rare), 3) MAF ∈ [0.01, 0.05] (Uncommon), 4) MAF ∈ [0.05, 0.5] 
(Common). Before imputing untyped variants, the genotypes are phased using Eagle2 
[49]. We use the parameters 

(
lw ,Ne, lc2t , ntag

)
= (0.5, 103, 0.02, 1000) for validation of 

accuracy. Figure 8 shows the non-reference genotype concordance distribution for the 
variants on chromosome 19 (Fig. 8a) and chromosome 20 (Fig. 8b). The imputation of 
variants in the MAF range of common and uncommon are comparable with the baseline 
imputations of BEAGLE with less than 1% different in accuracy between baseline and 
vicinity-based HMM. The non-reference genotype concordance is less than 2 percent 
different for the rare variant categories. These results indicate that vicinity-based HMMs 
can potentially provide utility for uncommon and common variants (i.e., MAF > 1%).

Discussion
We analyzed the feasibility of imputing variants using HMMs that are computed on 
locality of the target variants, i.e. untyped variants. There are several advantages 
of focusing exclusively to the locality of an untyped target. First, the computations 
can be parallelized and performed at a much smaller scale without the need of large 
number of untyped variants. Second, the evaluation of assessment of the vicinity-
based HMM accuracy can provide biological insight into the haplotype structure 
and imputability estimates [43]. Third, the local models can be run in isolation from 
other parts of the genome. This way, the imputation algorithms can be re-designed 
for other tasks. For instance, recently developed privacy-aware imputation methods 
[47, 48] make extensive use of the vicinity-based models. Our results provide insight 
into the design of secure imputation algorithms so that they can appropriately select 
vicinity parameters to ensure sufficient resources are used while imputation is 

Fig. 8  a Distribution of non-reference genotype concordance for the untyped variants on chromosome 19. 
The variants are stratified with respect to minor allele frequency (MAF) as shown on the x-axis. b Distribution 
of non-reference genotype concordance for the untyped variants on chromosome 20



Page 17 of 26Wang et al. BMC Bioinformatics          (2022) 23:356 	

performed accurately. Also, our study provides evidence that HMM-based imputa-
tion methods can be designed with a pure vicinity-based approach. While we did not 
consider iterative approaches for estimation and tuning of parameters, the param-
eters can be optimized using, for example, Expectation–Maximization [63], specifi-
cally using Baum-Welch algorithm [55, 56].

Numerous optimizations can be introduced to decrease time and memory usage 
of vicinity-based HMMs. For example, forward and backward calculations can be 
re-ordered to streamline multiplications by using single-instruction-multiple-data 
(SIMD) operations. Also, we observed that the vicinity-windows substantially over-
lap while they are being computed for neighboring windows. Many of these do not 
have to be computed from scratch and can be re-used between neighboring win-
dows. The imputation of untyped variants (especially the rare variants) that are very 
close to each other can be performed jointly as they are generally constrained to 
be on the same haplotype. Finally, some of the typed variants that are close to each 
other may not be providing extra information for imputation. These variants can be 
treated as a single unit while forward and backward variables are computed.

It should be noted that the default parameters do not provide the optimal per-
formance that can be achieved using imputation HMMs that work on locality of 
untyped variants. For instance, we did not evaluate the impact of increasing lw while 
the maximum number of typed variants is kept constant. This would still consti-
tute a vicinity-based HMM model since the maximum number of surrounding typed 
variants is constrained. In other words, this would keep the computational require-
ments constant but it would enable vicinity-based HMM to assess larger haplotype 
blocks. In addition, the locality windows can be implemented in different ways. For 
example, the typed variants can be filtered with respect to the smallest genetic dis-
tance, i.e., we can remove the typed variants that are close to each other and may 
only provide redundant information for imputation.

The main limitation of the vicinity-based HMM methods that are evaluated here 
is the lower accuracy for rare variants, especially for the variants with MAF lower 
than 1%. Our results show that the performance can be improved by extending the 
local windows to include more variants. This is reasonable since longer windows 
enable the resolution of the rare haplotypes more accurately than shorter windows. 
From a utility perspective, we observed that most of the downstream analyses, such 
as genomewide association studies (GWAS) impose thresholds on the well above 1% 
[64]. For instance, even high powered GWAS studies impose thresholds at 2–5% on 
the MAF of the variants to provide enough power for detecting phenotype-genotype 
associations [65]. Also, even the state-of-the-art HMM methods may not provide 
the imputation accuracy for low MAF variants that is necessary for the downstream 
analyses. Furthermore, these rare variants tend to be population-specific [66] and 
usage of population specific panels can enable more accurate performance. Thus, 
the vicinity-based HMMs can be used to impute variants for downstream tasks with 
MAF values that are utilizable for studies such as GWAS.
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Conclusions
Locality-based HMMs that are parametrized in this study can be used to parallelize and/
or localize computations without the need to perform chromosome-wide (or very large 
scale) computations. We hypothesize that these methods can effectively be used for gen-
erating genotype imputations that are utilizable by downstream analyses such as GWAS. 
We believe one of the main uses of the vicinity-based HMMs is for using locality-based 
methods, which have been used in machine-learning-based and privacy-aware impu-
tation models. The parametrizations can be used to guide the parameter selections in 
these methods.

Methods
We present the computational details of the Viterbi and forward–backward estimation 
from the vicinity-based HMM.

Description of the imputation HMMs within local window of untyped variants

LoHaMMer computes forward–backward (Fig.  1b) and Viterbi (Fig.  1c) estimates on 
the typed variants, i.e., keeps track of haplotype paths that are passing through only the 
typed variants. We assume that the genotypes are phased and the genotype matrix is 
denoted by G(h)

i,j  , which stands for the allele on parental copy h for individual i and the 
variant at index j . The parental copy has two values h ∈ {0, 1} , indicating the paternal 
and maternal haplotypes (or vice versa). G(h)

i,[1,j] indicates the sequence of alleles for ith 

individual for variants between 1 and j, i.e., G(h)
i,[1,j] = (G

(h)
i,1 ,G

(h)
i,2 , . . . ,G

(h)
i,j ) . The alleles 

for each variant can have 2 values, G(h)
i,j ∈ {0, 1} , denoting reference and alternate alleles. 

S
(h)
i,k  denotes the HMM state at the variant k for ith individual. The states correspond to 

the indices of haplotypes in the phased reference genotype panel, i.e., S(h)i,k ∈ [1,N ] . We 
denote the indices of the untyped variants with j∅ , which is the set of variant indices 
(i.e., j < V  ) for which the genotypes are missing.

Variant subsampling

Given the maximum number of typed variants (or typed variants), n̂tag , LoHaMMer first 
identifies all the variants in the current window, which is of length lw . Given that 
ntag > n̂tag is the total number of variants, LoHaMMer takes every 

(
n̂tag
ntag

)th
 variant to 

select n̂tag in the window. If ntag is smaller than n̂tag , all the typed variants are used for 
imputation. To simplify the presentation, we assume that the variant indexing is based 
on the subsampled variant list.

Computation of genetic distance at the typed and untyped variants (Rk)

The genetic distance in the unit of centimorgan is a probabilistic measure of how likely 
two variants are shared in same haplotype block in meiosis. We use genetic distance to 
define the window length parameter ( lw ) around the untyped variants. Numerous previ-
ous studies have generated genetic maps as references using estimated recombination 
patterns on the human genome. For each chromosome, these maps tabulate an estimate 
of the cumulative genetic distances from the beginning of the chromosome to a set of 
dense markers that are used in estimation of genetic distances. The markers used in 



Page 19 of 26Wang et al. BMC Bioinformatics          (2022) 23:356 	

estimation of genetic distances do not necessarily overlap with the typed variants that are 
used in imputation. We therefore need to interpolate the genetic distance of each typed 
variant. Given a kth typed (or untyped) variant whose genomic coordinate is denoted by 
posk base pairs, we use a lookup table to identify the closest two genetic distance mark-
ers with genomic coordinates l and m , such that l ≤ posk ≤ m . As m is greater than l , 
the cumulative genetic distance is larger or equal to the distance for l , i.e., �(m) ≥ �(l) , 
where �(m) indicates the cumulative genetic distance of the marker located at genomic 
coordinate m . We estimate the cumulative genetic distance of the typed variant k using a 
linear interpolation of the distances at l and m weighted by genomic distance:

This is performed separately for each chromosome. After the assignment of genetic 
distances to all typed and untyped variants, the differences between the distances, e.g., 
|Rk − Rn| , is used in parameter benchmarks. We use prebuilt estimates of genetic dis-
tances from the IMPUTE2 web site (https://​mathg​en.​stats.​ox.​ac.​uk/​impute/​1000GP_​
Phase3.​html).

Marginal probability estimation by forward–backward algorithm

The forward–backward algorithm relies on computation of forward and backward vari-
ables. Given individual i and haplotype h , the forward probability is formulated as

where P
(
S
(h)
i,j = a,G

(h)
i,[1,j]

)
 denotes the forward variable, which is the total probability of 

all state sequences and the emissions from the state sequences Si,[1,j] that emit the allele 
sequence G(h)

i,[1,j] with the constraint that the last state at variant j is a , i.e., S(h)i,j = a . The 
forward variable matrix can be computed recursively [55, 56] for all variant positions 
and all states using

where the forward variable at variant j is computed using the forward variable at posi-
tion (j − 1) . The boundary condition is defined at the first nucleotide:

(11)Rk = �(l)+

(
(�(m)−�(l))

(m− l)
×

(
posk − l

))
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which indicates that the state at the first variant is uniformly distributed among all states, 
i.e. there is no preference between haplotypes that initiate the HMM. This boundary 
condition is sometimes described by introducing a special state named the “start state”.

The backward probability is formulated as

In (15), P
(
G

(h)
i,[j+1,V ]|S

(h)
i,j = a

)
 denotes the backward variable for ith individual’s haplo-

type h , and the total probability over all the state sequences, S(h)i,[j,V ] , that emit the allele 
subsequence G(h)

i,[j+1,V ] with the constraint that the first state at variant j is a , i.e., S(h)i,j = a . 
The backward variable can be computed using a recursion relationship [55, 56] using 
following:

The boundary condition for backward variable is set for the ends of windows:

which indicates that the haplotypes are uniformly distributed at the end of the allele 
sequence. The emission and transition probabilities are accordingly set to uniform at the 
boundaries of forward and backward variables.

Computation of the allele and genotype probabilities for untyped variants

The forward and backward variables are used for inferring the probability of observing 
alleles 0 and 1 at the untyped variants. To estimate the allele probabilities of an untyped 
variant at index j ∈ j∅ , LoHaMMer identifies the two consecutive typed variants that are 
closest to the variant j . Using the nearest typed variant, LoHaMMer uses an approach 
similar to BEAGLE to estimate the path that passes along the untyped variant as

where j∅ indicates the untyped variant indices in the genotype matrix, and k is the vari-
ant index such that variants at  k and (k + 1) are the closest typed variants to the untyped 
variant j . The allelic probabilities from the parental copies are normalized and combined 
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to generate a final genotype probability for the 3 possible genotypes, i.e., combinations 
of the alleles assigned to the two haplotypes of an individual. The genotype probabilities 
are computed as

where P′
(
G

(h)
i,j = t

)
 ( t ∈ {0, 1}, h ∈ {0, 1} ) denotes the normalized allelic probability for 

haplotype h and allele t . P′
(
G

(h)
i,j = t

)
 is computed by normalizing with respect to the 

total allelic probability for the variant so that the range is in [0, 1] . Specifically, we use

where the normalization is performed over the two possible allelic probabilities for the 
parental copy h for allele t.

Maximum‑likelihood haplotype path estimation by Viterbi algorithm

Similar to the forward matrices, Viterbi method keeps track of the maximum scoring 
matrix at each typed variant for every possible haplotype state:

where P∧

(
⌣

S
(h)

i,j = a,G
(h)
i,[1,j]

)
 indicates the probability of the typed allele sequence G(h)

i,[1,j] 

emitted by the most likely state sequence Š(h)i,[1,j] with additional constraint of Š(h)i,j = a . 
This path is the most likely path that LoHaMMer uses to infer the most likely haplotype 
mosaic that emits the typed allele sequence. (23) is exactly same as forward variable in 
(12) except that the leftmost summation in (12) is replaced with a maximum operator. 

Therefore, P∧

(
⌣

S
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)
 can be computed using a similar recursion by replacing 

the summation with a maximum operator in (13):
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LoHaMMer computes the Viterbi matrix using this recursion relationship for every 
typed variant from left to right for all the haplotypes with the boundary condition:

As for the forward and backward matrices, the Viterbi matrix is computed over the 
typed variants.

After computing the Viterbi matrix, LoHaMMer traces back the Viterbi matrix to 
identify the optimal state sequence i.e., the optimal set of haplotypes that emits the full 
allelic sequence:

After the optimal state is assigned, LoHaMMer assigns the alleles to the untyped vari-
ants similar to the forward–backward algorithm. For the untyped variant at index j , 
LoHaMMer identifies the closest typed variant and assigns the allele based on the maxi-
mum-likelihood state on the typed variant:

where k is the typed variant that is closest to the untyped variant at j.

Haplotype clustering in blocks of variants

The recursion relationships for Viterbi and forward–backward variables indicate that it 
is necessary to perform a summation (or a maximum operation) over all the haplotypes 
in the reference panel, for every typed variant. This computation can become quickly 
intractable as the number of haplotypes ( N  ) increases. Similar to the previous meth-
ods, LoHaMMer clusters the haplotypes, computes each forward, backward, and Viterbi 
arrays over the clusters of reference haplotypes to minimize the number of redundant 
operations. The clustering increases the efficiency substantially because (1) the num-
ber of unique haplotypes over short stretches increase much slower compared to the 
number of haplotypes, (2) the transition probabilities between states depends only on 
the self-transition and recombinations. These optimizations are extensively described in 
previous methods. We briefly describe the usage of clustering for computation of Viterbi 
arrays. LoHaMMer selects a number of variants that will be used to cluster the refer-
ence haplotypes, by default the block length is selected to be 10 variants. Given a local 
window, LoHaMMer divides the window into blocks of 10 variants. Next the reference 
haplotypes on each block are clustered such that each cluster corresponds to a unique 
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sequence of 10 alleles, corresponding to 10 variants in the block. Next, for each cluster, 
the Viterbi variable is computed as the maximum of the Viterbi variable over the hap-
lotypes in the cluster. Since the clusters share the allelic sequence exactly, Viterbi vari-
ables for the clusters are computed at the cluster-level using the recursion relatonships 
over the 10 variants in the block. After cluster-level Viterbi variables are computed for 
each cluster, LoHaMMer assigns the Viterbi variable to each haplotype from their cor-
responding cluster-level Viterbi variables.

Numerical stability

The transition and emission probabilities are smaller than 1 and they are multiplied with 
each other over all transitions and emissions. Thus, the Viterbi variable and forward–
backward variables may overrun or underrun the numerical precision. To get around 
these numerical stability isssues, LoHaMMer can perform the computations in the 
logarithmic domain or it scales the Viterbi and forward–backward variables by a scal-
ing factor. For the logarithmic domain computations, LoHaMMer keeps every value as 
logarithms. In logarithmic domain, a multiplication is converted to a summation and 
this is convenient since the overflow is virtually impossible. However, we observed that 
the approximate summation in logarithmic domain requires numerous slow operations 
(summation in log domain requires exponentiation) and increases time requirements. 
Therefore, LoHaMMer uses a linear scaling value by default. For this, LoHaMMer mul-
tiplies every array value by a constant scaling factor. We observed by trial-and-error 
that scaling factor of exp(0.2) enables minimal number of underflow or overflow issues. 
LoHaMMer keeps track of any overflow and underflow at each computation step. If an 
array value becomes too high or too low, the values are re-scaled to ensure numerical 
stability.

Computation of accuracy metrics

Non‑reference genotype concordance

The genotype concordance is computed as the overlap between the genotypes that are 
known to be non-reference. More formally, this is formulated as

where κ(NR)j  denotes the non-reference concordance between the known non-reference 
genotypes of variant j and the imputed variants over all individuals.

Data sources

The 1000 genomes project genotypes are downloaded from NCBI ftp data portal. 
The Illumina Duo v3 variants are extracted from the array’s documentation avail-
able at: https://​zenodo.​org/​record/​54821​26#.​YTcAE​M9On3g. The variants in The 1000 
Genomes Project that overlap with the variants on the array’s typed variants are used as 
the typed variants.

(28)κ
(NR)
j =

|{i|GKnown
i,j > 0} ∩ G·,j|∣∣∣{i|GKnown

i,j > 0}
∣∣∣

https://zenodo.org/record/5482126#.YTcAEM9On3g
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