Zhou et al. BMC Bioinformatics

(2022) 23:418

BMC Bioinformatics

https://doi.org/10.1186/512859-022-04909-2

RESEARCH Open Access

Novel six-gene prognostic signature based

®

Check for
updates

on colon adenocarcinoma immune-related

genes

Rui Zhou'", Zhuowei Gao? and Yongle Ju'"’

Rui Zhou and Yongle Ju
contributed equally to this work

*Correspondence:
richardjué6@163.com

! Surgical Department

of Gastrointestinal Surgery,
Shunde Hospital of Southern
Medical University, No. 1

Jiazi Road, Shunde District,
Foshan 528399, Guangdong,
China

2 Medical Department

of Traditional Chinese Medicine,
Shunde Hospital of Guangzhou
University of Traditional Chinese
Medicine, No. 12, Jinsha Avenue,
Shunde District, Foshan 510006,
Guangdong, China

B BMC

Abstract

Background: Colon adenocarcinoma (COAD) is one of the most common gastroin-
testinal tumors worldwide, and immunotherapy is one of the most promising treat-
ments for it. Identifying immune genes involved in the development and maintenance
of cancer is key to the use of tumor immunotherapy. This study aimed to determine
the prognostic value of immune genes in patients with COAD and to establish an
immune-related gene signature. Differentially expressed genes, immune-related genes
(DEIGs), and transcription factors (DETFs) were screened using the following databases:
Cistrome, The Cancer Genome Atlas (TCGA), the Immunology Database and Analysis
Portal, and InnateDB. We constructed a network showing the regulation of DEIGs by
DETFs. Using weighted gene co-expression network analysis, we prepared 5 co-
expressed gene modules; 6 hub genes (CD1A, CD1B, FGF9, GRP, SERPINET, and F2RL2)
obtained using univariate and multivariate regression analysis were used to construct
a risk model. Patients from TCGA database were divided into high- and low-risk groups
based on whether their risk score was greater or less than the mean; the public dataset
GSE40967, which contains gene expression profiles of 566 colon cancer patients, was
used for validation.

Results: Survival analysis, somatic gene mutations, and tumor-infiltrating immune
cells differed significantly between the high- and low-risk groups.
Conclusions: This immune-related gene signature could play an important role

in guiding treatment, making prognoses, and potentially developing future clinical
applications.

Keywords: Colon adenocarcinoma, Immunotherapy, Cancer prognosis, Prognostic
prediction model, Prognostic risk model, Immune-related genes

Background

Colorectal cancer (CRC) is one of the most common digestive system malignancies,
accounting for approximately 1.2 million new cases and 600,000 deaths every year world-
wide [1]. More than 2.2 million new CRC cases and 1.1 million deaths are projected in 2030
[2]. Colon adenocarcinoma (COAD) is the most common histopathological type of CRC. It
often evolves into invasive cancer due to gene mutations and continuous accumulation of
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colonic adenomatous lesions [3]. Current treatments for patients with CRC include surgery,
radiation, chemotherapy, targeted therapy, and immunotherapy. The 5 years survival rate
exceeds 90% who undergo curative surgery for patients with localized tumor [4]. However,
most patients are in the middle to late stages of the disease when diagnosed, in which case
the 5 years survival rate decreases to approximately 10% [5]. The resistance of cancer cells
to the immune response has been recognized as a new sign of cancer, and in recent years
specific immune checkpoint therapeutic techniques have been extensively investigated
[6]. Immune checkpoint inhibitors (ICIs), which manipulate the immune system to reacti-
vate the antitumor immune response by blocking immune checkpoint proteins (PD-1 and
CTLA-4) or their ligands (PD-L1), have been shown to have significant therapeutic effects
in several cancers. However, immunotherapy does not achieve better efficacy in all CRC
patients. Thus, it is equally important to understand the tumor immune microenvironment
to explore tumor-associated immune signature biomarkers [7]. Moreover, characterizing
immune function in different responding populations could help improve the efficacy of
immunotherapy on CRC.

It has been reported that polygenic prediction models possess better predictive ability
than single gene models for cancer prognosis. There have been a growing number of recent
articles about immune-related genes predicting the risk of colon cancer. Ma et al. reported
a prognostic model based on 13 immune-related genes [8], Wang et al. [9] also identified a
novel prognostic signature of immune-related genes for CRC patients. A different prognos-
tic model based on another 13 immune-related genes was recognized by Wang’s group [10].
However, the complexity and diversity of the data and the way in which this information
can be used effectively is a formidable challenge. Methods for online public datasets analy-
sis have not been standardized to date, so here we also provide our results for readers to
compare. The combination with other similar predictive models will contribute to explain
the predictive role of immune-related genes in COAD prognosis more comprehensively.

Accordingly, exploring the underlying connection between immune-related genes
involved in the development and progress of COAD may conduce to build a prognostic
prediction system for COAD. First, we used cancer patient information from the TCGA
[11], ImmPORT, InnateDB, and Cistrome online databases to identify 6 immune-related
genes that are associated with the prognosis of COAD patients. Next, we incorporated
these six genes into the study accordingly to establish a risk model that predicts the survival
prognosis of patients with COAD. Based on risk scores, we successfully divided COAD
patients into low-risk and high-risk groups, which not only had different COAD progno-
sis, but also exhibited different gene expression profiles and different tumor-infiltrating
immune cell characteristics. Targeting immune-related genes can deepen our understand-
ing of the role that tumor immunity plays in COAD. This risk assessment model could pro-
vide more guiding significance for predicting the prognosis and even precision treatment of
COAD patients.

Results

Data processing and identification of differentially expressed immune-related genes
(DEIGs), genes (DEGs), and transcription factors (DETFs)

The transcriptome RNA sequencing data and clinical materials of 514 patients with
COAD were obtained from TCGA. The screening criteria for DEGs between tumors
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and normal samples was set as a false discovery rate (FDR) < 0.05 and |log fold change
(FC)|> 1, a total of 7782 differentially expressed genes were identified (Fig. 1A), B). A
list of 2660 immune genes was obtained from the Immunome database, which were
downloaded from InnateDB and ImmPORT databases; a total of 649 DEIGs were
obtained from the screening (|log FC|> 1, FDR<0.05) (Fig. 1C, D). We also obtained
318 transcription factors (TFs) from the Cistrome program and 67 DETFs from
screening (Fig. 1E, F).
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Fig. 1 A Heatmap of 7782 differentially expressed genes (DEGs) in COAD tissues and normal tissues from the
TCGA database. B Volcano plot of DEGs. C Heatmap of 649 differentially expressed immune-related genes
(DEIGs) in COAD tissues and normal tissues from ImmPORT and InnateDB databases. D Volcano plot of DEIGs.
E Heatmap of 67 differentially expressed transcription factors (DETFs) from Cistrome Project. F Volcano plot of
DETFs
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Functional analysis of DEIGs
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-

ment analyses of the DEIGs were conducted. The GO-biological process (BP) analysis
indicated that the DEIGs were mainly involved in B cell immunoglobulin-mediated
immune responses, complement activation, and regulation of immune system pro-
cesses (Fig. 2A, B). The KEGG analysis indicated that the DEIGs were mainly involved
in cytokine—cytokine receptor interaction, viral protein interaction with cytokines
and cytokine receptors, chemokine signaling pathways, the IL-17 signaling pathway,
neuroactive ligand—receptor interactions, and the nuclear factor (NF)-k B signaling

pathway (Fig. 2C, D).
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Fig. 2 A Bubble diagram of the gene ontology (GO) enrichment analysis of DEIGs. B Circle diagram of the GO
enrichment analysis of DEIGs. C Bubble diagram of the Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis of DEIGs. D Circle diagram of the KEGG enrichment analysis of DEIGs
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Building the DEIG and DETF interaction network

The correlation between DEIGs and DETFs was obtained using these screening crite-
ria: cor>0.5 and p <0.001. The correlation network diagram was drawn using Cytoscape
(Fig. 3). The specific correlation results are shown in Additional filel: Table S1.

Weighted gene co-expression network analysis (WGCNA) of DEIGs

WGCNA [12, 13] identifies gene modules with similar expression patterns by calculat-
ing gene expression relationships, analyzing relationships between gene modules and
phenotypes, and mapping the regulatory network between genes in the gene module
and central genes (hubs). The WGCNA package in the R software was used to divide
DEIGs into five modules (“MEgreen,” “MEblue,” “MEbrown,” “MEyellow;” and “MEgrey”)
(Fig. 4). The optimal power value was 4. Prognostic models were built based on the mini-
mal p-value (<0.05). Genes in the green module were selected for subsequent analysis.

Obtaining immune genes related to the prognosis of COAD patients

After obtaining the “MEgreen” gene module, univariate regression analysis was per-
formed on the clinical data of COAD patients in the TCGA and Gene Expression
Omnibus (GEO) databases. Nine genes were screened as prognosis-related genes
(CDIA, CDI1B, FGF9, GRB, OXTR, SPHK1, BGN, SERPINEI, and F2RL2) using p < 0.05

; v - Vi

Fig. 3 Regulatory networks between DEIGs and DETFs. Green circles represent DEIGs, purple triangles
represent DETFs, and red lines represent positive regulation. The thicker edge represents the stronger the
correlation between DEIGs and DETFs
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Module—trait relationships
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Fig. 4 A Weighted gene correlation network analysis (WGCNA)-identified five gene co-expression modules
("MEgreen,”"MEblue,“MEbrown,“MEyellow,"and “MEgrey”). B Hierarchical clustering dendrogram of DEIGs.
Different colors represent highly connected gene modules containing a cluster of functionally related genes

as the selection criterion. The results of univariate analysis are shown in Fig. 5A. The
Kaplan—Meier (K-M) curves of nine genes in COAD patients were plotted using the
Survival package in R software (Fig. 5B-]).



Zhou et al. BMC Bioinformatics (2022) 23:418 Page 7 of 20

Building of a survival prognosis model and performing a survival analysis

The nine prognosis-related genes were included in a multivariate Cox regression analy-
sis. The inclusion criteria were p <0.05 and HR = 1. Six genes (CDIA, CDIB, FGF9, GRP,
SERPINE1, and F2RL2) were finally incorporated into the core model for risk calcula-
tion. The relationship between the genes and risk score is shown in Additional file2:
Table S2. The composite risk scores of patients in TCGA datasets were calculated. The
COAD patients were separated into low- and high-risk groups using the median risk
score as the cutoff. The prognostic model was built using TCGA data and verified in
the GEO datasets GSE40967. Further, we used the R software Survival and timeROC
packages to draw two groups of K-M and receiver operating characteristic (ROC)
curves, respectively (Fig. 6A-D), The R software ComplexHeatmap package was used
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Fig.5 A Forest map of univariate regression analysis of 9 immune-related immune genes from MEgreen
module in WGCNA analysis. B-J The K-M curve of 9 independent immune-related immune genes from
MEgreen module in WGCNA analysis



Zhou et al. BMC Bioinformatics (2022) 23:418 Page 8 of 20

to conduct a chi-square test between the demographics of the low- and high-risk groups
and draw the clinical correlation heat map (p <0.05, Fig. 6E). There were significant dif-
ferences between the two groups in the tumor (T), node (N), metastasis (M) and stages.
Univariate and multivariate Cox regression analyses revealed that age, T, stage, and risk
score were independent prognostic factors for patients with COAD (Fig. 7A, B).

Single-sample gene set enrichment analysis (ssGSEA) for low- and high-risk groups

The GO and KEGG enrichment analysis files (c5.go.v7.4.smbols and c2.cp.kegg.
v7.4.symbols) were downloaded from the GSEA database (http://www.gsea-msigdb.
org/gsea/index.jsp). GO and KEGG enrichment analyses of the high- and low-risk
groups were performed using the clusterProfiler and the org.Hs.eg.db packages in R.
GO enrichment analysis of the high-risk group indicated the main enrichment was in
keratinocyte differentiation, skin development, collagen-containing extracellular matrix

A 21 B -
o ©
(=} o
© 4 > ©J
g o é o
5 <
3 I 3 34
~ ~ Pid Risk signature
° e ~=— AUC at 1 years: 0.614 o Pid —— AUC at 1 years: 0.738
, —— AUC at 3 years: 0.586 ’ —— AUC at 3 years: 0.713
o JdF’ —— AUC at5 years: 0.596 o —— AUC at 5 years: 0.639
° T T T T T T ° b T T T T T
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity 1-Specificity
C Risk = High risk == Low risk D Risk <& High risk == Low risk
1.00 1.00
> 075 Z 075
= 3
Qo ©
8 8
S 050 5 050
o ©
g £
2 025 5 025
a p=0.013 @ p<0.001
0.00 0.00
01234567 89 1111213141516 o 1 2 3 4 5 6 7 8 9 10 1
Time(years) Time(years)
12
% High nskI 16109 7 4 3 3 2 0000 0O0O0O0O % Highrisk{ 223 167 103 54 27 21 13 10 7 5 4 3 1
¢ Low risk{ 56351144537130624218912177 56 45 29 16 10 6 4 1 o Lowrisk{223 176 102 652 29 19 14 10 5 5 2 2 0
01234567 8 910111213 141516 01 2 3 4 5 6 7 8 9 10 1112
Time(years) Time(years)
=0 1 VT TR RNV M TR WO TR 11 TR

Gender
.I Stage***

(UTTUIETONTNL YO YT TR TUTIT (RTTRTAT AR AT
I O 1 X P T T TIRTTTTE ATAM
AN AN O 0 O AT 0O AU AN -~
N

Risk
Age Gender Stage*** T M*** N*** Risk
M <=65 M FEVMALE M Stagel | Rl M vo BnNo M ow
[U>65 M MALE M stage Il T2 M1 B N1 M high
[ Stage I T3 unknow [l N2
M stagelv. W T4
unknow unknow
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the GEO database. B, D K-M analysis and ROC curves at 1, 3, 5 years of high- and low-risk groups in TCGA
database. E Clinicopathologic features including age, gender, stage, T, N, and M in high- and low-risk groups
was shown in the heatmap
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Fig. 7 A, B Univariate and multivariate Cox regression analysis of high-risk and low-risk groups. C, D GSEA on
GO enrichment analyses of high-risk and low-risk groups. E, F GSEA on KEGG enrichment analyses of high-risk
and low-risk groups

(ECM) external encapsulating structure development, and structural molecule activity.
The most significantly enriched KEGG pathways were axon guidance, ECM receptor
interaction, focal adhesion, the peroxisome proliferator-activated receptor (PPAR) sign-
aling pathway, and systemic lupus erythematosus. GO enrichment analysis of the low-
risk group indicated the main enrichment was in the activation of immune responses,
adaptive immune responses, immune response regulating signaling pathways, immu-
noglobulin production, and immunoglobulin complexes. The KEGG pathway indicated
enrichment in allograft rejection, asthma, autoimmune thyroid disease, the intestinal
immune network for immunoglobulin A (IgA) production, and primary immunodefi-
ciency (Fig. 7C-F).

Comparison somatic mutation in high- and low-risk groups

Somatic mutation profiles of patients with COAD downloaded from TCGA were ana-
lyzed and visualized using the R maftools package [14]. A total of 388 patients had muta-
tions; after removing samples with no amino acid mutation, 202 were high-risk and 184
were low-risk. The five genes with the highest somatic mutation rate in the high-risk
group were APC, TP53, TTN, KRAS, and SYNEI. Missense mutations were the most
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common category. The high-risk group had a higher mutation frequency than the low-

(2022) 23:418

risk group (Fig. 8A, B).

Analyzing the tumor-infiltrating immune cells of high- and low-risk groups

Next, we used CIBERSORT to estimate the proportions of 22 distinct immune cell types
(p<0.05) (Fig. 8E), The Wilcoxon signed-rank test was used to determine the differences
between tumor-infiltrating immune cells cells in the high-risk group. Resting dendritic
cells and follicular helper T cells were present in significantly higher fractions in low-risk
patients than in high-risk patients (p <0.05; Fig. 8C). The immune cell function of the
high-risk group was lower than that of the low-risk group with respect to adenomatous

A Altered in 202 (99.51%) of 203 samples. B Altered in 184 (99.46%) of 185 samples.
7156 652
. Lol ot e . P PR N1 T 1,,1..Ln L0 s Y
APC IR U 75% APC [TTTIN W 0w W 74% |
753 |IWARN T 0 I 54% |—1 7P53 MMM AN L 52% [
77N I i W T st 77V I L (I (W 0%
KRAS [l T Il W ok DE— KRASHEL ' NNNN UM BL W [40%
vver il W W W W WL N T 320 synerll Ml 1 W0 0 2se
PcCAME B TH T W LU 0] 31% ] PKSCAIL L T R T 26%
C: 1111 (LITAT [ 1 T mucts L0100 BT W I (W] N2e%
Ll I 23 FAT4ILL T EERETE 1 F2a
I I Zerxa LRI R 2%
m | RYR2 IR T T 21
LR BscN | LT |1 P T 19%
i PcLo | || Y ITTIT] T1o% N
HiT onans LI L LT TR LT T 210
[ LRP1B L LI LRI r e e Wl
1| onar11 Il o b e mn 1e%
I ABCAIZL Tl LT T T e
FBxw7 || L 111V AT
| 24 L] 1 LT U 3%
I csmp3 L |11 | RLREETCLEnn i 1s%
rez| | RN RN 5% .
Risk
= Nonsense_Mutation = Frame_Shift_ins Risk = Missense_Mutation ® Frame_Shift_ins Risk
= Frame_Shift_Del = In_Frame_Ins = high = Frame_Shift_Del In_Frame_Del = high
= Missense_Mutation = Multi_Hit = low = Nonsense_Mutation ® Multi_Hit = low
In_Frame_Del
C Risk B low B8 high D Risk E3 lowE3 high
3 1.00: . w
o .« 9
06 H
. el o ., ﬁ ﬁ' H #
. 0.75 # o, % ..
o
go4 o " . o Kl ﬁ L i
8 8 0.50 ol L 1
w @ o

P & P D LOL I OO
L S PP LOS SO S S NNINT IENT PN & @& D, SR TR $
a«”ég,é‘ &;? R Ty &\Q@@ @@g: sty & & & S &L (53\ \@é\ SEFFE S S °1§ e @rfod:s*‘o\'?‘ocf TR Q°°a §
5 S s R L s (AR SR SIS oy oebe
FE TS SIS S E LT TES TS SV SO ST S &8
F & LS & F L Lo 57 PSS & & & O S
M CHRESLEFTY TS £ O ST F a8 NS
S e A S & O ¥ & e $&
o & & & & K7 PO
& s A S
S §
N

E  1o0%

80%

60%

40%

Relative Percent

20% 4

0%

b M Mg 1 7

= B cells naive
= B cells memory

= Plasma cells

= Tocells CD8

T cells CD4 naive

# T cells CD4 memory resting
= T cells CD4 memory activated
= T cells follicular helper

= T cells regulatory (Tregs)

= T cells gamma delta

= NK cells resting

= NKcells activated

= Monocytes

= Macrophages M0

= Macrophages M1

= Macrophages M2

= Dendritic cells resting

= Dendritic cells activated

= Mast cells resting

= Mast cells activated

= Eosinophils

= Neutrophils

Fig. 8 A, B Somatic mutation in high- and low-risk groups. C Differences in infiltrating immune cell
distribution between high- and low-risk groups. D Differences in immune cell function between high- and
low-risk groups. E Proportion of infiltrating immune cells in high- and low-risk groups

Page 10 of 20



Zhou et al. BMC Bioinformatics (2022) 23:418 Page 11 of 20

polyposis coli (APC) co-inhibition, APC co-expression, T-cell function, and macrophage
function (Fig. 8D).

Comparison with other models

We compared four corresponding prognostic models: a seven-gene signature (Sun), six-
gene signature (Liang), twelve-gene signature (Mia), and seven-gene signature (Chen)
[15-18]. We took the median risk value of all samples as the division standard, divided
them into high- and low-risk groups, and used the four models to calculate the risk of the
patients in TCGA. The ROC and K-M curves for the four models are shown in Fig. 9A—
J. The values of area under the curve (AUC) for the four models at 5 years were 0.581,
0.521, 0.616, and 0.555, respectively, all significantly lower than our model (0.639). We
calculated the concordance indexes (C-indexes), which were used to evaluate the predic-
tion capability of the mixed-effect Cox model [20], of all models. The results showed that
our model exhibited the highest C-index value (0.704; Fig. 9K).

Verification of siximmune-related genes in external databases

The Tumor Immune Estimation Resource (TIMER) online database was used to analyze
the differential expression of six genes in this model in 17 types of tumors and adjacent
tissues. The CDIA, CDIB, GRB, SERPINEI, and F2RL2 genes were highly expressed in
tumor tissue. In contrast, FGF9 was highly expressed in normal colon tissue (Fig. 10). A
Human Protein Atlas (HPA) database search was performed to verify the protein expres-
sion levels of CDIA, CDI1B, SERPINE]I, and FGF9 (Fig. 11).

Discussion

Growing evidence suggests that the immune system plays a decisive role in the devel-
opment and progression of CRC. FDA approval of anti-PD-1 monoclonal antibodies,
as well as an anti-CTLA-4 monoclonal antibody, has improved the lives of some CRC
patients, suggesting that immunotherapy had significant anticancer potential. However,
immune checkpoint block could not achieve the desired response rate in all patients
with CRC. This suggests that we still face many challenges in early diagnosis and treat-
ment strategies for COAD, including a lack of awareness of high-risk patients, a lack of
clinically applicable biomarkers, and the precise treatment for high-risk populations.
Thus, we need to investigate the immune system intensively to understand how it inter-
acts with cancer cells and describe the molecular characteristics of the COAD tumor
immune microenvironment. More importantly, the research of predictive biomarkers
may bring new expectations for the immunotherapy of CRC. Most studies focus only
on a single molecule, but tumor development and metastasis are often the result of a
synergy between multiple molecules. A single biomarker is difficult to achieve the speci-
ficity and sensitivity required in detecting cancer, current evidence suggests predictive
models are more helpful than single biomarkers.

Therefore, in this current study, we developed a prognostic risk prediction model
based on 6 immune-related genes. First, 7782 DEGs and 649 DEIGs were screened
utilizing the TCGA database and InnateDB and ImmPORT databases. Next, WGCNA
identified a set of DEIGs with similar expression patterns, and univariate and multi-
variate COX regression analyses confirmed that 6 of these DEIGs had independent
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prognostic value for patients with COAD. Then, these six hub genes (CDIA, CD1B,
FGF9, GRP, SERPINE1, and F2RL2) were used to construct a risk score model to pre-
dict OS of COAD patients. Patients were divided into high- and low-risk groups, and
the two groups exihibited completely different T, N, M, and stages. Moreover, GSEA
analysis was used to derive differences in gene expression patterns between the high
risk and low risk groups, meanwhile CIBERSORT assessment yielded different char-
acteristics of tumor immune cell infiltration in the high- and low-risk groups. In the
present risk prediction model, the higher the risk score, the worse the prognosis of
the high-risk group and vice versa. The validation in the GEO database further con-
firmed the stability of this model. Thus, the successfully established immune-related
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Fig. 11 Differential protein expression of 6 prognostic genes in colon cancer and normal tissue using the
HPA database (2F2RL2 were not included). A, B CD1A expression in colon cancer and normal tissue. C, D
CD1B expression in colon cancer and normal tissue. E, F Fibroblast growth factor 9 (FGF9) expression in colon
cancer and normal tissue. G, H SERPINET expression in colon cancer and normal tissue
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gene model provides a new and effective method to predict the prognosis of COAD
patients.

Currently, many studies have demonstrated that immune-related genes can coordinate
and coordinate the onset and progression of cancer. CD1A is a lipid antigen-presenting
molecule whose expression can be induced in monocytes and dendritic cells. CD1B is
recognized as a marker by y0 T cells and plays an important role as an effector of tis-
sue injury, infection, and cancer development [19]; it also regulates the differentiation
and maturation of dendritic cells [20]. Fibroblast growth factor 9 (FGF9) plays a criti-
cal role in patients with colon cancer with resistance to epidermal growth factor recep-
tor (EGFR)-targeted therapy, and combination therapy with anti-EGFR inhibitor may
reverse drug resistance [21]. Gastrin-releasing peptide (GRP) may serve as an independ-
ent predictor of survival in patients with colon cancer [22]. SERPINE1 plays an essen-
tial role in remodeling the tumor microenvironment and the infiltration of immune cells
[23]; some noncoding RNAs influence the epithelial-mesenchymal transition of colon
cancer by regulating SERPINE] [24-26].

GO enrichment analysis of the high-risk group indicated the main enrichment was in
keratinocyte differentiation, skin development, collagen-containing extracellular matrix
(ECM) external encapsulating structure development, and structural molecule activity.
Pradella et al. [27] revealed that Unc-5 netrin receptor B (UNC5B) is an axon guidance
regulator whose expression is associated with tumor angiogenesis and poor prognosis.
Mitra et al. demonstrated that cell migration involves integrating ECM with the actin
cytoskeleton through transmembrane receptors [28]. Focal adhesion kinase (FAK) is
activated by the ECM, promoting the formation of focal adhesion complexes and focal
adhesion maturation [28—30]. Thus, the FAK signaling pathway may be activated in the
high-risk group, leading to colorectal cancer invasion in vitro and metastasis in vivo. The
most significantly enriched KEGG pathways were axon guidance, ECM receptor inter-
action, focal adhesion, the peroxisome proliferator-activated receptor (PPAR) signaling
pathway, and systemic lupus erythematosus. In colon cancer, the absence of PPARa and
PPARPB/S expression promotes cancer growth, and PPARy suppresses tumorigenesis
through the regulation of and interaction with -catenin [31-33]. Systemic lupus erythe-
matosus is associated with abnormal autoimmune reactions; however, the mechanisms
have not been identified. Colon cancer is one of the most common complications in gas-
trointestinal diseases [34]. Down-regulated molecular pathways in the low-risk group
included allograft rejection, asthma, autoimmune thyroid disease, intestinal immune
network for IgA production, and primary immunodeficiency. Asthma symptoms are
alleviated by reducing eosinophil production; previous studies have proposed that the
depletion of eosinophils due to asthma severely compromises antitumor immunity in
syngeneic and genetic models of colorectal cancer. This association is possibly due to
defective Thl and CD8"' T-cell responses [35]. Bacteria are linked to cancer [36], and
intestinal bacteria may make the tumor microenvironment more favorable for IgA pro-
duction. Consequently, IgAs are widely used as biomarkers for early cancer screening
[37-39]. Recent studies have indicated that patients with primary immunodeficiency
tend to have a higher cancer incidence because of genomic instability due to defective
DNA repair mechanisms [40, 41]. However, the association between autoimmune thy-
roid disease, allograft rejection, and colorectal cancer has not been found.
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Overall, the current study introduces an immune-related gene module as a novel
prognostic tool for COAD patients. The present study features a model based on a
comprehensive population database and high-throughput sequencing data, which was
successfully validated by subsequent testing in an external clinical cohort. Ultimately,
identifying the immune function profile of high-risk populations can help improve the
efficacy of immunotherapy for the precise treatment of CRC. Nevertheless, there are still
some limitations that need to be mentioned. First, as different bioinformatics algorithms
may lead to different results, the combination with other similar predictive models will
contribute to explain the predictive role of immune-related genes in COAD prognosis
more comprehensively. Second, transcriptome analysis does not reflect the molecular
mechanisms of COAD immunobiology, which may be better elucidated by proteom-
ics and/or metabolomics. Third, since this study is a retrospective study with statistics
from online databases, the validation of predictive effectiveness of the model in clinical
practice was required. Fourth, our predictive model can add predictive value to exist-
ing patient risk groupings. Combining risk scores, TNM systems and age synergistically
or complementarily is essential for clinical work. In conclusion, although we initially
explored the expression characteristics and immune associations of immune-related
genes, these genes have not been fully elucidated and deserve further in-depth study. In
the next work, we will continue to validate the prognostic accuracy of this model on a
large scale with more samples and more external experiments.

Conclusions

In summary, we created a six-gene prognostic model with good predictive capability in
both the training and validation sets. This model could help clinicians predict individual
risks of patients with COAD in the development of personalized COAD treatment.

Methods

Obtaining relevant data from network database

The gene expression and somatic mutation data of patients with COAD were obtained
through the TCGA data portal (https://portal.gdc.cancer.gov/) (Additional files 3 and 4).
Gene expression data and clinical information were downloaded from GEO databases
(https://www.ncbi.nlm.nih.gov/geo/). The immune signatures were obtained from the
ImmPORT (https://immport.niaid.nih.gov) and InnateDB databases (https://www.innat
edb.ca/). The list of TFs was obtained from the Cistrome Project (http://www.cistrome.
org/). Furthermore, the TIMER web tool (http://timer.cistrome.org/) was used to obtain
the genes in the tumor microenvironment. The c5.go.v7.4.symbols and c2.cp.kegg.
v7.4.symbols datasets were downloaded from MsigDB (http://www.gsea-msigdb.org/
gsea/index.jsp) on the GSEA website.

Identifying differentially expressed genes

Data extraction and integration were conducted using Perl (v5.32.1). DEIGs, DEGs, and
DETFs were analyzed using R version 4.1.1 and the relevant Bioconductor packages (e.g.,
limma v3.48.3 and edgeR v3.34.1) [42] according to the screening criteria of [log2FC|> 1
and FDR <0.05. Plots were generated using the R package ggplot2 (v3.3.5), and heatmaps
were drawn using the R package pheatmap (v1.0.12).
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DEIGs enriched and analyzed using GO and KEGG

GO and KEGG enrichment analyses of screened genes were performed using the
R package clusterProfiler. An FDR<0.05 was set as the cutoff criterion to identify
the outstanding GO terms and KEGG pathways visualized using bubble and circle
diagrams.

Correlation analysis between DEIGs and DETFs

Correlation analysis between DEIGs and DETFs was performed using the cor.test in
R software (cor > 0.5, p<0.001). Protein—protein interaction networks were generated
using Cytoscape (version 3.8.2) [43].

WGCNA of DEIGs

WGCNA was performed by applying the R package WGCNA to DEIGs to obtain a
different module. It was used to generate the module network plots using the R igraph
package. Subsequently, we determined the intersection of the module genes obtained
from the GEO and TCGA databases.

Immune-related immune genes obtained from intersection genes

Clinical information and gene expression for the univariate analysis were analyzed
using Cox regression, and the corresponding DEGs were screened out as prognostic
immune-related genes for further study at p<0.05 and |hazard ratio (HR)|=1.

Prognostic model construction

Based on the expression of screened genes from the previous step, a risk model was
built using multivariate Cox regression model analysis, calculated as follows: Risk
score = Expgenel x coefgenel + Expgene2 x coefgene2 + ... + Expgenen x coefgenen.
Exp represents the expression level of the gene and coef is the estimated regression
coefficient of the gene derived from the multivariate Cox analysis.

Evaluation and analysis of risk model

The RNA sequencing data of patients with COAD were obtained from TCGA data-
base and set as the training set, whereas the external validation cohorts were obtained
from the GEO dataset (GSE40967). The patients were then separated into high- and
low-risk groups using the mean risk score in the training set as the cutoff value. Using
the files downloaded from the MsigDB database, GO and KEGG enrichment analy-
ses were performed for high-risk and low-risk groups using R software. K-M analysis
and univariate and multivariate independent prognosis analyses were performed for
the two groups using the survminer and survival R packages and the forest plot was
drawn. The ROC curve and time-dependent ROC-based AUC were plotted using the
R package timeROC. We found a similar prediction model in the literature and com-
pared the predictive accuracy of the prognostic models using a C-index and plotting
ROC curves to compare the AUC values.
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Analyzing somatic mutation in high- and low-risk groups

The tumor mutation burden (TMB) was calculated as mutations per megabase (mut/
Mb). The tumor mutation of patients in the high and low-risk groups was analyzed
using TMB data. The R package maftools was used to analyze and visualize the
somatic mutation data.

Correlation analysis of tumor-infiltrating immune cells

The proportion of infiltrating immune cells was calculated using the CIBERSORT
algorithm [44] and the results were considered significant at p <0.05. The Wilcoxon
signed-rank test was used to analyze the differential abundance of infiltrating immune
cells and immune cell function between the low- and high-risk groups, and box plots
were created using the ggpubr package in R.

Validation of reliability of risk models in other databases

The TIMER (https://cistrome.shinyapps.io/timer/) [45] database was used to verify
the difference in gene expression between tumor and normal samples. Immunohis-
tochemistry and the HPA (https://www.proteinatlas.org/) [46] database were used to

compare protein expression between tumor and normal tissues.

Abbreviations

APC Adenomatous polyposis coli

AUC Area under the curve
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