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Abstract 

Background:  Multilocus analysis on a set of single nucleotide polymorphisms (SNPs) 
pre-assigned within a gene constitutes a valuable complement to single-marker 
analysis by aggregating data on complex traits in a biologically meaningful way. How-
ever, despite the existence of a wide variety of SNP-set methods, few comprehensive 
comparison studies have been previously performed to evaluate the effectiveness of 
these methods.

Results:  We herein sought to fill this knowledge gap by conducting a comprehen-
sive empirical comparison for 22 commonly-used summary-statistics based SNP-set 
methods. We showed that only seven methods could effectively control the type I 
error, and that these well-calibrated approaches had varying power performance 
under the simulation scenarios. Overall, we confirmed that the burden test was gener-
ally underpowered and score-based variance component tests (e.g., sequence kernel 
association test) were much powerful under the polygenic genetic architecture in 
both common and rare variant association analyses. We further revealed that two 
linkage-disequilibrium-free P value combination methods (e.g., harmonic mean P 
value method and aggregated Cauchy association test) behaved very well under the 
sparse genetic architecture in simulations and real-data applications to common and 
rare variant association analyses as well as in expression quantitative trait loci weighted 
integrative analysis. We also assessed the scalability of these approaches by recording 
computational time and found that all these methods can be scalable to biobank-scale 
data although some might be relatively slow.

Conclusion:  In conclusion, we hope that our findings can offer an important guid-
ance on how to choose appropriate multilocus association analysis methods in post-
GWAS era. All the SNP-set methods are implemented in the R package called MCA, 
which is freely available at https://​github.​com/​biost​atpze​ng/.
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Background
Over the past two decades, genome-wide association studies (GWASs) have success-
fully identified a large number of genetic loci associated with many complex traits/
diseases by examining millions of single nucleotide polymorphisms (SNPs) across 
the whole genome [1–4]. However, the contribution of associated SNPs to disease 
susceptibility and phenotypic variation is far less than expected, leading to the so-
called problem of “missing heritability” [5–8]. One plausible interpretation for such 
an issue is that the single-marker analysis commonly used in GWAS is underpowered 
[9]; many potential genetic variants that exhibit significant but weak effects on traits/
diseases have yet been discovered. As an effective supplementary strategy of single-
marker analysis, multilocus methods have been increasingly applied [10]. Multilocus 
analysis often jointly examines a set of SNPs that are pre-defined within a functional 
unit such as gene to evaluate the overall association evidence at the gene level; it is 
thus also referred to as SNP-set or gene-based approach.

Compared to the conventional single-marker analysis, SNP-set analysis has sev-
eral statistical and biological advantages. First, susceptibility genes may contain 
multiple independent pathogenic variants; SNP-set inference can hence substan-
tially increase power by gathering different signals within the gene. The potential of 
improving power also results from the reduced burden of multiple comparisons. Sec-
ond, SNP-set analysis can solve the problem of allelic heterogeneity [11], producing 
more consistent results across distinct studies [12]. Third, many biological processes 
are driven by complicated mechanisms involving more than one genetic variant; gene 
(or SNP-set) based inference can thus offer more biologically meaningful interpreta-
tion as genes are important functional units in living organisms [13]. Fourth, SNP-set 
analysis can be easily extended to pathway or network analysis [14–20]. Fifth, SNP-
set analysis has already become the standard operation for rare variant association 
in whole genome sequencing studies [21–27]. Sixth, SNP-set analysis can easily take 
functional information into account [21, 28–33], which hence improves power and 
facilitates interpretation of GWAS discoveries. Finally, besides its own importance, 
SNP-set analysis is a critical step toward many other post-GWAS functional explora-
tions, including gene-centric pleiotropy identification [34, 35], TWAS with bulk-cell 
sequencing RNA data [36, 37] and integrative gene analysis of GWAS with single-cell 
RNA sequencing data [38, 39].

Due to the usefulness, distinct SNP-set methods have been recently developed [17, 21, 
25, 29, 40–51], many of which can be implemented with only GWAS summary statistics 
[17, 45, 52–54], greatly generalizing their applicability due to the widespread availability 
of summary-level data [55]. With distinct SNP-set approaches for multilocus association 
studies, one naturally wonders which one should be chosen in practice. Moreover, exist-
ing SNP-set methods are not used without deficiencies, potential limitations include 
insufficient power [56], inability to provide statistically valid tests under certain param-
eter settings [57], and reliance on permutation sampling [58]. Unfortunately, despite the 
importance of multilocus analysis in GWAS and the vast number of SNP-set methods, 
few comprehensive comparison studies have been performed to evaluate their effective-
ness. Subsequently, due to the lack of consensus on the most suitable SNP-set method, 
the realization of the above advantages and benefits is to some extent currently hindered.



Page 3 of 24Shao et al. BMC Bioinformatics          (2022) 23:359 	

In the present work, we sought to fill this knowledge gap by conducting a compre-
hensive comparison for 22 commonly-used summary-statistics based SNP-set methods 
in the hope that our results could serve as an important guidance for practitioners on 
how to choose appropriate SNP-set analysis methods in post-GWAS era. In the follow-
ing, we first evaluated the performance of these various methods in type I error control. 
We further assessed the power of these SNP-set methods which could maintain well-
calibrated control of type I error under various simulation scenarios including common 
variant association analysis, rare variant association analysis and expression quantita-
tive trait loci (eQTL) weighted integrative association analysis. We also assessed the 
scalability of these SNP-set approaches by recording computational time in simulation 
studies. Finally, corresponding to the three main simulation scenarios above, we applied 
these well-calibrated SNP-set methods to common variant summary statistics of six psy-
chiatric disorders available from the Psychiatric Genomics consortium (PGC) [59, 60], 
rare variant summary statistics of four plasma lipid traits yielded from the Global Lipids 
Genetics consortium (GLGC) [61], and two-stage transcriptome-wide association study 
(TWAS) [31–33, 62–64] by integrating eQTL weights obtained from the Geuvadis pro-
ject [65] and common variant summary statistics of nine immune-related diseases [63].

Materials and methods
Overview of SNP‑set analysis methods

As a flexible and powerful strategy alternative to single-marker analysis in association 
studies, many SNP-set methods have been developed over the past few years [17, 21, 40–
45, 51, 66–74], where a group of pre-assigned genetic variants are analyzed collectively 
to examine their joint influence on diseases/traits. We here have retrieved and compiled 
a list of 22 widely-used SNP-set methods (Table 1), which can be grouped into distinct 
categories in terms of input, requirement of external linkage disequilibrium (LD) and 
computational manner for P value of the aggregated test statistic. Particularly, these 
approaches include LD-dependent linear or quadratic combination of Z-scores with an 
additional correlation matrix accounting for dependence among SNPs (e.g., SKAT and 
optimal SKAT (SKATO)) [17, 45, 51], and LD-free P value combination methods which 
might be robust against correlation between SNPs (e.g., HMP and aggregated Cauchy 
association test (ACAT)) [54, 75].

On the other hand, some methods efficiently obtain their P value in an analytical way 
(e.g., SKAT and HMP) [17, 45, 51, 54, 75], whereas other yield P value via a simulation-
based algorithm (e.g., GATES) [79], which would be time-consuming. Moreover, besides 
the general input of Z-scores (or P values) and LD matrix, some methods additionally 
require tuning parameters to first remove potentially null SNPs which have large P val-
ues [78]. From a modeling perspective, some methods (e.g., MLP and FLM) were built 
under the framework of fixed-effects model [45, 76, 77], whereas other (e.g., SKAT and 
SKATO) were established within the context of random-effect model [21, 24].

An overview of the 22 SNP-set methods with their corresponding modeling character-
istic is summarized in Table 1, with technical details given in the Additional files 1 and 2. 
Three important applications of these SNP-set based association approaches to various 
genomic research fields would be discussed below (Fig. 1). The R code for implement-
ing each method is freely available at https://​github.​com/​biost​atpze​ng/​MCA. It needs to 

https://github.com/biostatpzeng/MCA
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first point out that we here did not consider some other SNP-set methods as they enjoy 
the similar principle of approaches described in the present work. For instance, fastBAT 
[80] and MAGMA [17] were constructed based on the same rationale of SKAT.

LD matrix estimation

In general, the LD matrix required in some of the these SNP-set methods (e.g., SKAT) 
is computed with genotypes of ancestry-matched individuals from an external refer-
ence panel such as the 1000 Genomes Project [81]. Denote G the standardized geno-
types matrix of a given gene, and n the sample size of the reference panel. Intuitively, 
the empirical LD, R̂ = GTG/(n − 1), can be used, which however is in general not well-
conditioned in the sense that the smaller eigenvalues of R̂ are underestimated because n 
is often not sufficiently large [82]. As a result, it would lead to inflated false discoveries. 
To handle this issue, many sophisticated approaches have been proposed to calculate 
large-dimensional covariance and correlation matrices [83]. We here estimate LD using 

Table 1  An overview of 22 SNP-set methods and their corresponding modeling characteristics

P denotes a vector of P values, Z denotes a vector of Z scores, W is a vector of weights, R denotes the SNP-by-SNP correlation 
matrix, τ indicates a fixed value that P is less than in TPM, with the default being 0.2; k is the number of P values to be 
combined in RTP, ARTP, ART, ART-A, with the default value being 2/M, where M is the number of SNPs for a given gene; a is a 
shape parameter in GM, with the default being 0.0383; N is the sample size

MLR Multiple linear regression, FLM Functional multiple linear regression model, HC Higher criticism test, GHC Generalized 
higher criticism test, BJ Berk–Jones test, GBJ Generalized Berk–Jones test, DOT Decorrelation by orthogonal transformation, 
BT Burden test, SKATO Optimal sequence kernel association test, SKAT Sequence kernel association test, Simes Simes’s 
test, FCP Fisher combined probability, TPM Truncated product method, RTP Rank truncated product, ART​ Augmented rank 
truncation, ART-A Adaptive augmented rank truncation, GM Gamma method, GATES Gene-based association test that uses 
extended Simes procedure, HMP The harmonic mean P value test, ACAT​ Aggregated Cauchy association test

No Year Method Input Calculate P value References

P Z W R Other Analytical Simulation

1 1960 MLR √ √ √ N √ [76]

2 2008 FLM √ √ √ N √ [45, 77]

3 2004 HC √ √ √ [66]

4 2017 GHC √ √ √ √ [49]

5 2019 BJ √ √ √ [51]

6 2019 GBJ √ √ √ √ [51]

7 2020 DOT √ √ √ √ [67]

8 2017 BT √ √ √ √ [45]

9 2013 SKATO √ √ √ √ [45]

10 2018 SKAT √ √ √ √ [45]

11 1986 Simes √ √ [68]

12 1992 FCP √ √ [69]

13 2002 TPM √ τ √ [70]

14 2003 RTP √ k √ [71]

15 2007 minP √ √ √ [72]

16 2019 ART​ √ k √ [78]

17 2019 ART-A √ √ k √ √ [78]

18 2007 GM √ a √ [73]

19 2008 SimpleM √ √ √ [74]

20 2011 GATES √ √ √ [79]

21 2019 HMP √ √ √ [75]

22 2020 ACAT​ √ √ √ [54]
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a simple, shrinkage fashion relying on the empirical one: R = δ× R̂ + (1− δ)× I , where 
δ is the shrinkage parameter and I is the identify matrix. We set δ to 0.95 throughout our 
analyses following prior studies [63, 84, 85].

Numerical studies for evaluating type I error control and power

Simulation with common variants

To evaluate the performance of each SNP-set method, we first conducted numerical 
studies to investigate their behaviors in type I error control and power with common 
SNPs (those with minor allele frequency (MAF) ≥ 0.05). To make our numerical studies 
as realistic as possible, we produced the phenotype (Y) based on real genotypes of 4901 
individuals available from the Wellcome Trust Case Control Consortium (WTCCC) 
study [86]. To this goal, we obtained a set of 550 genetic variants that were located 
within either 100 kb upstream of the transcription start site or 100 kb downstream of the 
transcription end site of the gene CEPT1 on chr1. Note that, the selection of this gene 
was to some extent arbitrary. To generate the genotype matrix (G), we randomly selected 
M (= 50, 200 or 500) continuous SNPs to maintain LD structure, and simulated Y via a 
linear model Y = Gβ + ε, with β the vector of effect sizes and ε the vector of normally 
distributed residual errors.

To assess power for every method, we made three diverse scenarios of modeling 
assumptions on effect sizes: (i) sparse case: among these M selected SNPs, only 5%, 20% 
or 50% were at random selected to have substantial impacts on Y while the remaining 
had zero effects, corresponding the sparse setting where only a fraction of genetic vari-
ants were causal; the non-zero effect sizes were distributed in terms of a standard nor-
mal distribution; (ii) polygenic case: all SNPs had non-zero effects on Y and their effects 

Fig. 1  Statistical analysis framework for the theoretical and application comparison of SNP-set based 
association methods with summary statistics
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sizes following a standard normal distribution, or a standard double exponential distri-
bution, or a standard t-distribution, corresponding the polygenic setting where the effect 
sizes of SNPs might have distinct distributions; (iii) mixed case: all SNPs had relatively 
small non-zero impacts on Y with their effects sizes following a standard normal distri-
bution, but 5%, 20% or 50% SNPs were randomly selected to have additional influences, 
corresponding the hybrid modeling assumption made by Bayesian sparse linear mixed 
model [87] and latent Dirichlet process regression [64].

In all scenarios, we re-scaled the simulated SNP effect sizes on Y and residual errors so 
that the phenotypic variance explained (PVE) by genetic component was 0.3%, 0.5% or 
1%; where PVE = var(Gβ)/(var(Gβ) + var(ε)) [31]. Afterwards, we performed the single-
marker analysis on the phenotype with the selected M SNPs to obtain their marginal 
Z-scores or P values using a linear regression model [9]. These summary statistics would 
be taken as input to fit various SNP-set association methods, with corresponding geno-
types of 503 European individuals from the 1000 Genomes Project as the reference panel 
to calculate LD if needed. We simply set β = 0 and run 105 replications when assessing 
the type I error control, with the type I error primarily evaluated via the ratio between 
the empirical type I error and the given significance level. We repeated our numerical 
study 103 times for power evaluation, with the power calculated by the proportion of P 
values less than a given significance level α of 10–5.

Simulation with rare variants

Some SNP-set methods (e.g., burden, SKAT and SKATO) were specially designed for 
analyzing rare variants although they were also often used for common variant asso-
ciation analysis as we assessed above; we hence performed a simulation to examine the 
performance of these methods in rare variant association study. First, we obtained a set 
of 759 rare variants (MAF < 0.05) located within the gene SUSD2 on chr22 from 337,198 
independent individuals of European descent in the UK Biobank cohort [88]. Then, we 
randomly selected 15,000 individuals to generate phenotype and another 5,000 individu-
als as the reference panel to calculate LD. Note that these individuals were always fixed 
throughout this simulation. Like the same single-marker analysis in the first simulation, 
we conducted the simple linear regression to obtain marginal Z-scores or P values for 
each rare variant. Following previous work [25, 45], we calculated the weight via the beta 
distribution density function of MAF with the two shape parameters being 1 and 25, and 
further scaled these weights so that their summation was one. The parameters for type I 
error and power evaluations were set the same as those used in the first simulation.

Simulation by incorporating eQTL weights

For multilocus association analysis, it generally incorporates other types of omics data or 
functional annotation as weights, which is often more powerful than using GWAS sum-
mary statistics alone and can provide more biologically meaningful results [28, 31–33]. 
For example, the recently popular TWAS can be viewed as a linear weighted SNP-set 
analysis [89], which methodologically amounts to BT [31]; naturally, SKAT and SKATO 
can be considered a quadratically weighted version of TWAS [90]. The attractive prop-
erty of TWAS is that it can prioritize causal genes in GWASs by incorporating eQTL 
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weights in terms of the viewpoint of Mendelian randomization [91]. However, we do not 
recognize that other SNP-set methods could be interpreted in such a similar manner.

Therefore, we here conducted an additional simulation within the two-stage TWAS 
framework. The detail of simulation setting was described in our previous work [31]. 
For simplicity, in the first stage of TWAS, we only considered the polygenic case with 
PVE = 5% and selected 200 continuous genetic variants in the transcriptome data. Spe-
cifically, we generated eQTL weights (w) and simulated gene expression (e) using geno-
types (G1) of 465 individuals from the Geuvadis project [65]; that is, E(e) = G1w with G1 
the genotypes of SNPs around the gene CEPT1 on chr1. In the second stage of TWAS, 
we produced the phenotype (Y) based on genotypes (G2) of CEPT1 from WTCCC; that 
is Y = (G2w)θ + ε, with ε the residual simulated from a standard normal distribution and 
θ = 0.10 or 0.20.

The above simulation of TWAS explicitly assumed the absence of direct cis-SNP 
effects [92], which might be not true because of ubiquitous horizontal pleiotropy [31, 
93–96]. Thus, we carried out another simulation under the case of horizontal pleiotropy 
by generating Y = (G2w)θ + G2b + ε, where b was considered random effect following a 
normal distribution with mean zero and variance 0.05. The setting of other parameters 
was the same as the case without horizontal pleiotropy.

We applied the maximum likelihood method through the computationally efficient 
PX-EM algorithm [96–101] to estimate joint effects (i.e., eQTL weights w) for the simu-
lated transcriptome data in the first stage, and used the linear regression model to obtain 
marginal Z-scores or P values for the GWAS data in the second stage [9]. Then, the esti-
mated eQTL weights were included into these SNP-set methods via suitable transfor-
mations. Specifically, the squared eQTL weights were used for SKAT and SKATO, and 
the scaled absolute weights were applied in ACAT and HMP, while the original eQTL 
weights were employed in BT.

Real data applications

Common variant association analysis for psychiatric disorders

Psychiatric disorders are one of the most enigmatic maladies in medicine [102]; although 
their existence has been known for many years [60, 103] and their impact on the pub-
lic health well-documented [104], relatively little remains known with regards to their 
causal factors and fundamental neurobiology in despite of a considerable corpus of 
genomic research [59, 105, 106]. Therefore, identifying potential genetic loci for early 
diagnosis and unraveling risk factors for prevention and treatment becomes criti-
cal in the clinic. To this goal, we applied the SNP-set methods that were demonstrated 
to be well-calibrated to European-only summary statistics of six psychiatric disorders 
yielded from PGC [59, 60] (Additional file 2: Table S1), including ADHD (N = 53,293), 
ASD (N = 46,350), BIP (N = 51,710), CU (N = 184,765), MDD (N = 480,359), and SCZ 
(N = 77,096).

We defined the set of SNPs located within a gene according to the annotation file pro-
vided by VAGIS [107], in which we considered 100 kb extension upstream of the tran-
scription start site and 100  kb downstream of the transcription end site of that gene. 
Again, we leveraged genotypes of 503 European descents from the 1000 Genomes 
Project as the reference panel when the LD matrix was required. To avoid numerical 
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instability, we only considered genes with at least ten SNPs following our prior work [34, 
35], and further performed an enrichment analysis for all identified genes using FUMA 
[108].

Rare variant association analysis for four plasma lipid traits

Using these SNP-set methods, we here performed rare variant SNP-set association anal-
ysis for four plasma lipid traits (Additional file 2: Table S1), including HDL, LDL, TC, 
and TG. The summary statistics were publicly available from GLGC [61], which ana-
lyzed ~ 300,000 individuals of European ancestry genotyped with the HumanExome 
BeadChip (exome array). Following previous studies [61, 109], we considered 179,884 
rare variants with MAF < 0.05 and defined the set of SNPs located within either 500 kb 
extension upstream of the transcription start site or 500 kb downstream of the transcrip-
tion end site of a given gene in terms of the annotation file provided by GENCODE (ver-
sion 12) [110]. We only analyzed 15,378 genes that contained at least two rare variants, 
and used genotypes from the UK Biobank [88] as the reference panel in this rare variant 
association analysis.

TWAS analysis for nine immune‑related diseases

We finally applied these SNP-set approaches under the TWAS context. Following our 
prior work [31, 64], we focused on 15,810 genes and estimated eQTL weights for every 
gene with BSLMM [87, 111] in the Geuvadis project [65]. Because the gene expression 
of Geuvadis was measured in lymphoblastoid cell line, which was an immune-related 
cell type, we thus only considered GWAS summary statistics of nine immune-related 
diseases (Additional file  2: Table  S1), including inflammatory bowel disease (IBD: 
N = 34,652), ulcerative colitis (UC: N = 27,432), Crohn’s disease (CD: N = 20,883), sys-
temic lupus erythematosus (SLE: N = 23,210), PBC (N = 13,239), primary sclerosing 
cholangitis (PSC: N = 24,751), rheumatoid arthritis (RA: N = 37,681), multiple sclero-
sis (MS: N = 68,379), and OST (N = 63,608). Details with regards to these data can be 
found in the original papers and the quality control procedure for data processing was 
described in our previous studies [31, 63, 64]. We here focused only on common SNPs 
and applied genotypes from the 1000 Genomes Project as the reference panel.

Results
Results of numerical studies

Assessing the type I error rate

We first evaluated the performance of type I error control for all these compared meth-
ods with common variants (Table  2) and rare variants (Additional file  2: Table  S2) 
under the simulated null scenarios. Note that, we here defined a type I error well-con-
trolled method as the ratio of empirical type I errors (divided by the significance level 
α) between 0.8 and 1.2 as done in [112, 113]. Notably, the performance of type I error 
control (i.e., inflated, well-controlled, or conservative) of these methods was almost 
consistent regardless of using common or rare variants. Among the LD-free P value 
combination methods, we found that only HMP, ACAT, minP and Simes generated a 
well-calibrated type I error control. SimpleM was conservative; in contrast, FCP, TPM, 
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RTP, ART, ART-A, GM, and gene-based association test that uses extended Simes pro-
cedure (GATES) were inflated.

We also observed that not all the LD-dependent methods could behave well in con-
trolling type I error. For example, BJ and HC, as well as their generalized versions (i.e., 
GBJ and GHC), were inflated under our simulation scenarios, while DOT, multiple lin-
ear regression (MLP) and functional multiple linear regression model (FLM) were much 
conservative. Three methods (i.e., BT, SKAT and SKATO) could effectively maintain the 
control of type I error. Because some of these methods failed to control the type I error 
at a nominal level (inflation or much conservativeness), we therefore only considered 
seven well-calibrated methods, including BT, SKATO, SKAT, Simes, minP, HMP and 
ACAT in our subsequent analyses.

Estimated statistical power for common variants with no weights

When comparing the power of the rest seven methods (Additional file 2: Table S3), we 
primarily displayed their results obtained under the sparse simulation setting (Fig.  2), 
but relegated the results of the polygenic and mixed cases to Additional file 2: Fig. S1. 
Particularly, we observed several important patterns as follows. First, in general, when 
PVE was small (e.g., 0.3%), we found that HMP and ACAT had higher power compared 

Table 2  Ratio between the empirical type I error and the given significance level estimated over 105 
simulations under common variants

Determine whether a SNP-set method was inflated, well-controlled or conservative according to the average ratio between 
the empirical type I error and the given significance level over 105 simulations. inflated: ratio > 1.2; well-controlled: 
0.8 ≤ ratio ≤ 1.2; conservative: ratio < 0.8

Method Significance level α Performance of type I error control

0.05 0.01 0.001 Average Inflated Well-controlled Conservative

MLR 0.00 0.00 0.00 0.00 √

FLM 0.00 0.00 0.00 0.00 √

HC 1.33 1.82 2.33 1.83 √

GHC 1.26 1.65 1.94 1.62 √

BJ 1.29 1.64 1.97 1.63 √

GBJ 0.85 1.32 1.71 1.29 √

DOT 0.00 0.00 0.00 0.00 √

BT 1.04 1.07 1.10 1.07 √

SKAT-O 1.08 1.18 1.11 1.12 √

SKAT 1.02 1.08 1.08 1.06 √

Simes 0.82 0.82 0.82 0.82 √

FCP 5.29 21.88 174.81 67.33 √

TPM 2.45 10.39 86.81 33.22 √

RTP 3.76 14.71 110.07 42.85 √

minP 0.88 0.82 0.77 0.82 √

ART​ 4.15 16.51 126.91 49.19 √

ART-A 1.17 3.05 12.97 5.73 √

GM 2.01 7.43 52.03 20.49 √

SimpleM 0.39 0.41 0.41 0.40 √

GATES 1.47 1.53 1.51 1.50 √

HMP 0.87 1.01 1.06 0.98 √

ACAT​ 1.04 1.08 1.07 1.06 √
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to SKAT and SKATO when the number of analyzed SNPs (denoted by M) and (or) the 
proportion of causal SNPs (denoted by prop) were small; that is, HMP and ACAT out-
perform other methods when there were very less effective SNPs. However, SKAT and 
SKATO were better than HMP and ACAT as the increase in M and (or) prop. For exam-
ple, the powers of SKAT and SKATO were 0.155 and 0.154 respectively when prop = 5% 
and M = 50, which were lower than HMP (0.171) and ACAT (0.171); whereas the powers 
of SKAT and SKATO were 0.020 and 0.033 respectively when prop = 5% and M = 500, 
which were more powerful than HMP (0.016) and ACAT (0.016). The similar patterns 
were consistently observed under the polygenic and mixed cases. Second, unlike prior 
studies [22, 114], as our simulations were relatively general and no very extreme settings 
were considered, we did not find there existed a consistent advantage of SKATO over 
SKAT, or vice versa; we also did not observe a substantial difference between HMP and 
ACAT.

Third, under the same simulation setting for causal SNPs, all these methods suffered 
from power loss as the number of null genetic variants increased. For example, when 
PVE = 1.0% and 5% of selected SNPs were causal, the power of ACAT reduced from 
0.946 for 50 selected SNPs to 0.463 when the total number increased to 500. Such an 
observation is not unexpected because the increased noise SNPs diluted the true asso-
ciation signals. Fourth, both Simes and minP behaved well across all simulation settings; 
however, they were underpowered compared to SKAT, SKATO, HMP and ACAT even 
under the relatively sparse settings where only 5% of selected SNPs were causal.

Some studies previously stated that minP could exhibit higher power in the very 
extreme case where only one SNP showed an impact on the phenotype [51]. In order to 
validate such finding, we conducted an additional numerical study, in which one out of 

Fig. 2  Estimated power for the seven SNP-set methods under the sparse case with a significance level α of 
10−5. Here, PVE = 0.3%, 0.5% or 1% at the right side, the number of causal SNPs (prop) = 0.05, 0.20 or 0.50 
on the top, the number of the total analyzed SNPs = 50, 200 or 500 on the x-axis. The power was estimated 
across 103 replications
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200 SNPs was randomly causal. Under this case, we found that the power of minP was 
indeed higher (0.465) compared to BT (0.118), SKATO (0.267), SKAT (0.291) and Simes 
(0.455), but still slightly lower than HMP (0.494) or ACAT (0.495).

Fifth, as both positive and negative SNP effect sizes were simulated in all our simula-
tion settings, BT had the lowest power across these scenarios, similar as that observed 
in prior work [21, 22, 25]. In order to assess the power of these methods under the sit-
uation that effect sizes of all the causal SNPs were in the same direction, we took the 
absolute value of simulated SNP effect sizes in the sparse case where PVE = 0.3% and 
prop = 5%, 20% or 50%. As expected, we observed that the power of BT was now consid-
erably higher than that of other methods across these simulation scenarios (Table 3), in 
line with the prior finding [21, 25].

To be more intuitive to compare the power difference in diverse SNP-set methods, we 
ranked their estimated powers in each setting and averaged the rank across simulation 
scenarios (Additional file 2: Fig. S2). Totally, except BT, we found that SKAT, SKATO, 
HMP, ACAT, Simes and minP were robust and powerful under distinct simulation cases, 
while the SKAT, SKATO, HMP and ACAT were much better than Simes and minP. Par-
ticularly, SKAT and SKATO had a remarkable advantage under the polygenic and mixed 
situations, whereas HMP and ACAT seemed to outperform others in the sparse setting.

Estimated statistical power for rare variants

Finally, as can be anticipated, SKAT and SKATO, two specially designed methods for 
rare variant association analysis, showed evident advantage over other approaches espe-
cially when PVE was low (Fig.  3 and Additional file  2: Fig. S3). Despite not originally 
designing for rare variants, the two LD-free methods including ACAT and HMP also 
behaved satisfactorily although they were inferior relative to SKAT and SKATO across 
most simulation settings. For example, under the sparse case, when the number of SNPs 
was 200 and 50% of them were causal, the power gain of SKAT over ACAT increased 
from 1.7% to 56.9% when PVE reduced from 1 to 0.3% (Fig. 3). In addition, we observed 
that BT, Simes and minP were generally underpowered in our simulated scenarios for 
identifying significant association of rare variants with phenotype.

Estimated statistical power under the TWAS framework

Within the simulation of TWAS framework, we primarily performed methods which 
could take eQTL weights as input (i.e., ACAT, HMP, BT, SKAT and SKATO). Under the 
case of no horizontal pleiotropy, ACAT, HMP, SKAT and SKATO behaved comparably 
(Fig. 4A); while BT, analogously to the original TWAS method [32, 33], had much higher 

Table 3  Estimated powers of the seven methods under sparse case where PVE = 0.3%, and 
prop = 5%, 20% or 50% of SNPs were randomly selected to be causal with the same direction of 
effect sizes

Prop BT SKATO SKAT Simes minP HMP ACAT​

0.05 0.350 0.065 0.059 0.044 0.037 0.054 0.054

0.20 0.379 0.058 0.062 0.039 0.035 0.051 0.051

0.50 0.363 0.066 0.058 0.038 0.038 0.047 0.047



Page 12 of 24Shao et al. BMC Bioinformatics          (2022) 23:359 

power, and the advantage became more pronounced as the increase of genetic effect. 
For example, the power advantage of BT over SKAT increased from 0.044 to 0.276 if the 
effect size changed from 0.1 to 0.2. In contrast, under the case of horizontal pleiotropy, 
BT suffered from substantial power reduction compared to other multilocus methods 
(Fig. 4B), in line with our previous finding [31]. Furthermore, ACAT and HMP behaved 
better than SKATO, and SKAT had a relatively low power among these approaches. 
However, as mentioned before, unlike SKAT and SKATO, ACAT and HMP cannot be 
explained from the perspective of TWAS analysis. To facilitate comparison, we further 
summarized the power performance of these methods evaluated under distinct simula-
tion scenarios in Table 4.

Fig. 3  Estimated power for the seven SNP-set methods in the case of rare variant association study under 
the sparse case with a significance level α of 10−5. Here, PVE = 0.3%, 0.5% or 1% at the right side, the number 
of causal SNPs = 0.05, 0.20 or 0.50 on the top, the number of the total analyzed SNPs = 50, 200 or 500 on the 
x-axis. The power was estimated across 103 replications

Fig. 4  (A) Estimated power for SNP-set methods under the polygenic TWAS framework of no horizontal 
pleiotropy. (B) Estimated power for SNP-set methods under the TWAS polygenic framework of horizontal 
pleiotropy. Here, θ = 0.1 or 0.2 at the right side, the − log10(α) = 3, 4, or 5 on the top, the number of the total 
analyzed SNPs = 50, 200 or 500 on the x-axis. The power was estimated across 103 replications
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Comparing the computing time

We here compared the running time of the seven SNP-set methods based on an Intel(R) 
Xeon(R) Gold 5118 CPU (2.30 GHz) with 125 GB of RAM. The total computation times 
across 103 replications are shown in Table 5 and Additional file 2: Table S4. As antici-
pated, it is found that the number of SNPs had substantial impact on computation time, 
while other simulation parameters had a negligible influence. For example, under the 
sparse case when the number of SNPs was 50, the average computation time of ACAT 
was only 3.98 s; it increased to 279.46 s when the number of SNPs was 500. Overall, LD-
free methods (e.g., HMP and ACAT) were much faster than those LD-dependent ones 
(e.g., SKAT and SKATO). Except SKATO which was an optimization-search method, 
all other methods were computationally quick under various simulation scenarios, with 
ACAT the fastest one under the same settings.

Results of real data applications

Identified genes associated with psychiatric disorders

Applying the seven methods to psychiatric disorders, we identified a total of 588 (531 
unique) genes associated with these disorders (Bonferroni-corrected P value < 0.05) 
(Fig. 5A), including 172 novel genes simply defined as loci not including SNPs with P 
value > 5 × 10–8. More results were given in Additional file 2: Fig. S4 and Table S5. Par-
ticularly, there were 305 schizophrenia (SCZ)-associated genes but only 2 major depres-
sion disorder (MDD)-associated genes. In addition, we found that approximately 10.7% 
of identified genes showed pleiotropic association with at least two disorders. For exam-
ple, there were 43 genes showing simultaneously significant association with SCZ and 
bipolar disorder (BIP), which was consistent with the highly common genetic foundation 
underlying the two disorders [34, 35, 105, 115–119]. We discovered that HMP identified 

Table 4  Summary performance of these SNP-set based association methods in the power 
evaluation of simulation studies and in real-data applications to distinct fields

The methods listed in the table were selected in terms of their power in the simulation studies or based on the number of 
identified genes in the real-data applications

Common variants Rare variants

Unweighted TWAS with eQTL weights

No horizontal 
pleiotropy

Horizontal 
pleiotropy

Simulation HMP
ACAT​

BT HMP
ACAT​

SKAT
SKATO

Application HMP
ACAT​

HMP
SKATO

SKAT
SKATO

Table 5  Total computation times (second) of 103 simulations under the sparse case with PVE = 0.5% 
and only 20% of simulated SNPs were selected to have substantial impacts on phenotype

M BT SKATO SKAT Simes minP HMP ACAT​

50 4.10 483.83 7.16 3.98 4.48 4.12 3.83

200 58.59 1234.77 70.84 58.35 60.55 58.62 52.71

500 297.73 1561.44 524.48 296.46 312.76 295.70 279.46
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the most associated genes for four disorders including attention-deficit/hyperactivity 
disorder (ADHD: 27 genes), cannabis use (CU: 14 genes), BIP (81 genes) and SCZ (307 
genes), while SKAT detected more associated genes for the remaining two disorders 
including autism spectrum disorder (ASD: 4 genes) and MDD (10 genes) (Table 6). The 
enrichment analysis demonstrated that some of these detected genes were significantly 
enriched in the pancreas, brain, and liver tissues (Additional file 2: Fig. S5), consistent 
with prior findings [34, 35].

In order to further compare HMP and SKAT in our application of psychiatric disor-
ders, we created a bar plot for the proportion of significant cis-SNPs (P < 5 × 10–8) for 
each of the 531 unique genes (Additional file 2: Fig. S6). It was observed that the P value 
obtained by SKAT became more significant (smaller) than that of HMP as the increase 
of the proportion of significant cis-SNPs of an associated gene (the genetic architecture 
of a gene becomes from sparsity to polygenicity), which is consistent with the finding 
described in the simulation study above.

Identified genes associated with plasma lipid traits

When applying these SNP-set methods to rare variants of four plasma lipid traits 
(Fig. 5B), we found that SKAT and SKATO identified more genes associated with three 
lipids (except high-density-lipoprotein cholesterol (HDL)) than other approaches, 
and BT detected the minimal genes among all compared methods, consistent with 
the results given in the simulation of rare variant association analysis. Specifically, we 
identified 282 associated genes for HDL (Bonferroni-corrected P value < 0.05), 198 for 
low-density-lipoprotein cholesterol (LDL), 209 for triglyceride (TG), and 252 for total 
cholesterol (TC), respectively (Table 6), which involved a total of 547 unique genes (496 
novel) (Table S6). Among these, 288 (52.7%) were shared in as least two lipids, and five 
genes (MAP3K2, IMP4, ITGB1BP1, TP53I3, and MLLT4-AS1) were associated with all 
the four lipid traits, which were confirmed by previous studies [120, 121]. In terms of 

Fig. 5  Upset plot to illustrate the number of identified genes shared across distinct SNP-set methods for six 
psychiatric disorders (A), four plasma lipid traits (B), and nine immune-related diseases (C)
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the enrichment analysis, we did not find these identified genes were significantly differ-
entially expressed in any GTEx tissues (Additional file 2: Fig. S7), which can be expected 
as FUMA only included common genetic variants [108]. Nevertheless, we observed sug-
gestive evidence that these genes likely enriched in the liver, pancreas, and lymphocytes 
tissues, supporting by prior work [122–125].

Identified genes associated with immune‑related diseases

When applying these SNP-set methods to nine immune-related diseases by incorporat-
ing eQTL information under the TWAS context, we discovered a total of 1,029 genes 
(446 novel) (Bonferroni-corrected P value < 0.05) (Table  6, Additional file  2: Table  S7 
and Fig. 5C), approximately half (48.8%) of which showed pleiotropic association with 
at least two diseases. It was observed that HMP identified the most associated genes 
(except primary biliary cirrhosis (PBC) and osteoarthritis (OST)), followed by ACAT. 
This observation was consistent with the simulation result. In addition, SKATO dis-
covered more genes compared to SKAT, again in line with the corresponding simula-
tion result. In contrast, BT detected much less significant genes. These findings further 
implied that these SNP loci likely showed widespread horizontal pleiotropy on the 

Table 6  Identified genes associated with six psychiatric disorders, four plasma lipid traits and nine 
immune-related diseases under various real-data applications

The maximum number of associated genes is highlighted in bold for each disease. Methods including Simes and minP 
which cannot incorporate eQTL weights were excluded from the TWAS analysis of the nine immune-related diseases

ADHD Attention-deficit/hyperactivity disorder, ASD Autism spectrum disorder, BIP Bipolar disorder, CU Cannabis use, MDD 
Major depression disorder, SCZ Schizophrenia, HDL High-density-lipoprotein cholesterol, LDL Low-density-lipoprotein 
cholesterol, TG Triglycerides, TC Total cholesterol, IBD Inflammatory bowel disease, UC Ulcerative colitis, CD Crohn’s disease, 
SLE Systemic lupus erythematosus, PBC Primary biliary cirrhosis, PSC Primary sclerosing cholangitis, RA Rheumatoid arthritis, 
MS Multiple sclerosis, OST Osteoarthritis

Phenotype BT SKATO SKAT Simes minP HMP ACAT​ Total

Six psychiatric disorders under the context of common variant association analysis

ADHD 6 25 25 24 25 27 26 36

ASD 1 4 3 2 2 3 3 5

BIP 7 65 74 57 59 81 80 116

CU 0 10 12 10 11 14 14 16

MDD 2 10 9 1 3 5 5 13

SCZ 11 282 299 295 299 307 298 402

Four plasma lipid traits within the framework of rare variant association analysis

HDL 22 221 222 193 192 239 215 282

LDL 65 147 152 146 147 150 144 198

TG 78 203 205 168 168 168 168 209

TC 146 219 218 198 198 197 198 252

Nine immune-related diseases under the setting of TWAS analysis

IBD 22 146 94 253 249 292

UC 13 175 129 222 219 271

CD 22 222 144 282 272 357

SLE 101 180 104 267 266 315

PBC 102 149 65 122 121 240

PSC 92 210 138 223 221 298

RA 46 157 139 165 141 217

MS 106 137 183 205 201 306

OST 10 36 0 5 5 49
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analyzed immune-related diseases. Furthermore, these detected genes were significantly 
enriched in the lymphocytes tissue (Additional file 2: Fig. S8), consistent with the patho-
logical mechanism that the immune system was se associated with these diseases [126–
128]. Based on the number of identified genes, we finally summarized the performance 
of the seven SNP-set methods in various real-data applications in Table 4.

Discussion
As part of great efforts to explain more heritability of phenotypes and enhance power 
in association studies by integrating other types of omics data [5], SNP-set analysis has 
already become a powerful alternative to single-marker analysis. In the present study, 
we performed a comprehensive comparison for 22 SNP-set methods that can be applied 
with only summary statistics. Through extensive simulation studies, we demonstrated 
that some LD-free methods were inflated in controlling type I error, which might be a 
direct consequence of not accounting for correlation between SNPs. The similar infla-
tion pattern was also observed for some of conventional LD-free P value combination 
methods (i.e., Fisher’s method) in TWAS when multiple gene expression prediction 
models were employed to construct weights for expression quantitative trait loci [63]. In 
addition, as the number of SNPs in a gene might be very large up to hundreds of thou-
sands and often highly correlated due to pervasive LD, it was discovered that fixed-effect 
based methods (e.g., MLP and FLM) were generally conservative because of the loss of 
degree of freedom in these methods.

Particularly, among these compared methods, we only identified seven methods which 
could correctly control type I error, including BT, SKATO, SKAT, Simes, minP, HMP 
and ACAT. In total, these well-calibrated methods had varying performance in power 
evaluation. For example, prior studies showed minP was powerful in the case in which 
the association signals were extremely sparse [51, 129]. However, because of only con-
sidering the top signal across genetic variants, minP would add little to our knowledge 
of the association at the gene level when the top signal was genome-wide significant. In 
fact, minP cannot solve the primary task of SNP-set analysis because it did not consider 
every locus in a region and thus cannot effectively combine all available information. As 
a result, minP often had limited power as demonstrated in our simulations and real data 
applications.

By contrast, in many cases we found that integrating individual genetic variants (e.g., 
BT, SKAT and SKATO) together might be a more suitable manner for SNP-set analysis 
[21, 22, 130–132]. For instance, BT used the weighted or unweighted sum of linear test 
statistics [133, 134], which would have high power if all SNPs had the same effect size 
and the same effect direction. We also discovered that BT had better performance in 
eQTL integrative TWAS analysis in the absence of horizontal pleiotropy; however, BT 
suffered from a great power loss if the effect sizes were directionally different as dem-
onstrated in both common and rare variant association analyses. On the other hand, 
SKAT and SKATO, two variance component score methods that were established with 
the sum of quadratic test statistics [21], were robust and particularly powerful in the 
presence of protective, deleterious and null variants. We demonstrate that SKAT and 
SKATO showed a significant advantage under the polygenic and mixed genetic archi-
tecture in common variant association study; we also confirmed the superiority of these 
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two methods in detecting the association of rare variants with complex phenotype [21, 
22, 41, 114].

Furthermore, we revealed that two LD-free methods (i.e., HMP [75] and ACAT [54]) 
appeared to be superior to other methods under the sparse genetic architecture in com-
mon variant association analysis. Despite not especially developing for rare variants, 
based on our limited experience of simulations with common variants and real-data 
applications, we demonstrated that ACAT and HMP also likely had the potential to be 
powerful methods for rare variant association analysis. In addition, the two approaches 
also showed better behavior in the two-stage TWAS analysis relative to other methods; 
unfortunately, they cannot be interpreted from the perspective of TWAS. Compared to 
other SNP-set aggregation methods, an important feature of ACAT and HMP is that 
their test statistics approximately or asymptotically follow certain null distributions (e.g., 
Landau distribution for HMP [75]) regardless of correlation structure between these 
SNPs and such an approximation is rather accurate even at very small tail area of the 
distribution. Consequently, one can obtain the P values of HMP and ACAT based on 
the right tail area of the respective approximate null distributions. Under regularity con-
ditions, their performance is robust with respect to the number of SNPs, the weights, 
as well as the correlation among SNPs [54, 75]. Moreover, because of without requiring 
the knowledge of explicit correlation, compared to these LD-dependent methods (e.g., 
SKAT), HMP and ACAT have a wider applicability to many other cases where the corre-
lation is too complicated to fit or reference panels cannot be available, such as multiple-
tissue or multiple-model TWAS [62, 63] and spatial expression pattern identification in 
transcriptomic studies with multiple candidate kernels [135].

Finally, although we showed that some of these methods might be relatively slow, as 
all methods can be applied using GWAS summary statistics, they can be thus scalable 
to biobank-scale data. In summary, we evaluated 22 SNP-set methods using simula-
tions and real data applications, and compared the robustness and effectiveness of 
these methods under diverse genetic architectures of phenotypes. However, our study 
had several limitations. First, in the real data analysis of six psychiatric disorders, we 
detected a number of significant genes and further showed that the identified genes 
may be functionally important for these disorders. However, there is no gold standard 
to accurately assess these methods in our real data application as the true associations 
of these discovered genes with the disorders are unknown; further follow-up studies 
are needed. Second, because of being extremely computationally expensive, we did 
not compared some computation-intensive SNP-set approaches (e.g., aSPUs [136] 
and VEGAS [107]) that utilized permutation testing rather than analytical solutions 
to obtain P values. For example, at least 107 samplings would be needed to calculate 
a sufficiently accurate P value for aSPUs or VEGAS if the significance level was set 
to 10–5 in each test. In fact, according to our limited simulations we found that both 
aSPUs (performed with the R aSPU package (Version 1.50, Updated in 2021-06-28)) 
and VEGAS (performed with the COMBAT package (Version 0.04, Updated in 2018-
01-14)) did not have much advantage over other methods. Third, because there were 
too many distinct genetic backgrounds needed to study; to be simple we only focused 
limited settings in our simulations. Some methods might be powerful in other uncov-
ered scenarios. For instance, GBJ exhibited excellent single-gene effect separation but 
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showed slight inflation in our simulation settings. In addition, DOT [67] was expected 
to gain power as the number of SNPs increases in scenarios where effect sizes varied 
markedly from SNP to SNP. However, if effect sizes for all SNPs were in fact very close 
to each other, the power of DOT decreased and behaved conservative. Fourth, since 
our work focused only on summary-level data, we cannot guarantee that our con-
clusions could be completely generalize to the setting with individual-level data. For 
example, we showed that summary-statistics based SKAT outperformed summary-
statistics based minP in most simulation cases of the common variant association 
analysis with no weights; we were however not fully clear whether this conclusion 
remained true in individual-level data. Nevertheless, due to the concern of privacy 
in individual-data sharing and widespread availability of summary-level data, our 
finding was certainly more important and meaningful in practice. Fifth, we did not 
discuss how to further pinpoint these responsible ones after discovering the overall 
significance for a set of SNPs with the disease or trait. The step-down inference pro-
cedure introduced in [51] may be a promising strategy that can be employed to dis-
criminate which specific SNPs likely drive the observed association signal. We reserve 
this as an interesting direction for future investigation.

Abbreviations
SNPs	� Single nucleotide polymorphisms
eQTL	� Expression quantitative trait loci
GWASs	� Genome-wide association studies
PGC	� The Psychiatric Genomics consortium
GLGC	� The Global Lipids Genetics consortium
TWAS	� Transcriptome-wide association study
LD	� Linkage disequilibrium
SKAT	� Sequence kernel association test
SKATO	� Optimal SKAT
ACAT​	� Aggregated Cauchy association test
GATES	� Gene-based association test that uses extended Simes procedure
MLP	� Multiple linear regression
FLM	� Functional multiple linear regression model
MAF	� Minor allele frequency
PVE	� The phenotypic variance explained
ADHD	� Attention-deficit/hyperactivity disorder
ASD	� Autism spectrum disorder
BIP	� Bipolar disorder
CU	� Cannabis use
MDD	� Major depression disorder
SCZ	� Schizophrenia
HDL	� High-density-lipoprotein cholesterol
LDL	� Low-density-lipoprotein cholesterol
TC	� Total cholesterol
TG	� Triglyceride
IBD	� Inflammatory bowel disease
UC	� Ulcerative colitis
CD	� Crohn’s disease
SLE	� Systemic lupus erythematosus
PBC	� Primary biliary cirrhosis
PSC	� Primary sclerosing cholangitis
RA	� Rheumatoid arthritis
MS	� Multiple sclerosis
OST	� Osteoarthritis

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04897-3.

Additional file 1. Various gene-based association analysis methods.

https://doi.org/10.1186/s12859-022-04897-3


Page 19 of 24Shao et al. BMC Bioinformatics          (2022) 23:359 	

Additional file 2. Figure S1. Estimated power for the seven SNP-set methods under the polygenic case (A) and 
the mixed case (B) with a significance level α of 10−5. Here, PVE = 0.3%, 0.5% or 1% at the right side, the number of 
causal SNPs (prop) = 0.05, 0.20 or 0.50 or the distribution of effect size including double, normal and t on the top, the 
number of the total analyzed SNPs = 50, 200 or 500 on the x-axis. The power was estimated across 103 replications. 
Figure S2. Rank of power for the seven SNP-set methods under the sparse case (A), the polygenic case (B), and the 
mixed case (C) with a significance level α of 10−5. The number in each cell represents − log(P). normal: SNP effect 
sizes followed a standard normal distribution; double: SNP effect sizes followed a standard double exponential 
distribution; t: SNP effect sizes followed a standard t-distribution. Figure S3. Estimated power for the seven SNP-set 
methods in the case of rare variant association study under the polygenic case (A) and the mixed case (B) with a 
significance level α of 10−5. Here, PVE = 0.3%, 0.5% or 1% at the right side, the number of causal SNPs (prop) = 0.05, 
0.20 or 0.50 or the distribution of effect size including double, normal and t on the top, the number of the total 
analyzed SNPs = 50, 200 or 500 on the x-axis. The power was estimated across 103 replications. Figure S4. Upset plot 
to illustrate the number of identified genes shared across seven SNP-set methods for six psychiatric disorders. Figure 
S5. A Enrichment of differentially expressed pleiotropic genes associated with the six psychiatric disorders in terms 
of expression level across the 54 GTEx tissues. P values are shown in the y-axis with a scale of − log10. The bar in red 
represents significant enrichment after Bonferroni’s adjustment for multiple hypothesis tests; B Top 10 significant 
types of pathways in terms of the GO and KEGG enrichment analyses. BP Biological process, CC Cellular component, 
MF Molecular function. Figure S6. Bar plot of 531 unique genes associated with the six psychiatric disorders. The red 
color in the heatmap represents the rank of P values of SKAT and HMP; prop: the proportion of significant cis-SNPs 
(P < 5 × 10−8) within each associated gene. Figure S7. A Enrichment of differentially expressed pleiotropic genes 
related to the four plasma lipid traits in terms of expression level across the 54 GTEx tissues. P values are shown in 
the y-axis with a scale of − log10. The bar in red represents significant enrichment after Bonferroni’s adjustment for 
multiple hypothesis tests; B Top 10 significant types of pathways in terms of the GO and KEGG enrichment analyses. 
BP Biological process, CC Cellular component, MF Molecular function. Figure S8. A Enrichment of differentially 
expressed pleiotropic genes associated with the nine immune-related diseases in terms of expression level across 
the 54 GTEx tissues. P values are shown in the y-axis with a scale of − log10. The bar in red represents significant 
enrichment after Bonferroni’s adjustment for multiple hypothesis tests; B Top 10 significant types of pathways 
in terms of the GO and KEGG enrichment analyses. BP Biological process, CC Cellular component, MF Molecular 
function. Table S1. Summary information of the six psychiatric disorders, four plasma lipid traits and nine immune-
related diseases. Table S2. Ratio between the empirical type I error and the given significance level estimated 
over 105 simulations under rare variants. Table S3. Estimated power over 103 simulations with common variants. 
Table S4. Total running time of 103 simulations for the seven SNP-set methods under various simulation settings. 
Table S5. Identified genes associated with the six psychiatric disorders. Table S6. Identified genes associated with 
the four plasma lipid traits. Table S7. Identified genes associated with the nine immune-related diseases.
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