
CNN‑based two‑branch multi‑scale feature 
extraction network for retrosynthesis prediction
Feng Yang, Juan Liu*, Qiang Zhang, Zhihui Yang and Xiaolei Zhang 

Abstract 

Background:  Retrosynthesis prediction is the task of deducing reactants from reac-
tion products, which is of great importance for designing the synthesis routes of the 
target products. The product molecules are generally represented with some descrip-
tors such as simplified molecular input line entry specification (SMILES) or molecular 
fingerprints in order to build the prediction models. However, most of the existing 
models utilize only one molecular descriptor and simply consider the molecular 
descriptors in a whole rather than further mining multi-scale features, which cannot 
fully and finely utilizes molecules and molecular descriptors features.

Results:  We propose a novel model to address the above concerns. Firstly, we build a 
new convolutional neural network (CNN) based feature extraction network to extract 
multi-scale features from the molecular descriptors by utilizing several filters with dif-
ferent sizes. Then, we utilize a two-branch feature extraction layer to fusion the multi-
scale features of several molecular descriptors to perform the retrosynthesis prediction 
without expert knowledge. The comparing result with other models on the benchmark 
USPTO-50k chemical dataset shows that our model surpasses the state-of-the-art 
model by 7.4%, 10.8%, 11.7% and 12.2% in terms of the top-1, top-3, top-5 and top-10 
accuracies. Since there is no related work in the field of bioretrosynthesis prediction 
due to the fact that compounds in metabolic reactions are much more difficult to be 
featured than those in chemical reactions, we further test the feasibility of our model 
in task of bioretrosynthesis prediction by using the well-known MetaNetX metabolic 
dataset, and achieve top-1, top-3, top-5 and top-10 accuracies of 45.2%, 67.0%, 73.6% 
and 82.2%, respectively.

Conclusion:  The comparison result on USPTO-50k indicates that our proposed model 
surpasses the existing state-of-the-art model. The evaluation result on MetaNetX data-
set indicates that the models used for retrosynthesis prediction can also be used for 
bioretrosynthesis prediction.

Keywords:  Retrosynthesis prediction, Convolutional neural network, Machine 
learning, Multi-scale features
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Introduction
In the field of organic chemistry and drug development, it is often necessary to find a 
series of reactants to synthesize a target compound. It originated from the synthesis 
of tropinone [1], which was later formalized as retrosynthesis prediction [2] and has 
become one of the fundamental problems in organic chemistry. The huge search space 
of the retrosynthesis prediction problem makes it difficult for traditional approaches 
(physical organic, quantum chemistry, etc.) to solve such problems. For decades, 
researchers have started to use computer techniques to assist the retrosynthesis pre-
diction [3]. Owing to the fact that machine learning has made significant progress in 
some filed, such as computer vision and text classification, researchers have begun to 
use machine learning in retrosynthesis prediction.

For this purpose, several prediction models have been proposed, such as RetroSim 
[4], NeuralSym [5], Seq2Seq [6], and [7], etc., utilize machine learning to assist in pre-
diction tasks. Existing machine learning-based models for retrosynthesis prediction 
can be roughly classified into two categories: template-based models as well as tem-
plate-free models. The models in the first category utilize reaction templates to aid 
the prediction process, while models in the second category consider retrosynthesis 
prediction as a sequence-to-sequence translation problem.

Most existing models mainly use molecular descriptors as a whole for retrosynthe-
sis prediction. For example, molecular fingerprints (Extended Connectivity Finger-
prints, ECFP) convert a compound molecule into a string of binary vectors that are 
characterized by the presence or absence of a certain type of molecular fragment and 
are usually used to compare the similarity of molecular fingerprints to select a suit-
able template, or by directly inputting a deep neural network (DNN) as a feature to 
predict the template. For other descriptors, such as SMILES, which utilizes simple 
atomic symbols, bond symbols, and linguistic rules to describe the three-dimensional 
structure of a molecule, it is often used in seq2seq models to obtain a direct transla-
tion of products to reactants. However, these existing models either do not capture 
the full exploitation of the multiple descriptors of the molecule, resulting in low pre-
diction accuracy, or improve the prediction accuracy by building complex models, 
resulting in high time consumption. As mentioned above, SMILES focuses on global 
information, while molecular fingerprinting focuses on molecular structure informa-
tion, both of these two descriptors are the structured representation, and descriptors 
already contain high-dimensional features of molecules, such as functional group fea-
tures. The absence of either of these descriptors will result in the absence of molecu-
lar features. In addition, the features for these descriptors are also not fully utilized, 
such as multi-scale features.

Therefore, in this paper, we utilize several molecular descriptors, extract the multi-
scale features of these descriptors using CNN [8] and leverage these features for 
retrosynthesis prediction. Specifically, the main contributions of this paper are as 
follows:

•	 We propose a new CNN-based multi-scale feature extraction network. The pro-
posed network concatenates several filters of different sizes. Through this design 
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consideration, the proposed network is able to adaptively extract the multi-scale 
features of molecular descriptors.

•	 We propose an end-to-end model, named CNN-TMN, based on the above net-
work for retrosynthesis prediction. CNN-TMN consists of a two-branch feature 
extraction layer to extract scalable features of different molecular descriptors and 
uses these features for retrosynthesis prediction.

•	 We validate the superiority of CNN-TMN on the standard USPTO-50k derived 
from a patent database [9] and get the accuracies of Top-1 and Top-10 of 61.1% 
and 87.7%, respectively. We also validate CNN-TMN on the MetaNetX datasets as 
the first attempt in the field of bioretrosynthesis prediction and provide a baseline 
for the metabolic reaction dataset.

Related work
In this paper, a reaction refers in particular to the synthesis reaction in which two 
or more molecules collide and react with each other to produce a new molecule. For 
example, the reaction A+ B −→ C indicates that molecules A and B synthesize a new 
molecule C. A and B are called as reactants, and C is called as the product. Retrosyn-
thesis is the process of decomposing the target product into building blocks (reac-
tants). The purpose of retrosynthesis prediction is to predict the reactions that can 
produce the target product. The existing methods are mainly divided into two catego-
ries: template-free and template-based methods. We first introduce the template-free 
methods in “Template-free methods” section; and then introduce the related tem-
plate-based methods in “Template-based methods” section.

Template‑free methods

The template-free methods usually build models with known reactions to predict the 
reactants of the target product. The built models can then be used to directly trans-
late the target product (represented with the molecular descriptors such as sequence 
and graph) into the reactants. The first template-free model is Seq2Seq, that was 
built based on Recursive Neural Network (RNN) [6]. After that, Karpov et  al. built 
a Transformer-based method [10] and achieved better prediction performance than 
Seq2Seq. Tetko et al. proposed to use data augmentation strategy to train the model 
based on investigating the effect of Transformer with different training scenarios and 
further improve the performance [11]. As the chemical molecules are often repre-
sented as the molecular graph, some researchers begin to leverage graph informa-
tion to enhance the prediction accuracy. For example, Seo et al. [12] leverages both 
sequence and graph to improve the performance of Transformer. Shi et  al.[13] uti-
lizes the molecular graph information to formulate the retrosynthesis prediction as 
the transformation of graph-to-graph problem. Different from the previous template-
free models, Hasic et al. utilize molecular fingerprint to generalize knowledge directly 
from the structure of a target molecule without additional information. Due to the 
lack of the guidance by templates, the prediction model can not reveal the reaction 
relationship between reactants and products, which reduces the reliability of predic-
tion results.
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Template‑based methods

In template-based methods, the reactions are organized into a set of templates 
according to their atomic mapping information to describe the transformation rela-
tions between the reactants and the corresponding products. The templates can be 
either hand-crafted by human experts, or automatically extracted from a large num-
ber of known reactions by developing a toolkit such as RDKit [14]. Therefore the 
main objective of retrosynthesis prediction in template-based methods is to find suit-
able templates for the target product, for it is very easy to obtain the corresponding 
reactions from the found templates. Based on the assumption that similar templates 
produce similar products, Coley et  al. proposed a similarity-based method, named 
RetroSim, which used the molecular similarity as an effective metric to select tem-
plates for target products [4]. Obviously, such similarity-based method is very simple 
and easy to implement. However, its performance is sensitive to the adopted simi-
larity measure. Segler et  al. considered the retrosynthesis prediction problem as a 
multi-classification problem where each class corresponds to one template, and built 
an MLP (multi-layer perception) based model, named NeuralSym, to predict the tem-
plates of the target product [5]. This method can automatically learn the nonlinear 
relationships between the molecular ECFP fingerprints and the templates via a series 
of hidden layers without any background knowledge, thus easy to implement. How-
ever, it suffers from two drawbacks. Firstly, there is a lack of convolutional layers in 
NeuralSym, resulting in that it can not learn template-related features that are ben-
efit for the prediction. Secondly, the molecule representation with the ECFP finger-
print can only describe the presence or absence of a structural unit in the molecule, 
incapable of capturing the unit-unit interactions and detailed structure information. 
Recently, several researchers proposed to build prediction models based on graph 
learning. For example, Dai et  al. proposed a conditional graphical model based on 
graph neural networks (GNNs), named GLN, to predict the conditional probabilities 
of the templates for the target product, implicitly considering the chemical feasibil-
ity and strategy of the corresponding reactions [15]; Somnath et  al. taking the ret-
rosynthesis prediction problem as the one that identifies precursor molecules that 
can be used to synthesize a target product, and proposed graph-based approach, Gra-
phRetro, based on the idea that the graph topology of precursor molecules is largely 
unaltered during a chemical reaction [7]. Compared to other methods, the graph-
based methods embed the domain knowledge of the reactions into the graph models 
thus can achieve superior performance. However, they mainly rely on the operation 
of subgraph isomorphism thus have poor scalability. Moreover, heavy dependency on 
the domain knowledge makes it difficult to build a robust graph model for beginners.

Proposed method
Our method belongs to the template-based methods. Similar to the idea of [5], we also 
consider each template as a class, and the task of retrosynthesis prediction as a multi-
classification problem accordingly. Different from [5], we design a sophisticated features 
extraction network to learn multi-scale features beneficial to the classification. Before 
introducing the details of our method, we present the definition of the problem.
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Problem definition

For a reaction with M reactants Ri : Si,1 + · · · + Si,j + · · · Si,M −→ Pi , we use the fol-
lowing quadruple to represent Ri:

where {Si,j} is the set of reactants of Ri , M is the total number of reactants, Pi is the prod-
uct of Ri , Ti is the template extracted from Ri , and Ci is the class label of Ti . In our work, 
Si,j(j = 1, . . . ,M) , Pi and Ti are all represented as SMILE sequences. For convenience, we 
set Ci as a positive integer.

Let the (Pi,Ci) pair denotes a training sample, the objective of the problem is to 
train a multi-classification model θ with the distribution p(C|P, θ) using a set of train-
ing samples, where p represents the probability that the input product P belongs to 
the template with class label C.

Construction of CNN‑TMN model

CNN‑based feature extraction network

In this section, we will introduce the proposed feature extraction network. The main 
idea of our network is to utilize multiple filters of different sizes to extract the scalable 
features and integrate them to obtain the final multi-scale features. In other word, our 
network can also be regarded as the concatenation of K simple operation groups, 
which contains convolution, max-pooling, batch normalization and activation opera-
tions. The architecture of the proposed feature extraction network is shown in Fig. 1. 
The input of our network is a one-hot matrix, and the output is the multi-scale fea-
ture map.

The filters used in our network are all one-dimensional filters [8], termed Conv1D. 
Let X ∈ Rl×d be the input of the network, which is a one-hot matrix of the input 
sequence, where l is the length of the sequence, d is the dimension of the matrix 
and equal to the input channel of Conv1D. The X will be fed into K different opera-
tion groups to get the final multi-scale feature map. Within each operation group, 
the operations are conducted sequentially. First, the pointwise product between the 

(1)Ri = ({Si,j}
M
j=1,Pi,Ti,Ci)

Fig. 1  The architecture of CNN-based feature extraction network. The input of the network is the sequence 
matrix, and the output is the multi-scale feature map. l is the length of the input matrix. d is the dimension 
of the input matrix. The operation groups contains convolution, batch normalization, activation and 
max-pooling operations
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input X and filter F is conducted to get the extracted feature map after the Conv1D. 
Then, the extracted feature map is standardized by batch normalization [16] in order 
to reduce internal covariate shift, improve the generalization by regulating the distri-
bution of the data, and improve the training speed. For the normalized feature map, 
we will apply the activation function. Here, we use the sigmoid function [17] to map 
the features in [0, 1]. Later, the max-pooling [18] operation is adopted to downsample 
the feature map. Finally, the feature maps outputted by different operation groups are 
concatenated together to get the final multi-scale feature map.

The total number of operation groups, which is the same as the number of different 
sizes of filters, is determined by a parameter step. Suppose the minimum size of filter is 
min, the maximum is max, and the step is step, the size of the i-th filter in i-th operation 
group is calculated as: Fi = min+ (i − 1)× step , where Fi < max.

CNN‑TMN model

In this section, we will introduce CNN-TMN in detail. The overview of CNN-TMN is 
shown in Fig. 2. The idea of CNN-TMN is to use a two-branch feature extraction layer 
based on the proposed network to extract the multi-scale features of molecular descrip-
tors and integrate them to obtain the final prediction result. In this paper, we choose 
molecular descriptors as molecular fingerprints (specifically ECFP) and SMILES. The 
specific details of the two different branches used to extract the multi-scale features of 
the above ECFP and SMILES are described as follows.

For the feature extraction of the ECFP, the input of the network is the ECFP, and the 
output is its multi-scale feature map. In this paper, ECFP is formed by binary vector: 
X = {x1, x2, . . ., xi, . . . , xL} , where xi ∈ {0, 1} , and L is the maximum length of ECFP. 
Since ECFP is a one-dimensional binary vector, it can be directly used as an input to 
the feature extraction network. The input channels of all K filters are set to 1. The sizes 
of filters are set from 32 to 2048 with a step of 32, that is, the sizes of the filters are 
{32, 64, 96, . . . , 2048} , a total of 64 filters. After the feature extraction, we will get the 
multi-scale features of the ECFP.

Fig. 2  The overview of CNN-TMN. The input of CNN-TMN is chemical molecules, while the output is the 
predicted label L. Firstly, the SMILES and ECFP are canonicalized and extracted using RDKit. Then, these 
two descriptors are then fed into two different branches of the feature extraction network to extract their 
multi-scale features respectively. Finally, the concatenated features are fed into the full connection and 
softmax layer to get the final prediction result
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Before extracting the SMILES multi-scale features, one-hot encoding is used to encode 
the SMILES sequence. First, the word set tokens is introduced. The tokens is composed 
of different characters in the dataset, and for USPTO-50k and MetaNetX, the lengths 
are 40 and 48, respectively. For a sequence of length L, the shape of the one-hot matrix 
is L× length(tokens) . The length of the SMILES sequence is determined by the distribu-
tion of the dataset, which will be introduced in “Dataset splitting strategy” section. After 
encoding, similar to the feature extraction of ECFP, the one-hot matrix is fed into the 
feature extraction network to get the multi-scale features of molecular SMILES. Com-
pared with the ECFP, in SMILES, since the dimension of the one-hot matrix is 40, so 
the input channels for all K filters are set to 40. The sizes of all filters are set from 5 to 
L with the step of 5, that is, the sizes of the filters in extracting the SMILES features are 
{5, 10, 15, . . . , L} , where the maximum size of filters is smaller than L.

Loss function

For the loss function, we use cross entropy loss function:

where M and N are the total number of labels and samples, respectively, yic represents 
a symbolic function, if the real label of sample i is the same as c, then yic = 1 , pic repre-
sents the probability of the predicted label c.

Experiments
We conduct two kinds of experiments to test CNN-TMN. Firstly, we comprehensively 
evaluate the retrosynthesis prediction performance of CNN-TNM by designing a series 
of comparison experiments using the benchmark chemical reaction dataset USPTO-50k 
[9]. Since there is no public report on bioretrosynthesis prediction. Secondly, we attempt 
to use CNN-TMN for bioretrosynthesis prediction by using the widely used metabolic 
reaction dataset MetaNetX [19] to investigate its feasibility.

Datasets and data preprocessing

The datasets

The USPTO-50k dataset has been used as a benchmark dataset in previous retrosynthe-
sis prediction works [6, 10]. It currently contains 50,016 items, each corresponds to an 
atom-mapped reaction denoted by a SMILES sequence. The MetaNetX metabolic reac-
tion dataset contains 30,986 unique metabolic reactions. Same as USPTO-50k, all reac-
tions are denoted as SMILES sequences. The outline of two datasets is listed in Table 1.

Data preprocessing

Since the original datasets are composed of reaction SMILES, we need to process each 
reaction SMILES sequence to extract every reactant and product and to generate the 
corresponding template and its class label. Firstly, we sliced each reaction SMILES into 
reactants and products according to the symbol ”>”. For multi-product reactions, we 
split them into multiple single-product reactions. Then, we used RDKit[14] to extract 

(2)loss = −
1

N
i

M

c=1

yiclog(pic)
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the reaction templates of all reactions to form the template set. Considering that multi-
ple reactions may have the same template, we then removed redundant templates from 
the template set. For each unique template in the set, we assigned a positive integer to 
it as the class label. Finally, we associate class labels with the corresponding products to 
construct the dataset D = (Pi,Ci) ( Pi denotes the product, and Ci denotes its class label).

We statistically analyze the distributions of product length and the number of prod-
ucts in different classes, shown in Fig.  3. From this figure we can see, the majority of 
the product sequences in USPTO-50k are less than 300, while the majority of the prod-
uct sequences in MetaNetX are less than 100. As described in “CNN-TMN model sec-
tion, we need to set the lengths of the products to the same length L when performing 
one-hot encoding. If the length of the product is less than L, we will insert zeros and 
inevitably introduce noise. The larger L is, the more product sequences contain noise. 
Therefore, according to the analysis results, we set L to 300 and 100 for USPTO-50k and 
MetaNetX, respectively. In addition, we find that the total number of different classes 
are extremely large (11,856 in USPTO-50k, 15,939 in MetaNetX), whereas the number 
of products per class is rather small (about 5 in USPTO-50k and 2 in MetaNetX on aver-
age), which leads to the difficulty of the retrosynthesis prediction problem.

Experimental setup

Baselines

To evaluate CNN-TMN, we refer to eleven comparison baselines, including five tem-
plate-based models and six template-free models. In specific:

•	 Template-Based: RetroSim [4]; NeuralSym [5]; GLN [15]; EBMs [20]; GraphRetro 
[7].

•	 Template-Free: Seq2Seq [6]; Transformer [10]; G2Gs [13]; Tetko’s [11]; GTA​ [12]; 
Hasic’s [21].

Evaluation metric

We use the widely used Top-k ( k = 1, 3, 5, 10 ) exact match accuracy as our evaluation 
metric following the previous works [4–6]. This metric compares whether predicted 
SMILES sequence is the same as the ground truth sequence.

Table 1  Statistical information of two reaction datasets

Statistical information Dataset

USPTO MetaNetX

Dataset size 50,016 30,986

Template number 11,856 15,939

Product number 49,676 8,795

Reactant number 64,123 8,616

Maximum product length 708 243

Minimum product length 7 1

Average product length 786.6 37.6
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Implementation details

CNN-TMN is implemented in PyTorch [22]. The ECFP of molecules and templates of 
reactions are extracted by the open-source chem-informatics software RDKit [14]. The 
sizes of filters in ECFP and SMILES features are set from 32 to 2048 with a step of 32 and 
5 to 200 with a step of 5, respectively. All the lengths of molecular sequences are set to 
300 for one-hot encoding. CNN-TMN is trained for 20 epochs with a batch size of 128 
and a learning rate of 0.001 with Adam [23] optimizer on a single NVIDIA RTX 2080Ti 
GPU. We take approximately one hour to train CNN-TMN.

Dataset splitting strategy

To train CNN-TMN, we utilize a splitting strategy commonly used in this field [6], the 
training/validation/test set is randomly divided into 80%/10%/10%, termed ”Plain”. In 
addition, since we consider the retrosynthesis prediction problem as a multi-classifica-
tion problem, the splitting strategy can have an impact on the final prediction perfor-
mance of the model. The splitting strategy used in [6] can lead to the label imbalance. 
Therefore, we design a new splitting strategy termed “Aug” as the data augmentation. 
The new splitting strategy ensures that each label in the training set will appear at least 
once, and the splitting ratio is the same as in the previous work.

Evaluation results on UPSPTO‑50k dataset

Performance comparison of different models

This section compares the model proposed in this paper with the eleven retrosynthesis 
models on the USPTO-50k benchmark dataset, and the experimental result is shown in 
Table 2. All the comparison models use the same splitting strategy.1

Fig. 3  The distribution of SMILES lengths of products in different datasets (a). The product lengths 
distribution in USPTO-50k dataset (b). The product lengths distribution in MetaNetX dataset (c). The product 
labels distribution in USPTO-50k dataset (d). The product labels distribution in MetaNetX dataset

1  EBMs is a preprint version and not officially published.
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After using a reasonable splitting strategy, CNN-TMN has 7.6% higher prediction 
accuracy compared to the template-based state-of-the-art model GraphRetro, and 
7.4% higher compared to the template-free model Tetko’s. Moreover, the performance 
improvement in the prediction accuracy is also seen with the increase of k, especially 
when k = 10 . Among the compared models, NeuralSym is similar to CNN-TMN, which 
also considers the retrosynthesis prediction problem as a multi-classification problem. 
CNN-TMN is 10.6% higher than it in terms of accuracy and 22.6% higher after correct 
splitting. The experiment result proves the effectiveness of CNN-TMN for retrosynthe-
sis prediction.

As mentioned in “Dataset splitting strategy” section, the splitting strategy has a large 
impact on the performance of CNN-TMN. When the splitting strategy is not reason-
able, there is a large degradation in the prediction performance of CNN-TMN and the 
accuracy of CNN-TMN decreases by 12% in Top-1 accuracy. In [6], the dataset is spitted 
randomly, while in this paper, we split the dataset with a new strategies, which is intro-
duced in “Dataset splitting strategy” section. In order to explore the impact of different 
splitting strategies on the prediction accuracy, we chose the NeuralSym, which is simi-
lar to ours for the performance comparison under different splitting strategies, and the 
result is shown in Table 3.

The results in Table 3 show that the splitting strategy has a very significant impact on 
the performance of both CNN-TMN and NeuralSym. The main reason is that random 
splitting will lead to class imbalance, and if a particular label is not included in the train-
ing set, the prediction accuracy for that class will be greatly reduced. After a reasonable 
splitting, the accuracies of both have been improved significantly. For NeuralSym, the 
prediction accuracy is improved by 6.9% after using a reasonable splitting strategy, while 
for CNN-TMN, the prediction accuracy is improved by 12%. The above experiments 

Table 2  Comparisons of average accuracies (%) against state-of-the-art models for retrosynthesis 
on the USPTO-50k dataset

The best result are indicated in bold

Where the suffix (Plain) and (Aug) indicate two different splitting strategies proposed in “Dataset splitting strategy” section

Model Top-k accuracy %

1 3 5 10

Template-free

Seq2Seq 37.4 52.4 57.0 61.7

Transformer 42.7 63.9 69.8 \

Hasic’s 47.2 55.7 61.5 65.1

GTA​ 47.3 67.8 73.8 80.1

G2Gs 48.9 67.6 72.5 75.5

Tetko’s 53.5 69.4 81.0 85.7

Template-based

RetroSim 37.3 54.7 63.3 74.1

NeuralSym 38.5 55.7 61.3 66.6

GLN 52.5 69.0 75.6 83.7

GraphRetro 53.7 68.3 72.2 75.5

EBMs 55.2 74.6 80.5 86.9

CNN-TMN (Plain) 49.1 64.4 67.6 72.6

CNN-TMN (Aug) 61.1 79.1 83.9 87.7
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demonstrate that our splitting strategy can significantly improve the prediction accuracy 
of this type of model.

Ablation study

The ablation study aims to verify the effectiveness of using multiple descriptors and the 
proposed feature extraction network. First, we explore the effectiveness of using differ-
ent molecular descriptors, and the result is summarized in Table 4. The check � in the 
table indicates that the CNN-TMN uses a certain molecular descriptor. For example, the 
first row indicates that the CNN-TMN only utilizes ECFP for prediction.

By only using the ECFP descriptor, as shown in the first row, it achieves 47.2% Top-1 
accuracy and 80.0% Top-10 accuracy. By only using the SMILES descriptors of mole-
cules, we achieve a 53.8% Top-1 accuracy and 84.7 Top-10 accuracies. By further fusing 
the two descriptors, we obtain a final Top-1 accuracy of 61.1%, as shown in the last row. 
The above experimental result demonstrates that using multiple molecular descriptors 
can significantly improve the accuracy of prediction.

Then, we verify the effectiveness of our proposed feature extraction network in 
extracting the multi-scale features of molecular descriptors. The result is shown in 
Table 5. As we can see in Table 5 indicates that the proposed network in this paper 
can effectively extract the multi-scale features of the molecular descriptors and 
improve the prediction accuracy by 26.65% on average compared to the baseline. 
Also, for the two different molecular descriptors, the impact on the accuracy is dif-
ferent, and overall, the accuracy using SMILES is 1.6% higher than that of ECFP. The 
main reason is that the ECFP descriptor is a one-dimensional vector in presenta-
tion12, and compared with SMILES, ECFP is sparser in features, which leads to the 
different performance of the multi-scale feature extraction network in extracting two 
molecular descriptors.

Table 3  Comparisons of average accuracies (%) against two different strategies for retrosynthesis on 
the USPTO-50k dataset

The best result are indicated in bold

The (Plain) and (Aug) indicate two different splitting strategies, which have been introduced in “Dataset splitting strategy” 
section

Model Top-k accuracy %

1 3 5 10

NeuralSym (Plain) 38.5 55.7 61.3 66.6

NeuralSym (Aug) 45.4 67.7 73.5 81.1
CNN-TMN (Plain) 49.1 64.4 67.6 72.6

CNN-TMN (Aug) 61.1 79.1 83.9 87.7

Table 4  Ablation study on the effectiveness of using different molecular descriptors. ECFP and 
SMILES indicate that CNN-TMN only uses ECFP or SMILES descriptor for retrosynthesis prediction

The best result are indicated in bold

ECFP SMILES Top-1 Top-3 Top-5 Top-10

� – 47.2 67.6 73.5 80.0

– � 53.8 73.1 78.7 84.8

� � 61.1 79.1 83.9 87.7
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To further validate the effectiveness of the proposed feature extraction network, we 
replace the network with a commonly used CNN architecture TextCNN [8], which is 
commonly used in the field of text classification, and the rest of the network remains 
unchanged. The experiment result is shown in Table  6. Compared with TextCNN, 
CNN-TMNl has a significant improvement, mainly because we use different sizes of 
filters to extract features of different scales, while in TextCNN, the maximum filter is 
only 5. By using large convolutional kernels, we are able to capture different length 
dependencies of the sequence, which can better improve the prediction accuracy of 
the model.

Influence of the step on the performance

In CNN-TMN, we have one parameter step to investigate, which is used to determine 
the size of filters in the feature extractions of SMILES and ECFP. This section will discuss 
the impact of this parameter in detail. For the filters used to extract ECFP stepfp and 
SMILES stepseq , they are set as {64, 128, 256, 512, 1024} and {10, 20, 30, 40, 50} , respec-
tively. The result is shown in Fig. 4.

As we can see in Fig. 4, both in two figures, higher accuracy can be obtained by using 
a smaller step, and vice versa. A larger step will lead to coarse-grained features, while a 
smaller step can make the extracted features more fine-grained. Even if the fingerprint is 
sparse, the features can also be extracted by using filters of different sizes. However, the 
disadvantage of a smaller step is that the increase of the number of filters will make the 
architecture of the network more complex, thus increasing the computational cost. This 
result supports the hypothesis that by using filters of different sizes, we can make good 
use of CNN to extract the multi-scale features of sequences.

Table 5  Ablation study on the effectiveness of using feature extraction network for different 
molecular descriptors. FE and no FE indicate whether we use the proposed feature extraction 
network

The best result are indicated in bold

Model Top-k accuracy %

ECFP SMILES 1 3 5 10

FE No FE FE No FE

– � – � 25.1 40.8 46.8 57.2

– � � – 51.0 70.5 75.3 82.9

� – – � 48.9 68.9 74.5 81.1

� – � – 61.1 79.1 83.9 87.7

Table 6  Comparisons of average accuracies (%) against two feature extraction network for 
retrosynthesis on the USPTO-50k dataset

The best result are indicated in bold

Model Top-k accuracy %

1 3 5 10

TextCNN 21.6 39.9 43.9 53.9

CNN-TMN 61.1 79.1 83.9 87.7
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Model complexity analysis

As mentioned above, there is a parameter step that controls the number of operation 
groups in the feature extraction network. To study the effect of the different step on the 
model size, we add a statistical experiment on the number of model parameters under 
different step. Since the steps used for extracting different molecular descriptors are dif-
ferent, the number of model parameters under different step are listed separately, and 
the statistical result is shown in Table 7.

The statistical results in the table show that the number of parameters in CNN-TMN 
is negatively correlated with the parameter step, and both decrease with the increase of 
step. Meanwhile, together with the result in Fig. 4, it can be found that the size of step 
is also negatively correlated with the accuracy of CNN-TMN. The main reason is that 
when we use a smaller step, CNN-TMN can utilize more parameters to characterize the 
molecular descriptors, thus improving the prediction accuracy.

Feasibility investigation for bioretrosysthesis prediction

Since retrosynthesis prediction is focused on chemical reaction prediction because of 
the simplicity of chemical reactions, but in biological systems, metabolic reactions are 
more complex than chemical reactions, as far as we know, there is no published work 
attempted on the metabolic reaction dataset such as MetaNetX. In order to verify the 
performance of CNN-TMN in bioretrosynthesis prediction, we apply CNN-TMN to the 
MetaNetX metabolic reaction dataset. The comparison model for bioretrosynthesis pre-
diction is MLP with only three layers: input layer, hidden layer and output layer. The 
input layer is the ECFP, while the output is the label of the template. The result is shown 
in Table 8.

Fig. 4  The comparison accuracies (%) obtained by different step. a The stepfp for the extraction of ECFP 
features, b the stepseq for the extraction of SMILES sequence features

Table 7  Statistical result of the number of parameters in CNN-TMN at different step 

Parameters stepseq

5 10 20 40 80 160

32,479,537 15,988,017 7,742,257 3,619,377 1,557,937 527,217

stepfp

32 64 128 256 512 1024

12,382,657 6,038,657 2,866,657 1,280,657 678,257 377,057
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The results in the table show that there is a 15.9% decrease in performance on the 
bioretrosynthesis prediction compared to the chemical retrosynthesis prediction. As 
shown in Fig. 3, the product lengths in the MetaNetX dataset are generally shorter than 
USPTO-50k in terms of the distribution of product lengths, and also in terms of the 
number of labels, the MetaNetX dataset is more numerous, which leads to fewer prod-
uct features and more difficult predictions in MetaNetX. However, CNN-TMN still out-
performs MLP by 1.6%. This also proves the effectiveness of CNN-TMN. Meanwhile, the 
above results provide a baseline for bioretrosynthesis prediction.

Conclusion and discussion
Conclusion

In this paper, we propose a new end-to-end model, termed CNN-TMN, for retrosyn-
thesis prediction. CNN-TMN utilizes a newly designed CNN-based feature extraction 
network to extract multi-scale features of molecular descriptors. Specifically, in our net-
work, we only focus on the low-level features of the sequence, which is different from 
the traditional CNN, which extracts the depth features. By using filters of different sizes, 
we can extract scalable features. In CNN-TMN, we use a two-branch feature extraction 
layer to extract multi-scale features of multiple molecular descriptors of a molecule and 
subsequently concatenate them together to obtain the final fused features for retrosyn-
thesis prediction. The experimental results indicate that the proposed feature extraction 
network can effectively extract the multi-scale features of molecular descriptors, and 
the prediction accuracy of CNN-TMN on USPTO-50k is significantly higher than that 
of other existing models, demonstrating the effectiveness of CNN-TMN. In addition, 
we applied CNN-TMN to bioretrosynthesis prediction and provided a baseline on the 
MetaNetX dataset.

Discussion

CNN-TMN proposed in this paper fully considers multiple molecular descriptors, which 
can make fuller use of the molecular features. The existing models consider only the 
molecular sequential descriptor, such as SMILES [6, 10, 12], molecular graph [7, 13] or 
molecular fingerprint [5]. The experiment in “Ablation study” section demonstrates that 
the utilization of several molecular descriptors can significantly improve the accuracy 
of retrosynthesis prediction. Based on the characteristics of molecular descriptors, we 
designed a suitable feature extraction network. In the feature extraction network, we 
used multiple filters of different sizes instead of fixed size, and this approach can bet-
ter capture the long dependencies of sequences. Tables 5 and 6 verify the superiority of 

Table 8  Comparisons of average accuracies (%) against MLP for bioretrosynthesis on the MetaNetX 
dataset

The best result are indicated in bold

Model Top-k accuracy %

1 3 5 10

MLP 43.7 63.4 71.8 80.3

CNN-TMN 45.2 67.0 73.6 82.2
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our feature extraction network. Our CNN-TMN is a template-based model, i.e., for a 
particular product, a template is predicted which can be applied to the product. If the 
predicted template does not match the ground-truth, the prediction will be considered 
a failure, but it is possible that the predicted templates can be applied to the product to 
get potential reactants. Compared to the wrong reactants predicted by a template-free 
model, the wrong reactants predicted by a template-based model will be more explana-
tory in terms of chemical principles.

However, since we consider the retrosynthesis prediction problem as a multi-clas-
sification problem and with an excessive number of classes, it is more sensitive to the 
impacts of the training set than other models. As shown in the experimental results in 
Table 5, the similar model will have a much lower prediction accuracy if the labels in the 
training set are not balanced, with an 11.4% decrease in the average Top-k accuracy. To 
make the prediction better, a splitting strategy that makes the categories more balanced, 
such as the method in “The Datasets” section, needs to be considered.
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