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Abstract 

Background:  Long interspersed element 1 (LINE-1 or L1) retrotransposons are mobile 
elements that constitute 17–20% of the human genome. Strong correlations between 
abnormal L1 expression and several human diseases have been reported. This has 
motivated increasing interest in accurate quantification of the number of L1 copies 
present in any given biologic specimen. A main obstacle toward this aim is that L1s 
are relatively long DNA segments with regions of high variability, or largely present in 
the human genome as truncated fragments. These particularities render traditional 
alignment strategies, such as seed-and-extend inefficient, as the number of segments 
that are similar to L1s explodes exponentially. This study uses the pattern matching 
methodology for more accurate identification of L1s. We validate experimentally the 
superiority of pattern matching for L1 detection over alternative methods and discuss 
some of its potential applications.

Results:  Pattern matching detected full-length L1 copies with high precision, reason-
able computational time, and no prior input information. It also detected truncated 
and significantly altered copies of L1 with relatively high precision. The method was 
effectively used to annotate L1s in a target genome and to calculate copy number 
variation with respect to a reference genome. Crucial to the success of implementation 
was the selection of a small set of k-mer probes from a set of sequences presenting 
a stable pattern of distribution in the genome. As in seed-and-extend methods, the 
pattern matching algorithm sowed these k-mer probes, but instead of using heuristic 
extensions around the seeds, the analysis was based on distribution patterns within 
the genome. The desired level of precision could be adjusted, with some loss of recall.

Conclusion:  Pattern matching is more efficient than seed-and-extend methods 
for the detection of L1 segments whose characterization depends on a finite set of 
sequences with common areas of low variability. We propose that pattern matching 
may help establish correlations between L1 copy number and disease states associated 
with L1 mobilization and evolution.

Keywords:  LINE-1, GFF, K-mer, Probe

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Lopez et al. BMC Bioinformatics          (2022) 23:375  
https://doi.org/10.1186/s12859-022-04907-4

BMC Bioinformatics

*Correspondence:   
juano.lopez@upr.edu

1 Department of Computer 
Science and Engineering, 
University of Puerto Rico, 
Mayagüez, Puerto Rico
2 Institute of Biosciences 
and Technology, Texas A&M 
Health, Houston, TX, USA
3 Department of Computer 
Science, University of Puerto 
Rico, Arecibo, Puerto Rico

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04907-4&domain=pdf


Page 2 of 17Lopez et al. BMC Bioinformatics          (2022) 23:375 

Background
Transposable elements or Transposons, such as the Long Interspersed Element I (L1), 
Alu and SVA elements, are DNA sequences that move from one location in the genome 
to another. These elements are important contributors to genome evolution, as well 
as genetic variation and genomic instability, and are associated with several diseases, 
including neurofibromatosis, choroideremia, cholinesterase deficiency, Apert syndrome, 
Dent’s disease, and Walker-Warburg syndrome  [1]. L1 is known to be the only active 
autonomous non-LTR transposon in the human genome. This means that it has the abil-
ity to copy and paste itself or other non-autonomous transposons into different genome 
locations [2, 3], thus boosting its detrimental effects. With more than 500, 000 sequences 
present, L1s account for 17% of the human genome. L1s consist of two open reading 
frames, the so-called ORF1 and ORF2, 5’ and 3’ untranslated regions (UTRs), an inter-
ORF region, and a poly(A) tail [3]. While most L1s are inactive due to rearrangements, 
point mutations, and truncation [2, 3], full-length, active L1s can be pathogenic and are 
the most likely to retrotranspose at significant rates, with at least 124 L1-mediated inser-
tions linked to genetic diseases [3, 4].

Consequently, our method concentrates on full-length L1 sequences. Our main source 
of data was the L1Base 2 database  [5, 6]. Within the Genome Reference Consortium’s 
human reference genome GRCh38, L1Base  2 reports 146 ORF-intact L1s, 107 ORF2-
intact L1s (disrupted ORF1, but intact ORF2), and 13,418 retrotransposition-inactive, 
full-length non-intact L1s.

Existing detection tools for the study of mobile elements

We considered some existing tools such as VariationHunter  [7], Tea  [8], RetroSeq  [9], 
and Tangram [10] for detection of L1s. However, these tools focus on the detection of 
mobile element insertions, not deletions. This is a considerable limitation since L1 cop-
ies may experience loss of segments that range from a few to hundreds of base pairs, and 
the impact of L1 insertions or deletions on the human genome is not yet known. Hence, 
these tools were deemed inappropriate for comprehensive L1 detection.

A well-known and commonly used tool is RepeatMasker. Its description says that it is 
a tool designed to “screen DNA sequences for interspersed repeats and low complexity 
DNA sequences”  [11]. RepeatMasker is thus broader, including different types of ret-
rotransposons, DNA transposons, and other transposable elements. The amplitude in 
scope comes at the price of loss of accuracy in L1 detection. In a few experiments exe-
cuted by our team, the reported start positions of the LINE-1s were not correct, and 
sporadic Alus and Mammalian-wide interspersed repeats (MIRs) were found inside L1s, 
forcing a post-filtering process to obtain true L1s. Additionally, the last component of a 
LINE-1 is the poly(A) tail, while RepeatMasker often reports another LINE-1 segment 
after the poly(A) tail.

Shortcomings of seed‑and‑extend

We also examined less specialized tools, like BLAST  [12], the classical fast tool for 
approximate gene alignments. In general terms, we posit that tools based on the seed-
and-extend strategy, such as BLAST, are not adequate for precise L1 detection. These 



Page 3 of 17Lopez et al. BMC Bioinformatics          (2022) 23:375 	

tools align short segments of length k, known as k-mers, with segments within the target 
sequences. Such alignments are known as seeds, and they are extended heuristically to 
find a complete similar segment. In the case of L1s, the heuristics of extension produce a 
large number of false positives. For instance, using BLAST to align an L1 from L1Base2 
to genomes in the 1000 Genome Project  [13], even with a highly restrictive E-value 
of 10−250 , returns tens of thousands of results. As such, finding the true L1s requires 
expensive and time-consuming post-processing of results. This outcome is not surpris-
ing as seed-and-extend strategies trade precision for computing time.

Seed‑and‑pattern match

In this article we introduce a pattern matching strategy for detecting L1s that achieves 
adequate precision with reasonable computing time and minimum amount of infor-
mation provided by the user. Here, pattern matching refers to a well-established com-
putational technique where expressions are tested to determine if they match the 
constituents of a certain pattern. In contrast to the above-studied seed-and-extend strat-
egies, the strategy being introduced is a seed-and-pattern match strategy that replaces 
the heuristics of the extend phase of seed-and-extend with pattern matching to diminish 
the input and post-processing burden while augmenting the precision of detection.

Our algorithm seeds a small fixed set of probes and uses information on the positions 
of the probes in the query set to decide whether a group of seeds is or is not located 
within an L1. This avoids the heuristics of extension and its limitations, and provides an 
efficient way of detecting L1s in the human genome.

Methods and results
In general terms, the problem being addressed can be stated as follows: Given a query 
class described by a finite set of sequences that share column ranges with local similari-
ties, called a query set, find all segments in the genome that belong to that class. Trans-
posons and mobile genetic elements, in general, are examples of what we refer to as 
query sets. Highly conserved segments within these elements, such as genes, are in turn, 
natural candidates for probes. In our particular case, L1s compose our query class.

As described, the pattern matching strategy uses a small set of k-mer segments or probes. 
The probes are segments with high local similarities to most of the sequences in the query 
set, as this section will explain the details of how they were generated for our algorithm. 
The probes are stored in 5’ to 3’ orientation, along with their average offset distance from 
the beginning of the ORF1. The probes and the information associated with them are cal-
culated only once and then reused in each subsequent application. To classify a segment 
of the target genome as a member of the query class, the probes are first mapped onto the 
genome with a fast-mapping algorithm. As in the seed-and-extend methods, we call seed a 
segment in the target genome that is an approximate match to a probe. As a pattern match, 
we define a sequence of seeds, among a minimum number of seeds m, which coincide with 
the order and distances of the probes in the query set. The distances between the seeds 
are measured in base pairs and may vary because of indels or segment losses. To account 
for these variations, we use an input parameter t > 0 that represents a threshold bound. 
Another input parameter is the minimum number of seeds m that are required to conform 
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a pattern match. As with t, parameter m accounts for segments in the target genome that 
have lost probes, either partially or completely.

Thus, in symbolic terms, a pattern matching with m = 3 is as follows: Let p1 , p2 and p3 
be probes in the 5’ to 3’ orientation and let d1 be the average distance between p1 and p2 in 
the sequences of the query set. Similarly, let d2 be the average distance between p2 and p3 . 
Suppose s1 , s2 and s3 are the corresponding seeds on the target genome and let δ1 and δ2 be 
the base pair distances between s1 and s2 , and s2 and s3 , respectively. Then, s1 , s2 , and s3 are 
considered a pattern match if and only if |d1 − δ1| ≤ t and |d2 − δ2| ≤ t.

To use pattern matching for the classification of segments in a genome as members of 
the L1 class, we took the 146 ORF-intact L1s in L1Base2 as the query set. The probes were 
extracted by successive refinements, as described below, of the multiple sequence alignment 
of the sequences in the query set. As multiple sequence alignment problems have no objec-
tive mathematical function to optimize, most practitioners modify the computed output 
manually, or ever perform de novo manual alignments. In our case, the multiple alignment 
was completed by hand using the bioSyntax  [14] highlighting package in the vim editor. 
We found that although UTRs showed a few similarities within certain ranges, the 5’-UTR 
segments varied greatly within the first 1000 bases. A similar behavior was observed in the 
3’-UTR region. However, the ORF1 and ORF2 regions consistently showed regular behav-
ior. We decided to extract the probes exclusively from the ORFs and we handled ORF1s and 
ORF2s separately.

The multiple alignment of ORFs showed columns where the highest-occurring nucleo-
tide base was present in at least 95% of the sequences. There were several blocks of 50 col-
umns or more of this kind. Consequently, we took a set of 50-mers from these blocks as 
pre-candidates for probes. To obtain the actual probes, we filtered this set through a three-
step refinement process. 

1	 To optimize coverage, we kept 50-mers that only mapped to their corresponding 
ORF within each of the members of the query set, this was done to avoid having 
probes that mapped to both ORFs.

2	 From the set of remaining 50-mers, we selected those that had the smallest number 
of map hits on the genome, such that we could lower the number of false positives.

3	 We selected the subset of all non-overlapping 50-mers from the remaining set.

At the end of this filtering process, we were left with five 50-mers from ORF1s and eleven 
from ORF2s. These sixteen 50-mers were used as our set of probes. Intuitively, this set of 
probes should provide match patterns strong enough to avoid extensions, but this assump-
tion needed to be verified experimentally. Figure 1 illustrates an overview of the pattern 
matching strategy.

It should be noted that the values being used (95% similarity, 50 columns, 50-mers) will 
vary according to the class of sequences that the pattern matching strategy is applied to.

The LINE‑1 pattern detection algorithm

The LINE-1 Pattern Detection (L1PD) algorithm is a computer implementation of the 
pattern matching strategy for detecting string segments in a given target genome that 
could be classified as L1s.
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The above set of 16 50-mer probes, along with their 5’ to 3’ orientation and average 
offset distances, were implemented as a lookup table in L1PD. The algorithm maps the 
probes into the target genome with mrFAST  [15, 16], a fast-mapping algorithm that 
emphasizes the discovery of structural variation and segmental duplications. After seed-
ing the probes, L1PD finds all sequences of m or more seeds that conform a pattern 
match and returns their locations in the target genome.

The input of L1PD were m, t and δ , as well as the target genome. Its output was the 
positions within the target genome of all segments classified as L1.

We ran a first test with δ = 5 , t = 50 , and m ranging from 2 to its maximum of 16. The 
test aimed to assess the correspondence between pattern matches and L1s achieved with 
this set of probes. To do this, we randomly added or deleted ORF-intact L1s, and ORF2-
intact L1s in different chromosomes of the GRCh38 genome, resulting in L1-altered 
genomes. We ran L1PD on each of the L1-altered genomes and compared the number of 

(a) Five probes were obtained from ORF-1 and eleven probes from ORF-2

(b) Probes were stored in a FASTA file along with their distance
from the beginning of ORF-1. The file, partially shown here, is pro-
vided as input to L1PD.

(c) A probe ”hit” may be considered part of a pattern if the difference between
the actual distance and the expected distance is within the threshold.

Fig. 1  Pattern matching overview



Page 6 of 17Lopez et al. BMC Bioinformatics          (2022) 23:375 

pattern matches and the number of L1s in the modified target. The results are displayed 
in Figs. 2 and 3. The graphs show a linear correlation between pattern matches and L1 
counts, validating the correspondence of pattern matches and L1s.

For m = 2 to m = 14 , all 146 ORF-intact L1s were accurately detected, but with 
m = 15 and m = 16 one of the ORF-intact L1s was not detected. This ORF-intact L1 

Fig. 2  Relationship between random LINE-1 insertion/deletion and pattern count in Chrm 2

Fig. 3  Relationship between random LINE-1 insertion/deletion and pattern count in Chrm 16
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had a deletion of about 396 bases in its ORF2. Consequently, the positions to which the 
probes aligned were shifted by an amount greater than a threshold value of 50 and no 
pattern match was obtained when m > 14.

We further examined the sensitivity of L1PD to its input parameters. We did this in 
the context of the ability of the method to detect all the L1s in the L1Base2. That is, the 
146 ORF-intact, 107 ORF2-intact, and 13,418 non-intact L1s. While it is true that the 
ORF-intact L1s and ORF2-intact L1s have a major role in the copy and paste activity, 
a note in the L1Base2 documentation states that non-intact L1s were included because 
some “may have retained an ability to be expressed and, although at a low frequency, 
could be retrotransposed by the proteins encoded by retrotransposition-active full 
length intact L1s” [4]. We assessed this sensitivity in terms of the precision and recall of 
L1PD outputs.

In information retrieval, the term precision refers to trying to obtain only relevant 
results (true positives) and minimizing irrelevant results (false positives). On the other 
hand, the term recall refers to trying to obtain all relevant results (true positives) and not 
omitting any relevant results (false negatives). The relationship is established by the fol-
lowing equations:

In this particular case, precision was calculated as the fraction of true L1s detected by 
L1PD among all L1s reported by L1PD, using L1Base 2 [5, 6] as reference to determine 
which were true L1s. Similarly, recall was calculated as the fraction of true L1s detected 
by L1PD among all L1s present in the genome.

Due to the varying nature of DNA, our algorithm needed to consider possible inser-
tions or deletions, which meant that not all of our probes would be found. Hence, a min-
imum amount of probe hits in a pattern needed to be established. A higher minimum 
amount of probes reduced the amount of false positives, as expected, but also reduced 
the amount of true positives. The net result was that a higher minimum amount of 
probes resulted in higher precision but lower recall. The F1 Score (also known as the F 
score or the F measure), based on Van Rijsbergen’s effectiveness measure [17], is the har-
monic mean of precision and recall, and is used to establish a balance since it punishes 
extreme values. The formula is:

The F1 Score is a standard measure that documents classification or query classification 
performance, and is what we used to determine a set of default values for the input of 
L1PD.

In mathematical terms, our problem was finding a maximum for the real-valued map

Precision =
True positives

True positives + False positives

Recall =
True positives

True positives + False negatives

F1 Score = 2×
Precision × Recall

Precision + Recall
.

f (m, t, δ) = F1 Score,



Page 8 of 17Lopez et al. BMC Bioinformatics          (2022) 23:375 

where 2 ≤ m ≤ 16 , 25 ≤ t ≤ 800 and 5 ≤ δ ≤ 30 . The boundaries of 800 for t and 30 for 
δ were defined experimentally. As map f takes its values on a finite discrete set, a maxi-
mum value can be found by direct computation. As t increased within the range of 25 to 
700, so did the F1 Score (with one exception where the F1 Score plateaued at t = 675 , 
and another where the difference between t = 675 and t = 700 is negligible). Once t 
went beyond 700, the F1 Score started to decrease (again, with the two aforementioned 
exceptions). On the other hand, the values of the F1 Score also increased with δ , topping 
off as δ neared 50% of the read length. A partial listing of the actual results is shown in 
Table 1.

Our computations showed that for nearly every value of δ , the maximum F1 Score 
is obtained when t = 700 , regardless of the value of m. The sole exception was δ = 10 , 
where the maximum F1 Score was achieved at t = 675 . Hence, we set 700 as the 
default threshold value. We also found that for almost every value of δ , the highest 
F1 Score obtained was when m = 9 . The sole exception was δ = 5 , where the highest 
F1 Score was reached at m = 7 . Consequently, we set m = 9 as the default value for 

Table 1  F1 Scores of L1PD outputs for different values of parameters m, t, and δ

Highest F1 Score for each value of δ is in bold

δ t m Precision Recall F1 score

5 650 7 0.74503 0.55979 0.63926

675 7 0.74481 0.56001 0.63932

700 7 0.74465 0.56016 0.63935
725 7 0.74445 0.56023 0.63932

750 7 0.74414 0.56038 0.63931

10 625 9 0.79454 0.58554 0.6742

650 9 0.79409 0.58591 0.67429

675 9 0.7937 0.5862 0.67434
700 9 0.79321 0.58642 0.67431

725 9 0.7925 0.58642 0.67405

15 650 9 0.79167 0.58956 0.67582

675 9 0.7912 0.58986 0.67585
700 9 0.7908 0.59008 0.67585
725 9 0.78995 0.59008 0.67553

750 9 0.78937 0.59022 0.67541

20 650 9 0.7894 0.59417 0.678

675 9 0.78893 0.59468 0.67816

700 9 0.78856 0.59498 0.67822
725 9 0.78774 0.59505 0.67796

750 9 0.78717 0.5952 0.67785

25 650 9 0.78842 0.59395 0.6775

675 9 0.78788 0.59447 0.67764

700 9 0.78745 0.59483 0.67771
725 9 0.78663 0.5949 0.67745

750 9 0.78606 0.59505 0.67734

30 650 9 0.78819 0.59366 0.67722

675 9 0.78764 0.59417 0.67735

700 9 0.78721 0.59454 0.67743
725 9 0.78639 0.59461 0.67718

750 9 0.78587 0.5949 0.67717
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L1PD. Finally, after comparing the highest F1 Score obtained for different values of 
δ , we found that the highest F1 Score overall was obtained when δ = 20 . Thus, we set 
that as the default edit distance for mrFAST in our algorithm.

Table 1 shows some of the values obtained in the search of a maximum F1 Score, 
where we only included the highest F1 Score for every combination of edit distance 
and threshold. A more detailed listing may be found in Additional file 1, which may 
be used to guide users who wish to modify the values of the input parameters either 
to increase precision or recall. It also establishes the limits of what is achievable by 
such modifications.

The current version of L1PD takes genomes with their chromosomes assembled as 
input. Unfortunately, most publicly available genome databases store their genome 
data in FASTQ files with short-length paired-end reads of a genome. Therefore, for 
those databases, a time-consuming assembly pipeline was needed to recreate the tar-
get genome from the FASTQ files, using GRCh38 as reference. This pipeline includes 
existing tools such as BWA  [18], mrFAST, SAMtools and BCFtools  [19], as well as 
our own scripts. Our scripts were implemented in Python 3 and we used the Biopy-
thon [20] module for several intermediate steps during the research, such as generat-
ing the k-mer probes.

The time expenditure required for target genome assembly varies with the size of 
the FASTQ files containing the reads and can be substantial for large assemblies, as 
shown in Fig. 4. It is worth noting that once the target genome is assembled the run-
ning time of L1PD is constant, as shown in Table 2. Most of the time spent by L1PD 
is forindexing the target genome and mapping the probes; the time necessary for 
pattern matching is negligible. Similarly, the memory usage is dictated by the index-
ing and mapping phases. While using a genome with a size of 3.1GB, indexing used 
approximately 1.8GB of RAM and mapping used approximately 2GB of RAM.

These time and memory measurements, as well as all other runs of L1PD and its 
applications, were performed on a Dell PowerEdge R740 server, with two Intel® 
Xeon® Gold 6138 processors. Each processor had 40 cores and ran at 2GHz with a 
27.5MB L3 cache. The server had 512GB of DDR4 RAM and 5 SSD SATA Mix hard 

Fig. 4  Size vs. Time comparison The time of execution of our pipeline is linearly dependent on the size of the 
input FASTQ files
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drives, each with 800GB of storage and speeds of up to 6Gbps. L1PD was coded in 
Python and the system ran on Ubuntu 18.04.3 LTS.

Comparisons with BLASR and MUMmer4

Earlier we discussed the shortcomings of the seed-and-extend strategy for the detection 
of L1s, mentioning BLAST as an example. Two additional examples that use seed-and-
extend are BLASR and MUMmer4.

BLASR maps reads that are thousands of bases long, “with divergence between the 
read and genome dominated by insertion and deletion error”  [21]. Since our aim is to 
detect L1s, in order to provide BLASR with all L1s as the query sequences it was neces-
sary to collect all of the sequences from L1Base2 into a single file. Once this preliminary 
work was performed, BLASR detected L1s with reasonable accuracy and execution time. 
Our results were obtained after specifying a minimum percentage of similarity of 100% 
(using the –minPctSimilarity 100 argument).

MUMmer4 is a genome aligner that was initially designed to align bacterial genomes. 
This method is capable of handling any genome of biologically realistic length  [22]. 
MUMmer4 consists of two main pipelines, one to align nucleotide sequences (nucmer) 
and one to align protein sequences (promer). The file with all L1s that was created for 
use with BLASR was given to nucmer to determine how it would fare finding the L1s. 
Only 13,671 sequences were being searched for, and although the execution time was 
reasonable, there were 679,560 results, which is approximately 50 times more than the 
number of L1s.

L1PD detects L1s with only sixteen 50-mers, which don’t need to be provided as 
input. We wondered what would be the result of using those same 50-mers as input to 
BLASR [21] and MUMmer4 [22]. BLASR resulted in 516 hits, which are very few con-
sidering there are 16 probes and each should be detected within the 146 ORF-intact 
L1s ( 16× 146 = 2, 336 ). MUMmer4, in turn, returned no results, neither when set to 
find the Maximal Unique Match (MUM), which represents its default, nor when set 
to find the Maximal Exact Matches (MEM). Considering that BLASR detected all L1s 
only when provided with all of the L1 sequences in L1Base2 as input, this experiment 

Table 2  Pipeline running time

Sample FASTQ Size Pre-processing L1PD
(GB) (min.) (min.)

HG02153 3.05 93 29

HG00119 3.51 129 28

HG00114 8.03 198 27

HG01383 8.98 235 28

HG00304 9.23 227 28

HG01612 9.70 250 28

HG01883 15.93 354 28

HG01275 19.05 399 28

HG01840 29.33 642 29

HG00551 30.98 686 28
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clearly shows the high effectiveness of L1PD in detecting L1s with a minimum of 
information. Table 3 summarizes these results, while Additional file 2 provides more 
detail.

L1PD Applications

Next, we present brief descriptions of applications that we implemented on the basis 
of L1PD.

Annotation

L1PD output is generated as a General Feature Format Version 3 (GFF3) file, which is 
the format used for genome annotations. GFF3 stores genome information features 
in nine, tab-delimited, text columns. Of the nine columns, L1PD fills the following 
seven:

•	 sequence id (chromosome where LINE-1 was found)
•	 source (“L1PD”)
•	 type (“mobile_genetic_element”)
•	 start (start position of the LINE-1)
•	 end (end position of the LINE-1)
•	 strand (“+” for forward strand and “-” for reverse strand)
•	 attributes (“Name=LINE1”)

In the GFF3 format, the strand field is preceded by the score field followed by the 
phase field. L1PD does not compute these fields, and therefore, we leave them blank. 

Table 3  L1PD vs. BLASR vs. MUMmer4

L1PD BLASR MUMmer4

Finding L1s in general Successful with no 
additional input

Successful with all L1s 
provided as input

Too many results with 
all L1s provided as 
input

Finding L1s with L1PD probes Successful Very few results No results

Fig. 5  Sample GFF3 output generated by L1PD
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The GFF3 files generated by L1PD are considered valid by the GFF3 Online Valida-
tor [23]. Figure 5 shows a sample of the first lines of an L1PD output file.

Copy Number Variations

As discussed earlier, the copy number variation (CNV) of L1s in a target genome may 
be critical for the diagnosis and prognosis of disease. The reliability of CNV depends 
on a precise count of L1s, such as the one provided by L1PD. We expressed CNV as a 
percentage of gain or loss of L1 copies in the GRCh38 genome. We refer to this as CNV 
percentage of gain (CNVPG), as defined by:

where SPC is the subject pattern count and RPC is the reference pattern count.
Our application used GCRh38 as reference, but the user can replace this with any 

genome of interest.
We computed CNVPGs of genomes stored as FASTQ files in the 1000 Genomes Pro-

ject [13]. Table 4 shows some of the CNVPG values obtained. Positive numbers repre-
sent gains, while negative numbers represent losses.

Distribution of LINE‑1 insertions

Using the matplotlib Python module we generated a histogram of the L1 counts per 
chromosome for the target genome and those of GRCh38DH, which is the version of 
the GRCh38 genome used by the 1000 Genomes Project to account for decoy sequences, 
alternative haplotypes and Epstein-Barr Virus (EBV).

Figure 6 shows a histogram in PNG format, generated by L1PD. The x-axis in the his-
togram represents the chromosomes of the reference genome and each bar is the num-
ber of L1 copies in that particular chromosome. Besides a visualization of the CNVPG, 
these histograms serve to also visualize the distribution of L1 insertion sites on the tar-
get genome.

Additionally, these histograms are instrumental in the visualization of anomalous 
L1 counts. Figure 7 compares the L1 counts of a chromosome to which copies of L1s 
have been randomly removed or added, where the x axis represents the position (offset) 

CNVPG =
SPC − RPC

RPC
× 100,

Table 4  Sample of CNVPG values

Sample Pattern count CNV value

HG02153 8,137 − 0.02457

HG00119 8,139 0

HG00114 8,140 0.01229

HG01383 8,138 − 0.01229

HG00304 8,135 − 0.04915

HG01612 8,128 − 0.13515

HG01883 8,136 − 0.03686

HG01275 8,140 0.01229

HG01840 8,126 − 0.15973

HG00551 8,131 − 0.09829
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within the chromosome where the L1s are detected. This visualization can be particu-
larly useful when searching for correlations between disease phenotype and the number 
of L1 copies, as would be seen during tumor development and progression.

Fig. 6  Histogram of LINE-1s per chromosome

Fig. 7  Effect on LINE-1 distribution after random LINE-1 insertion/deletion in Chrm X
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Conclusion
An alternative methodology is proposed here to the traditional seed-and-extend 
strategy to study L1s present in human genomes. We believe that pattern matching is 
ideally suited for the detection of genome segments sharing common subsequences, 
but impacted by truncation or gains and losses of segments over the life of the host 
organism. The proposed strategy sows a set of probe segments onto a target genome 
and searches for a characteristic pattern in the seeds. In this manner, the heuristics 
elements associated with seed-and-extension methods can be avoided, with pattern 
matching taking the place of the extension phase (seed-and-pattern match).

We discussed the results of L1PD, a software implementation of the pattern match-
ing strategy for the identification of L1 segments in target genomes. Our results showed 
that the selected probes and associated patterns successfully detected all ORF-intact and 
ORF2-intact L1s. By adjusting the L1PD input parameters of m, t, and δ , it was possible 
to detect a larger number of non-intact L1s but this increased the number of false posi-
tives (precision vs. recall).

We also examined L1PD as an annotation tool with its GFF3 output, and the use of 
L1PD in the estimation of L1 copy number variations, as well as the distribution of L1 
insertions into a given chromosome.

We also assessed the ability of L1PD to detect changes in the number of L1 copies 
using synthetic data. Our results validate the use of L1PD as a tool for establishing a 
reliable correlation between the number of L1 copies and the stages of a L1 evolution, as 
would be seen during progression of L1-associated diseases.

In summary, the pattern matching strategy can be effectively used for the detection 
of L1 genome segments. Its implementation in L1PD yielded an economical method in 
terms of time and computing space. The current running time of the L1PD algorithm 
is nearly independent of the size of the genome. The performance of the pipeline is, 
however, affected if it’s necessary to assemble genomes from reads stored as FASTQ 
files.

The recall of L1PD could be improved by using 75-mer probes instead of 50-mers. 
Indeed, the use of 75-mers for mrFAST can result in a significant recall improvement, 
as reported by Phan et al.  [24]. Their 50-mer tests gave a recall comparable to the one 
obtained by L1PD. In our implementation we made the decision to keep 50-mers simply 
because there are far fewer 75-mers than 50-mers with columns of 95% or more base 
repeats in the alignment of ORFs in the L1Base2 database. Thus, a change to 75-mers 
would result in fewer probes, which, in turn, makes it difficult to find patterns that are 
strong enough to eliminate extensions confidently. It may be possible to work around 
this problem by relaxing some of the other requirements for the probes. For example, 
lowering the 95% column-wise similarity to a lower percentage.

mrFAST was used due to its focus on structural variations. However, it is possi-
ble to experiment with some of the more recent aligners, such as PuffAligner  [25], to 
see whether improvements can be realized. Additionally, future versions of L1PD may 
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include a VCF/BCF mode so that the user may start off by providing their own .vcf/.bcf 
files.

Availability

The source code for L1PD is available under a Creative Commons Attribution-ShareA-
like 4.0 license at https://​github.​com/​juan-​lopez/​L1PD. The code consists of several shell 
scripts, a Python script, a FASTA file with the probes, as well as sample output files. The 
shell scripts should run under most Unix-like systems.

L1PD may be executed in one of three modes:

•	 Genome mode
•	 BAM/CRAM mode
•	 FASTQ mode

BAM/CRAM mode automatically invokes Genome mode, and FASTQ mode automati-
cally invokes BAM/CRAM mode, as shown in Fig. 8.

Software requirements and required input

Genome mode For Genome mode, which is always executed (directly or indirectly), 
mrFAST must be installed, as well as Python 3 along with the Matplotlib and Numpy 
packages. The only required input for L1PD in this mode is the subject genome, although 
there are other optional inputs available.

Fig. 8  L1PD mode flowchart

https://github.com/juan-lopez/L1PD
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BAM/CRAM mode BAM/CRAM mode requires BCFtools (version 1.11 or newer) 
to be installed. The required input for this mode are a BAM/CRAM file and the cor-
responding reference genome that was used for the alignment, although there are other 
optional inputs available.

FASTQ mode FASTQ mode requires BWA and Samtools (version 1.11 or newer) to be 
installed. The required input for this mode are paired-end FASTQ files and a reference 
genome, although there are other optional inputs available.

FASTQ mode is included as an option for users that start out with reads in FASTQ 
format and who do not have a fully assembled genome. However, the user may opt to 
use a different reference-free assembly strategy, and then use that assembled dataset in 
Genome mode.
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