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Abstract 

Background:  Development of new methods for analysis of protein–protein interac‑
tions (PPIs) at molecular and nanometer scales gives insights into intracellular signal‑
ing pathways and will improve understanding of protein functions, as well as other 
nanoscale structures of biological and abiological origins. Recent advances in compu‑
tational tools, particularly the ones involving modern deep learning algorithms, have 
been shown to complement experimental approaches for describing and rationalizing 
PPIs. However, most of the existing works on PPI predictions use protein-sequence 
information, and thus have difficulties in accounting for the three-dimensional organi‑
zation of the protein chains.

Results:  In this study, we address this problem and describe a PPI analysis based on 
a graph attention network, named Struct2Graph, for identifying PPIs directly from the 
structural data of folded protein globules. Our method is capable of predicting the PPI 
with an accuracy of 98.89% on the balanced set consisting of an equal number of posi‑
tive and negative pairs. On the unbalanced set with the ratio of 1:10 between positive 
and negative pairs, Struct2Graph achieves a fivefold cross validation average accuracy 
of 99.42%. Moreover, Struct2Graph can potentially identify residues that likely contrib‑
ute to the formation of the protein–protein complex. The identification of important 
residues is tested for two different interaction types: (a) Proteins with multiple ligands 
competing for the same binding area, (b) Dynamic protein–protein adhesion interac‑
tion. Struct2Graph identifies interacting residues with 30% sensitivity, 89% specificity, 
and 87% accuracy.

Conclusions:  In this manuscript, we address the problem of prediction of PPIs using a 
first of its kind, 3D-structure-based graph attention network (code available at https://​
github.​com/​baran​wa2/​Struc​t2Gra​ph). Furthermore, the novel mutual attention mecha‑
nism provides insights into likely interaction sites through its unsupervised knowledge 
selection process. This study demonstrates that a relatively low-dimensional feature 
embedding learned from graph structures of individual proteins outperforms other 
modern machine learning classifiers based on global protein features. In addition, 
through the analysis of single amino acid variations, the attention mechanism shows 

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Baranwal et al. BMC Bioinformatics          (2022) 23:370  
https://doi.org/10.1186/s12859-022-04910-9

BMC Bioinformatics

†Emine S. Turali-Emre and Paolo 
Elvati equal contributor

*Correspondence:   
baranwal.mayank@tcs.com

2 Systems and Control 
Engineering Group, Indian 
Institute of Technology, Bombay, 
India
Full list of author information is 
available at the end of the article

https://github.com/baranwa2/Struct2Graph
https://github.com/baranwa2/Struct2Graph
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04910-9&domain=pdf


Page 2 of 28Baranwal et al. BMC Bioinformatics          (2022) 23:370 

preference for disease-causing residue variations over benign polymorphisms, demon‑
strating that it is not limited to interface residues.

Keywords:  Protein–protein interaction, Deep learning, Structure-based prediction, 
Graph attention network

Introduction
Protein–protein interactions (PPIs) are fundamental to many biological processes. Anal-
ysis of the human proteome suggests that the majority of proteins function not alone 
but rather as part of multi-unit complexes [1]. Indeed, PPIs are the central part of signal 
transduction, metabolic regulation, environmental sensing, and cellular organization [2]. 
In these processes, PPIs can alter enzyme kinetics, facilitate substrate channeling, form 
new binding sites, render a protein inactive, or modify the specificity of a protein with 
respect to a substrate [3]. Due to the ubiquitous presence of PPIs in living systems, being 
able to characterize these interactions promises to further our understanding of cellular 
processes [4] and provide an indispensable tool for disease treatment and drug discov-
ery [5, 6]. PPI and their mathematical description are also essential for creation of pro-
tein analogs from other nanoscale building blocks, including but not limited to, lipids [7], 
sugars [8], polymers [9], nanoscale conjugates [10], and inorganic nanoparticles [11–13].

A number of strategies have been employed to decode PPIs aiming primarily at molec-
ular scale data and amino acid sequences  [14]. Traditionally, high throughput experi-
mental techniques such as two-hybrid screens  [15], tandem-affinity purification  [16], 
and mass spectrometry  [17] have been applied to create protein interaction networks. 
Concerns about insufficient accuracy [18], low experimental throughput [19] and high 
cost  [20] of these methods, however, have motivated computational approaches that 
can complement traditional and robotic experimental protocols. Computational meth-
ods can predict whether proteins will interact based on data for the proteins’ genetic 
context, amino acid sequences, or structural information. Genomics analyses consider 
factors such as gene fusion [21], conservation across common species (phylogenetic pro-
filing) [22], and evolutionary history [23] when determining if a pair of proteins interact.

Typical computational techniques for PPI analysis use the amino acid sequences of 
the two proteins to determine whether interactions occur [24, 25]. A number of features 
such as frequency of common sub-sequences [26] and auto-covariance [27] have been 
proposed to convert sequences of different lengths into a uniformly sized representa-
tion. Sequence based methods have recently been able to leverage protein databases and 
machine learning techniques to make high accuracy predictions. Three-dimensional 
(3D) structure of protein–protein complexes from sequence can be predicted by CO-
threading algorithm, (COTH) that recognizing templates of protein complexes from 
solved complex structural databases. COTH aligns amino acid chain sequences using 
scoring functions and structural information  [28]. The DeepPPI model  [29] predicts 
interactions using an artificial neural network, which takes as input a feature vector that 
captures the composition, distribution, and order of the sequence. DeepFE [30] uses nat-
ural language processing algorithms on amino acid sequences to create low dimensional 
embeddings of the sequence suitable as inputs for neural network analysis. DeepFE, in 
particular, has been shown to be quite effective, and achieves prediction accuracy of 
94.78% and 98.77% on S. cerevisiae and human datasets, respectively. In fact, most deep 
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learning based methods have been shown to achieve high PPI prediction accuracy [31, 
32] owing to their significantly larger representation power. In addition to relying purely 
on sequence-based information, modern machine learning methods often incorporate 
network-level information for PPI prediction. In a PPI network, each node represents a 
protein, while edges between them represent interactions. Thus, predicting interactions 
between any two nodes is a link-prediction problem in disguise. Recent methods have 
leveraged the network structure, along with using vectorized representation of amino 
acid sequences, to obtain stronger prediction performance [13, 33–37].

Despite their success, the above sequence based approaches do not generalize to 
broader classes of chemical compounds of similar scale as proteins that are equally 
capable of forming complexes with proteins that are not based on amino acids, and thus 
lack of an equivalent sequence-based representation. While the interaction of proteins 
with DNA can be accurately predicted  [38], the methods for machine learning-based 
predictions for protein complexes with high molecular weight lipids  [7], sugars  [8], 
polymers  [9], dendrimers  [39] and inorganic nanoparticles  [11, 12] that receive much 
attention in nanomedicine and nanodiagnostics [40, 41], are not widely known among 
experimentalists [42–48], although substantial strides in this direction were made with 
the development of unified structural descriptors for proteins and nanoparticles [13]. As 
a consequence, predictive computational approaches that take into account the structure 
of proteins and their variable non-proteinatious, biomimetic, and non-biological coun-
terparts become possible. Some methods predict interactions using the 3D structure of 
the proteins  [49, 50] use a knowledge-based approach to assess the structural similar-
ity of candidate proteins to a template protein complex. As this methodology requires 
detailed information on the larger complex, template-free docking approaches  [51] 
analyze the unbound protein components and identify the most promising interactions 
from a large set of potential interaction sites. While docking methods have shown suc-
cess for some proteins, they face difficulty with proteins undergoing conformational 
changes during interaction [52]. Many of these structural approaches have also served 
as the basis for machine learning models. Zhang et al. developed PrePPI [53] which uses 
amino acid sequence, and phylogenetic features as inputs to a naive Bayes classifier. 
Northey et al. developed IntPred [54] which segments proteins into a group of patches 
that incorporates 3D structural information into a feature set to predict interaction with 
a multi-layer perception network. These models are trained on carefully curated interac-
tion databases describing both binary interactions between proteins, and corresponding 
interfacing sites or atoms.

In this work, we make the first step toward a generalized method to assess supra-
molecular interactions of proteins with other nanostructures. The proposed method 
determines the probability of formation of protein–protein complexes on a nanoscale 
representation of proteins from crystallographic data, as contrasted to amino-acid 
amino sequence information. We develop a mutual graph attention network and a cor-
responding computational tool, Struct2Graph, to predict PPIs solely from 3D structural 
information. Instead of using several protein specific features, such as, hydrophobicity, 
solvent accessible surface area (SASA), charge, frequency of ngrams, etc., Struct2Graph 
uses a graph based representation of a protein globule obtained using only the 3D posi-
tions of atoms. This graph based interpretation allows for neural message passing [55] 
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for efficient representation learning of proteins. Struct2Graph builds upon our prior 
work on metabolic pathway prediction [56], where it is shown that an equivalent graph-
based structural representation of small molecules and peptides coupled with graph 
convolutional network, significantly outperforms other classifiers that involve comput-
ing various biochemical features as inputs. This approach also leverages generalization 
of graph theory to describe complex nanoscale assemblies similar to PPI [57].

Beyond the high accuracy of its PPI predictions, Struct2Graph offers a number of 
advantages. Similarly to the ML algorithms exploiting the idea of geometrical biomimet-
ics, Struct2Graph only requires the 3D structure of individual proteins. Furthermore, 
while in this paper we focus on protein interactions, by using only the positions of atoms 
in our analysis, this framework can be generalized to other molecular structures where 
3D information is available. Moreover, Struct2Graph is also able to provide insight into 
the nature of the protein interactions. Through its attention mechanism, the model 
can potentially identify residues that likely contribute to the formation of the protein–
protein complex. Unlike other models, Struct2Graph is able to produce this data in an 
unsupervised manner and thus does not require protein complex information which are 
often unavailable [58].

The key contributions of the proposed work can be summarized as:

•	 Graph convolutional network for PPI prediction: Struct2Graph uses a multi-layer 
graph convolutional network (GCN) for PPI prediction from the structural data of 
folded protein globules. The proposed approach is general and can be applied to 
other nanoscale structures where 3D information is available.

•	 Curation of PPI database: A large PPI database comprising of only direct/physi-
cal interaction of non-homologous protein pairs1 is curated, along with information 
on the corresponding PDB files. Special emphasis is based on curation of PDB files 
based on the length of the chain ID and highest resolution within each PDB file to 
ensure capturing of the most complete structure information of the protein of inter-
est.

•	 State-of-the-art prediction performance: Our method is capable of correctly predict-
ing the PPIs with an accuracy of 98.89% on the balanced set consisting of an equal 
number of positive and negative pairs. On the unbalanced set with the ratio of 1:10 
between positive and negative pairs, Struct2Graph achieves a fivefold cross valida-
tion average accuracy of 99.42%. Struct2Graph outperforms not only the classical 
feature-based machine learning approaches, but also other modern deep-learning 
approaches, such as Deep-PPI and DeepFE-PPI that use sequence information and 
feature selection for PPI prediction.

•	 Unsupervised prediction of important residues: The novel mutual attention mecha-
nism can potentially identify important residues for the formation of the protein–
protein complex. This importance can stem from either direct participation in the 
interaction process (i.e., binding site) or indirectly through contribution to appropri-

1  Based on the pairwise homology analysis comprising of 3677 unique proteins in our database, only 0.3% of the proteins 
were found to have BLAST e-value < 0.05 and 0.26% has < 0.001 , indicating statistically insignificant homologous rela-
tionships.
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ate protein folding that allows formation of the correct binding site geometry. The 
identification of important residues is tested for two different interaction types (nei-
ther part of the training set): (a) Proteins with multiple ligands competing for the 
same binding area, (b) Dynamic protein–protein adhesion interaction. Struct2Graph 
identifies interacting residues with 30% sensitivity, 89% specificity, and 87% accuracy.

•	 Analysis of single amino acid variation (SAV) dataset: Disease-causing mutations 
are known to be preferentially located within the interface core, as opposed to the 
rim. Of the known 2724 disease-causing SAVs and 1364 polymorphisms, our atten-
tion mechanism identifies 33.55% of all disease-causing SAVs as important (atten-
tion weights within top-20%), while 85.30% of all polymorphisms are identified as 
unimportant by the proposed attention mechanism, indicating significant overlap 
between the previously established SAV study and the important residues identified 
by the proposed attention mechanism.

Materials and methods
PPI database

Struct2Graph focuses on structure-based predictions and interaction sites of the pro-
tein pairs. Our PPI database is therefore produced based on only direct/physical interac-
tions of proteins excluding therefore weakly interacting and loosely associated nanoscale 
biomolecules. To build a large physical interaction database, comprising of only heter-
ologous pairs, we searched all possible databases available (STRING, BioGRID, IntAct, 
MINT, BIND, DIP, HPRD, APID, OpenWetWare). Not all PPI databases use the same 
publications and same ontologies to report the interactions. Consequently, it is not 
surprising that each database reports PPI differently. Therefore, only up to a 75% con-
cordance between all PPI databases is achieved [59]. For Struct2Graph, two of the larg-
est compiled databases, IntAct  [60] and STRING  [61] are chosen for further analysis, 
and results are compared to each other to find the true interactions. Only concordant 
matches between these two databases are chosen. Struct2Graph database is compiled 
from commonly studied organism’s (Saccharomyces cerevisiae, Homo sapiens, Escheri-
chia coli, Caenorhabditis elegans and Staphylococcus aureus) PPIs. For these organisms, 
IntAct provides 427,503 PPIs, and STRING provides 852,327 PPIs.

STRING distinguishes the type of interactions as “activation”, “binding”, “catalysis”, 
“expression”, “inhibition” and “reaction”. IntAct, on the other hand, describe the type of 
interactions as “association”, “physical association”, “direct association/interaction”, and 
“colocalization”. Only “direct association/interactions” from IntAct and “binding” from 
STRING were considered as physical interactions. We only choose concordant pairs of 
physical interactions from both databases. Therefore, extracting only physical interac-
tion data from the rest of the interactions reduces the actual number of PPIs to 12,676 
pairs for IntAct and 446,548 pairs for STRING. Negative PPI is extracted from the work 
that derives negative interaction from large-scale two-hybrid experiments [62]. The neg-
ative protein–protein pairs from the two-hybrid system are compared further with the 
database constructed from STRING and INTact, and only the pairs that are not involved 
in any interaction at all, are chosen. We further exclude the co-localized protein pairs in 
our analysis. Structure information for Struct2Graph is obtained from PDB files. Hence, 



Page 6 of 28Baranwal et al. BMC Bioinformatics          (2022) 23:370 

we only used the pairs which have associated PDB files. This reduces the total number 
of pairs to 117,933 pairs (4698 positive and 112,353 negatives). Some proteins are well-
studied as they are in the scope of current medical and biotechnological interest. As a 
result, there is more than one cross-reference to PDB files since various structures are 
accessible for these proteins. To find the proteins matched with PDB files, all proteins 
from the database are matched with UniProt accession numbers (UniProt Acc) and 
mapped with PDB files in UniProt [63]. Unfortunately, not all proteins are crystallized 
fully in each PDB file, and random choice of PDB file may cause incomplete information 
of the binding site of the protein. Therefore, we curated the PDB files based on the length 
of the chain ID and highest resolution within each PDB file to ensure that we capture the 
most complete structure information of the protein of interest. The chain length and the 
resolution of each protein’s crystal structure were obtained from the RCSB website [64]. 
The complete set of negative pairs was reduced to 5036 pairs to create a fairly balanced 
training sample with an approximately equal number of positive and negative pairs. For 
this curated database consisting of only heterologous pairs, we defined two classes, “0” 
for non-interacting (negative: not forming complexes) pairs and “1” for interacting (posi-
tive: forming complexes) pairs.

Mutual graph attention network for protein–protein pairs

We present a novel multi-layer mutual graph attention network (GAT) based archi-
tecture for PPI prediction task, summarized in Fig. 1. We refer to this architecture as 
Struct2Graph, since the inputs to the proposed GAT are coarse grained structural 
descriptors of a query protein–protein pair. Struct2Graph outputs the probability of 
interaction between the query proteins. Struct2Graph uses two graph convolutional 
networks (GCNs) with weight sharing, and a mutual attention network to extract rel-
evant geometric features related to query protein pairs. These extracted features are then 
concatenated and fed to a feedforward neural network (FNN) coupled with a Soft-
Max function, which finally outputs a probability of the two classes—‘0’ (negative pairs) 
and ‘1’ (positive pairs). This section first describes the preprocessing and fingerprinting 
procedure specifying how spatial information on protein pairs are converted into cor-
responding protein graphs, and then elaborates on different components of the Struct-
2Graph deep learning architecture.

Fig. 1  Struct2Graph schematic. Struct2Graph graph convolutional network (GCN) for incorporating mutual 
attention for PPI prediction. The GCN classifies whether or not a protein pair ( X (1) and X (2) on far left) interacts 
and predicts the interaction sites (on far right)
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Protein structure graph

The purpose of the graph construction step is to capture the salient geometry of the pro-
teins in a way that is amenable to further dimensionality reduction by the neural net-
work. There are many possible ways of constructing a graph from spatial coordinates 
of individual atoms, and each captures a different level of detail about the geometry of 
the protein  [13]. For instance, the protein-contact graph described in  [65] adds edges 
between three nearest neighbors and identifies the nodes as helices, sheets, and turns. 
Ralaivola et al.  [66] uses molecular fingerprints to prescribe contact graphs for chemi-
cal compounds. Pires et  al.  [67] employs a distance-based approach for constructing 
protein graphs by encoding distance patterns between constituent atoms. Cha et al. [13] 
pioneered multidimentional protein graphs with embedded chemical, geometrical and 
graph theoretical descriptors. Our approach to constructing protein graphs is inspired 
by the latter, however, it is generalizable to other non-protein structures as well. We first 
aggregate atoms into the amino acids that they constitute and define the position of an 
amino acid to be the average of the positions of its constituent atoms. These amino acids 
form the vertices of the protein graph. An edge is placed between two vertices if the 
distance between them is less than some threshold. Unlike the previous studies with 
7Å threshold [13], in this work, we use a threshold of 9.5Å for creating a protein graph 
from the mean positions of amino acids. This threshold was obtained empirically so as to 
render the underlying graph fully connected, while simplifying the graph representation. 
Note that while we use amino acids as constituent vertices of the protein graphs, the 
approach can be easily extended to multiresolution representation, where a vertex rep-
resents two or more amino acids. The coarse-grained representation opens up new pos-
sibilities for studying other nanoscale components of protein complexes, such as, lipids 
and polysaccharides, since, lowering the level of representation from all-atom to sub-
molecular can be easily generalized to other non-protein entities. Graphs with greater 
structural refinement can also be obtained by using functional groups as amino acids. 
Moreover, this geometric construction of protein graphs ensures that salient geometric 
features, such as spatial proximity of non-adjacent amino acids along the polypeptide 
chain are captured. A sequence based representation of proteins might not capture this 
geometrical structure as well (see Fig. 2).

The graph construction approach converts spatial information associated with a pro-
tein into an equivalent protein graph object G = (V , E) , where V is the set of vertices and 
E is the set of edges between them. In the context of protein graph in Fig. 2, vi ∈ V is the 
i th amino acid and eij ∈ E represents an edge between i th and j th amino acids, satis-
fying their proximity within the specified threshold of 9.5Å. These graph objects must 
be embedded into real-valued vector space in order to employ our machine learning 
framework. We use 1-neighborhood subgraphs [56] induced by the neighboring vertices 
and edges at 1-hop distance from a vertex. A dictionary of all unique subgraphs is con-
structed by scanning all protein graphs in the training database. Thus, each vertex within 
a protein is equivalently represented by an element in the dictionary.

Graph convolutional network acting on protein graphs

A graph convolutional network (GCN) maps graphs to real-valued embedding vectors in 
such a way that the geometry of the embedding vectors reflects similarities between the 



Page 8 of 28Baranwal et al. BMC Bioinformatics          (2022) 23:370 

graphs. The embedding portion of the GCN works as follows. To each vertex vi ∈ V , we 
associate a d-dimensional feature vector, which encodes the 1-neighborhood subgraph 
induced by the neighboring vertices and edges at 1-hop distance from a vertex. This is in 
contrast to explicit inclusion of amino acid specific features, such as, hydrophobicity, sol-
vent accessible surface area (SASA), charge, etc. In our encoding, similar to other stud-
ies [56, 68], each element of the dictionary of subgraphs is assigned a random unit-norm 
vector.

Each layer of the GCN updates all vertex features by first replacing each vertex feature by 
a normalized average over vertex features of all 1-hop neighboring vertices. This is followed 
by an affine transformation given by the trained weight matrices and bias parameters. In 
order to impart expressivity to the GCN architecture, each coordinate of the resulting affine 
transformed embedding vector is passed through a nonlinear activation function, such as, 
rectified linear unit (ReLU) or sigmoid activations. This process is repeated for all the sub-
sequent layers, and the output of the final layer is the newly transformed embedding (fea-
ture) vector that is propagated further to the mutual attention network. Here, the number 
of layers is a hyperparameter, while the weight matrices are learned from the training data 
in order to optimize performance of the entire system on the interaction prediction task.

More concisely, given input protein graphs G(1),G(2) with adjacency matrices A(1),A(2) 
consisting of N1,N2 vertices (amino acids), and quantities X (1)

0 ∈ R
N1×d , X (2)

0 ∈ R
N2×d 

representing the d-dimensional embedding of the vertex subgraphs of the query protein–
protein pair, respectively, an l-layer GCN updates vertex embeddings using the following 
update rule:

where Ã(m) = D̂(m)
− 1

2
Â(m) D̂(m)

− 1
2 denotes the normalized adjacency matrices, and 

m ∈ {1, 2} . Here, Â(m) = A(m) + I and D̂(m) is the degree matrix of Â(m) . Parameters Wt 
denote the weight matrix associated with the tth-layer of the GCN. The feature 

(1)X
(m)
t+1 = ReLU

(

Ã(m)X
(m)
t Wt

)

, for all t ∈ {0, . . . , l − 1},

Fig. 2  Protein and protein graph. Illustration of extracted protein structure graph (right) from the 
corresponding PDB description of a peptide segment (left) of the S. cerevisiae alpha-factor receptor. The 
graph is extracted by thresholding the distances between amino acids. The helical structure of the protein 
(left) gets captured in the corresponding protein graph (right) where, for example, amino acid 4 is linked with 
amino acid 7
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embeddings X (1)
l ∈ R

N1×d and X (2)
l ∈ R

N2×d produced by the final layer of GCN are fed 
to a mutual attention network and hereafter denoted as h(1) and h(2) , respectively, for 
notational convenience.

Mutual attention network for PPI prediction

The purpose of the proposed mutual attention network is two fold: (a) extract relevant 
features for the query protein–protein pair that mutually contribute towards prediction 
of physical interaction of proteins, (b) combine embedding matrices of dissimilar dimen-
sions N1 × d and N2 × d to produce a representative single output embedding vector 
of dimension (2d). Attention mechanisms were originally introduced for interpreting 
sequence-to-sequence translation models by allowing the models to attend differently 
to different parts of the encoded inputs. Since then, it has been adapted in other fields of 
deep learning, such as, computer vision [69], and bioinformatics [68].

The mutual attention mechanism proposed in this work computes attention weights 
[

αij
]

∈ R
N1×N2 and context vectors s(1) ∈ R

d , s(2) ∈ R
d from the GCN-transformed hid-

den embeddings h(1) and h(2) (as shown in Fig. 1). The sizes of these GCN-embeddings 
are N1 × d and N2 × d , respectively. For each residue i in the first protein, the GCN-
embedding is denoted by h(1)i  , which is d-dimensional. Similarly, the embedding of the 
j th residue in the second protein is denoted by h(2)j  . Depending on the sizes of the input 
proteins, N1 and N2 can be arbitrary, and we want our Struct2Graph model to be invari-
ant to the sizes N1 and N2 . This is achieved using learnable weights U and V of sizes 
d × d each, and a weight vector w ∈ R

d . In particular, the attention weights are com-
puted as:

Here U,  V and w are trained in an end-to-end fashion along with the weights of the 
GCN. These attention weights are then translated to context vectors s(1), s(2) (see Fig. 1) 
using the following knowledge selection procedure:

From the perspective of the first protein with N1 residues, the proposed knowledge 
selection process in  (3) takes the column average of the matrix of attention weights, 
resulting into an N1-sized vector η(1) . We then perform a SoftMax operation that out-
puts probability vector p(1) from the intermediate embedding η(1) . Finally, a d-dimen-
sional embedding, s(1) , is created as the weighted mean of the GCN-embedding of the 
first protein using probabilities of residues as the weights. A similar process is repeated 
for the second protein to obtain another d-dimensional embedding. Thus, while the final 

(2)αij = w⊺ tanh
(

Uh
(1)
i + Vh

(2)
j

)

.

(3)

η
(1)
i =

1

N2

N2
∑

j=1

αij , η
(2)
j =

1

N1

N1
∑

i=1

αij

p
(1)
i =

exp
(

η
(1)
i

)

∑N1

k=1 exp
(

η
(1)
k

) , p
(2)
j =

exp
(

η
(2)
j

)

∑N2

k=1 exp
(

η
(2)
k

) .

s(1) =

N1
∑

i=1

p
(1)
i h

(1)
i , s(2) =

N2
∑

j=1

p
(2)
j h

(2)
j
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embedding that forms the input to the feed-forward network (FFN) is a concatenation of 
the context vectors s(1) and s(2) , the corresponding probability vectors p(1) and p(2) cap-
ture the relative significance of the individual residues in both the proteins, respectively. 
Those vertices whose learned attention weights are large are likely to represent residues 
that participate directly or indirectly towards forming a protein–protein complex.

The context vectors s(1) and s(2) are then concatenated into a single context vector of 
dimensions 2d, which is used as input to a single-layer, fully connected feedforward neural 
network (FNN) represented by f (·) to produce a two-dimensional output vector. The FNN 
is parameterized by another weight matrix to be learned in an end-to-end manner. A final 
SoftMax layer is applied to produce a probability, one for each of the possible classes: 0 or 
1, as shown in Eq. (4). This output represents the classifier’s prediction of the probability 
that the two proteins interact.

The pseudocode below (Model details) summarizes the details of the proposed Struct-
2Graph model.

(4)yout = SoftMax

(

f
(

concat

[

s(1), s(2)
]))
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Results
As part of our assessment, we compare the performance of Struct2Graph for PPI pre-
dictions against a number of recent machine learning models. These methods include: 
(a) DeepFE model [30], where we train the natural language processing network on the 
same database used in the original publication and feed the embeddings into a fully con-
nected feedforward neural network. (b) DeepPPI [29], where we extract 1164 sequence 
features related to the amino acid composition, distribution, and order. A separate neural 
network is used for each protein in the protein–protein pair and their outputs are con-
catenated into a final network for classification. Furthermore, as was done in the origi-
nal publication [29], we implement these features into a number of traditional machine 
learning models [70], such as (c) Gaussian naive Bayes (GaussianNB) classifier, (d) Quad-
ratic discriminant analysis (QDA), (e) k-nearest neighbor (k-NN) classifier, (f ) Decision 
tree (DT) classifier, (g) Random forest (RF) classifier, (h) Adaboost classifier, and (i) Sup-
port vector classifier (SVC) [71]. All models are implemented in Python 3.6.5 on an Intel 
i7-7700HQ CPU with 2.8  GHz x64-based processor. For common machine learning 
classifiers, such as, GaussianNB, QDA, SVC, RF, DT, k-NN and Adaboost, we use the 
readily available implementation in the scikit-learn  [70] module. Deep learning classi-
fiers, in particular, DeepPPI  [72] and DeepFE-PPI  [73] are implemented in Keras  [74], 
while Struct2Graph is implemented in PyTorch [75].

For Struct2Graph, the hyperparameters of the models are tuned in order to achieve 
the reported accuracies. The tuning is obtained by performing grid search over the set 
of possible hyperparameter settings. The hyperparameters of our Struct2Graph imple-
mentation are as follows: optimizer: Adam optimizer [76] with learning rate � = 10−3 
and rate-decay of 0.5 per 10 epochs; total epochs: 50; number of GCN lay-
ers: l = 2 ; GCN embedding dimension: d = 20 ; loss function: binary cross-
entropy. For other competing methods, we use the tuned hyperparameters that are 
adopted from the original publications.

Performance on balanced databases

Table  1 summarizes the comparisons of Struct2Graph and various machine learning 
models for PPI prediction for a fivefold stratified cross validation study. In the cross vali-
dation, the 10,004 pairs (4698 positive and 5036 negatives) are randomly partitioned into 
five subsamples of equal size. Of these five subsamples, a single subsample is retained 
as the validation data for testing various machine learning models, and the remaining 
four subsamples are used as training data. In order to reduce the training time with our 
Struct2Graph model, 800 pairs are randomly sampled with replacement among the 8003 
pairs (80%) in each epoch, and the performance on the randomly chosen 800 pairs is 
used to update the parameters of the neural network. This modification not only reduces 
the training time considerably, but also injects noise into the training data to avoid any 
potential overfitting.

The performance is reported for various measures, such as, accuracy, precision, 
recall, specificity or the true negative rate, Matthews correlation coefficient (MCC), F 1
-score, area under the receiver operating characteristic curve (ROC-AUC), and nega-
tive predictive value (NPV) (see Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10). For a balanced 
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training set (Table 1), Struct2Graph outperforms any other existing machine learning 
models in the literature for all the measures (except for the recall, NPV, and ROC-
AUC scores) with an average accuracy and precision of 98.89% and 99.50%, respec-
tively. This is despite the fact that we significantly downsample the number of pairs in 
each epoch during the training process of the proposed Struct2Graph model.

Note from Table 1 that while QDA outperforms Struct2Graph in terms of recall and 
NPV scores, it does very poorly in terms of other measures indicating that the QDA 
classifier overestimates positive interactions resulting in high false positive counts. 
Another observation is that the performance of Struct2Graph is only slightly better 
than that of another deep learning PPI model, DeepFE-PPI for this balanced training 
set. However, as discussed below, DeepFE-PPI does not perform as well for unbal-
anced training set, where positive interactions are underrepresented among all inter-
actions, a case that often arises in practice.

The primary purpose of k-fold cross validation study is to measure the generaliza-
tion capabilities of a model. Bootstrap resampling, on the other hand, is primarily 
used to establish empirical distribution functions for a widespread range of statistics. 
It works by performing sampling with replacement from the original dataset, and at 
the same time assuming that the data points that have not been chosen, are the test 
dataset. We repeat this procedure several times and compute the average score as 

Table 1  Fivefold cross-validation performance analysis of several machine learning methods on 
balanced dataset (1:1)

Bold face numbers indicate the best performance

Note that the proposed Struct2Graph method outperforms all other methods on the majority of metrics

Method Performance (%) on balanced training set—1:1

Accuracy Precision Recall Specificity

GaussianNB 72.14 ± 2.91 98.41 ± 0.51 45.05 ± 6.10 99.24 ± 0.30

QDA 78.66 ± 3.44 70.43 ± 3.41 99.42 ± 0.40 57.90 ± 7.12

k-NN 94.19 ± 0.56 99.49 ± 0.08 88.83 ± 1.10 99.54 ± 0.07

Decision trees 96.20 ± 0.43 97.59 ± 0.28 94.75 ± 0.99 97.66 ± 0.29

Random forest 98.86 ± 0.29 99.45 ± 0.19 98.27 ± 0.49 99.45 ± 0.19

Adaboost 97.85 ± 0.26 98.76 ± 0.18 96.92 ± 0.51 98.78 ± 0.18

SVC 98.49 ± 0.33 99.44 ± 0.18 97.53 ± 0.61 99.45 ± 0.18

DeepPPI 97.22 ± 0.44 98.26 ± 0.82 96.14 ± 0.88 98.29 ± 0.83

DeepFE-PPI 98.64 ± 0.32 99.16 ± 0.28 98.12 ± 0.51 99.17 ± 0.28

Struct2Graph 98.89 ± 0.24 99.50 ± 0.36 98.37 ± 0.34 99.45 ± 0.42

Method MCC F1-score ROC-AUC​ NPV

GaussianNB 52.69 ± 4.38 61.53 ± 6.00 95.24 ± 0.33 64.46 ± 2.37

QDA 63.06 ± 5.23 82.40 ± 2.27 78.66 ± 3.43 99.05 ± 0.58

k-NN 88.89 ± 1.02 93.86 ± 0.63 98.79 ± 0.21 89.92 ± 0.89

Decision trees 92.45 ± 0.84 96.15 ± 0.46 96.36 ± 0.30 95.23 ± 0.61

Random forest 97.74 ± 0.58 98.86 ± 0.30 99.63 ± 0.08 98.30 ± 0.46

Adaboost 95.72 ± 0.52 97.83 ± 0.27 99.20 ± 0.08 96.94 ± 0.50

SVC 97.01 ± 0.66 98.48 ± 0.34 99.63 ± 0.09 97.58 ± 0.59

DeepPPI 94.47 ± 0.87 97.19 ± 0.44 99.28 ± 0.11 96.23 ± 0.81

DeepFE-PPI 97.29 ± 0.64 98.64 ± 0.32 99.52 ± 0.09 98.14 ± 0.50

Struct2Graph 97.79 ± 0.49 98.94 ± 0.20 99.55 ± 0.16 98.24 ± 0.42
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estimation of the performances of various classifiers. Table  2 summarizes the com-
parisons of Struct2Graph and various machine learning models on a balanced dataset 
for PPI prediction for a bootstrap resampling method repeated over five times. As 
before, we downsample the number of pairs in each epoch during the training pro-
cess of the Struct2Graph in order to speed up computation and avoid any potential 

Table 2  Bootstrap resampling performance analysis of several machine learning methods on 
balanced dataset (1:1)

Bold face numbers indicate the best performance

Note that the proposed Struct2Graph method outperforms all other methods on the majority of metrics

Method Performance (%) on Balanced training set—1:1

Accuracy Precision Recall Specificity

GaussianNB 71.90 ± 3.19 99.01 ± 0.38 46.39 ± 5.95 99.47 ± 0.23

QDA 54.46 ± 0.93 53.28 ± 0.77 99.96 ± 0.06 5.30 ± 1.74

k-NN 92.77 ± 0.22 99.38 ± 0.13 86.62 ± 0.50 99.41 ± 0.11

Decision trees 95.15 ± 0.51 97.13 ± 0.38 93.41 ± 0.88 97.03 ± 0.31

Random forest 98.70 ± 0.11 99.39 ± 0.18 98.10 ± 0.14 99.35 ± 0.18

Adaboost 96.61 ± 0.25 97.83 ± 0.40 95.60 ± 0.21 97.71 ± 0.44

SVC 98.05 ± 0.19 99.35 ± 0.15 96.87 ± 0.28 99.32 ± 0.15

DeepPPI 97.16 ± 0.40 98.04 ± 0.96 96.27 ± 0.84 98.06 ± 0.98

DeepFE-PPI 98.41 ± 0.12 98.81 ± 0.50 98.11 ± 0.45 98.73 ± 0.55

Struct2Graph 98.96 ± 0.19 99.40 ± 0.09 98.57 ± 0.35 99.47 ± 0.09

Method MCC F1-score ROC-AUC​ NPV

GaussianNB 53.40 ± 4.44 62.93 ± 5.81 96.04 ± 0.12 63.30 ± 2.72

QDA 16.43 ± 2.53 69.50 ± 0.66 52.63 ± 0.84 99.37 ± 0.83
k-NN 86.36 ± 0.40 92.56 ± 0.30 98.32 ± 0.16 87.31 ± 0.38

Decision trees 95.23 ± 0.55 95.27 ± 0.54 94.21 ± 0.71 93.18 ± 0.81

Random forest 97.41 ± 0.22 98.74 ± 0.11 99.58 ± 0.07 97.97 ± 0.17

Adaboost 93.25 ± 0.50 96.70 ± 0.23 99.00 ± 0.09 95.36 ± 0.29

SVC 96.13 ± 0.37 98.10 ± 0.20 99.53 ± 0.09 96.71 ± 0.28

DeepPPI 94.36 ± 0.81 97.14 ± 0.40 99.05 ± 0.14 96.34 ± 0.78

DeepFE-PPI 96.82 ± 0.25 98.45 ± 0.12 99.52 ± 0.05 97.99 ± 0.20

Struct2Graph 97.91 ± 0.38 98.98 ± 0.19 99.62 ± 0.17 98.50 ± 0.33

Table 3  Fivefold cross-validation performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:2)

Bold face numbers indicate the best performance

Method Performance (%) on unbalanced training set—1:2

Accuracy Precision Recall Specificity

DeepPPI 97.40 ± 0.44 98.64 ± 0.61 93.52 ± 1.64 99.35 ± 0.30

DeepFE-PPI 98.91 ± 0.09 99.00 ± 0.32 97.71 ± 0.33 99.51 ± 0.16

Struct2Graph 99.03 ± 0.24 99.13 ± 0.25 98.11 ± 0.58 99.53 ± 0.13

Method MCC F1-score ROC-AUC​ NPV

DeepPPI 94.16 ± 0.97 96.00 ± 0.72 99.19 ± 0.21 96.85 ± 0.76

DeepFE-PPI 97.54 ± 0.20 98.35 ± 0.13 99.56 ± 0.08 99.86 ± 0.16
Struct2Graph 97.87 ± 0.51 98.62 ± 0.32 99.47 ± 0.20 98.97 ± 0.34
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overfitting. The performance statistics for the Struct2Graph method with bootstrap 
resampling are very similar to the ones obtained with a fivefold cross-validation study. 
Struct2Graph is shown to outperform other existing machine learning models for all 
the measures (except for the recall and NPV scores) with an average accuracy and 
precision of 98.96% and 99.40%, respectively. Interestingly, the performances of the 

Table 4  Fivefold cross-validation performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:3)

Bold face numbers indicate the best performance

Method Performance (%) on unbalanced training set—1:3

Accuracy Precision Recall Specificity

DeepPPI 98.19 ± 0.58 98.73 ± 0.40 93.98 ± 2.43 99.59 ± 0.13

DeepFE-PPI 98.96 ± 0.27 98.30 ± 0.46 97.52 ± 0.88 99.44 ± 0.15

Struct2Graph 99.30 ± 0.22 99.17 ± 0.44 98.19 ± 1.09 99.71 ± 0.13

Method MCC F1-score ROC-AUC​ NPV

DeepPPI 95.15 ± 1.55 96.28 ± 1.24 99.27 ± 0.14 98.03 ± 0.78

DeepFE-PPI 97.21 ± 0.72 97.90 ± 0.55 99.51 ± 0.11 99.18 ± 0.29

Struct2Graph 98.20 ± 0.56 98.67 ± 0.41 99.49 ± 0.21 99.33 ± 0.38

Table 5  Fivefold cross-validation performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:5)

Bold face numbers indicate the best performance

Method Performance (%) on unbalanced training set—1:5

Accuracy Precision Recall Specificity

DeepPPI 97.78 ± 0.45 98.33 ± 0.39 88.20 ± 2.74 99.70 ± 0.07
DeepFE-PPI 98.97 ± 0.27 98.19 ± 0.49 95.60 ± 1.52 99.65 ± 0.10

Struct2Graph 99.13 ± 0.18 98.49 ± 0.85 96.63 ± 0.93 99.68 ± 0.19

Method MCC F1-score ROC-AUC​ NPV

DeepPPI 91.87 ± 1.68 92.97 ± 1.53 98.69 ± 0.50 97.69 ± 0.52

DeepFE-PPI 96.28 ± 1.00 96.87 ± 0.85 99.56 ± 0.25 99.12 ± 0.30

Struct2Graph 97.03 ± 0.56 97.55 ± 0.45 99.17 ± 0.25 99.26 ± 0.23

Table 6  Fivefold cross-validation performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:10)

Bold face numbers indicate the best performance

Method Performance (%) on Unbalanced training set—1:10

Accuracy Precision Recall Specificity

DeepPPI 98.24 ± 0.49 95.83 ± 2.60 84.33 ± 4.23 99.63 ± 0.23

DeepFE-PPI 99.17 ± 0.33 96.56 ± 1.09 94.19 ± 2.87 99.67 ± 0.10

Struct2Graph 99.42 ± 0.14 97.54 ± 1.28 96.43 ± 2.49 99.73 ± 0.16

Method MCC F1-score ROC-AUC​ NPV

DeepPPI 88.95 ± 3.14 89.66 ± 2.94 97.18 ± 1.24 98.45 ± 0.41

DeepFE-PPI 94.91 ± 2.07 95.35 ± 1.90 99.48 ± 0.32 99.42 ± 0.29

Struct2Graph 96.65 ± 1.12 96.96 ± 1.07 99.45 ± 0.70 99.63 ± 0.22
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DeepPPI and the DeepFE-PPI methods are marginally worse than that of the Ran-
dom Forest classifier on the balanced set. However, as the class imbalance increases, 
DeepFE-PPI is shown to outperform the Random Forest classifier. We have, thus, also 
included the Random Forest classifier for comparative analysis on the unbalanced 
datasets.

Performance on unbalanced database

In most practical scenarios, the number of negative pairs is expected to be larger than 
positive pairs, since only a small fraction of protein pairs interact within all possible 
pairs. We thus evaluate the performance of the deep learning models, Deep-PPI and 
DeepFE-PPI against the proposed Struct2Graph model on various unbalanced training 
sets, where the number of negative pairs outnumber the positive pairs. These results are 

Table 7  Bootstrap resampling performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:2)

Bold face numbers indicate the best performance

Method Performance (%) on Unbalanced training set—1:2

Accuracy Precision Recall Specificity

Decision trees 94.86 ± 0.58 95.67 ± 1.29 89.48 ± 0.79 97.79 ± 0.67

Random forest 98.74 ± 0.15 99.10 ± 0.17 97.33 ± 0.44 99.45 ± 0.09

DeepPPI 97.91 ± 0.38 98.37 ± 0.69 95.32 ± 1.40 99.21 ± 0.34

DeepFE-PPI 98.53 ± 0.20 98.41 ± 0.62 97.37 ± 0.31 99.16 ± 0.31

Struct2Graph 98.91 ± 0.24 99.17 ± 0.15 97.89 ± 0.17 99.52 ± 0.27

Method MCC F1-score ROC-AUC​ NPV

Decision trees 88.69 ± 1.28 92.47 ± 0.82 93.66 ± 0.58 94.47 ± 0.50

Random forest 97.25 ± 0.33 98.20 ± 0.22 99.71 ± 0.08 98.56 ± 0.24

DeepPPI 95.29 ± 0.85 96.81 ± 0.60 99.29 ± 0.25 97.70 ± 0.67

DeepFE-PPI 96.76 ± 0.45 97.88 ± 0.31 99.41 ± 0.17 98.59 ± 0.09

Struct2Graph 97.59 ± 0.51 98.43 ± 0.30 99.73 ± 0.18 98.87 ± 0.16

Table 8  Bootstrap resampling performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:3)

Bold face numbers indicate the best performance

Method Performance (%) on Unbalanced training set—1:3

Accuracy Precision Recall Specificity

Decision trees 95.72 ± 0.46 95.55 ± 0.74 87.98 ± 1.63 98.52 ± 0.26

Random forest 98.80 ± 0.14 98.29 ± 0.33 97.15 ± 0.34 99.39 ± 0.11

DeepPPI 97.78 ± 0.36 98.43 ± 0.42 92.60 ± 1.38 99.51 ± 0.13

DeepFE-PPI 98.86 ± 0.11 98.42 ± 0.54 97.30 ± 0.31 99.43 ± 0.20

Struct2Graph 99.01 ± 0.16 98.83 ± 0.37 97.42 ± 0.51 99.59 ± 0.13

Method MCC F1-score ROC-AUC​ NPV

Decision trees 88.88 ± 1.14 91.60 ± 0.88 93.26 ± 0.81 95.78 ± 0.61

Random forest 96.90 ± 0.39 97.72 ± 0.29 99.72 ± 0.05 98.98 ± 0.10

DeepPPI 94.04 ± 0.98 95.42 ± 0.77 99.06 ± 0.47 97.58 ± 0.44

DeepFE-PPI 97.08 ± 0.28 97.85 ± 0.20 99.34 ± 0.11 99.03 ± 0.05

Struct2Graph 97.46 ± 0.42 98.12 ± 0.32 99.75 ± 0.20 99.08 ± 0.18
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summarized in Tables 3, 4, 5 and 6 for several databases with varying ratios of positive 
to negative pairs: (a) 1:2 (2518 positive and 5036 negative), (b) 1:3 (1679 positive and 
5036 negative), (c) 1:5 (1007 positive and 5036 negative), and (d) 1:10 (504 positive and 
5036 negative). Note that the positive pairs for unbalanced databases are selected ran-
domly from the set of curated positive pairs. Struct2Graph again outperforms its deep-
learning counterparts consistently for this unbalanced case. Struct2Graph improvement 
increases when the ratio between positive and negative pairs becomes increasingly 
skewed. For instance, when the ratio of positive and negative pairs is 1:10, the precision 
and recall statistics for the Struct2Graph model are 97.54% and 96.43%, respectively, 
which are higher by 0.98% and 2.14%, respectively than the performance of the next best 
deep-learning model, DeepFE-PPI.

Table 9  Bootstrap resampling performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:5)

Bold face numbers indicate the best performance

Method Performance (%) on Unbalanced training set—1:5

Accuracy Precision Recall Specificity

Decision trees 95.56 ± 0.45 94.14 ± 0.79 80.91 ± 2.12 98.87 ± 0.16

Random forest 98.38 ± 0.19 98.25 ± 0.65 92.82 ± 1.07 99.63 ± 0.13

DeepPPI 97.96 ± 0.46 97.13 ± 2.71 90.58 ± 3.21 99.44 ± 0.57

DeepFE-PPI 98.90 ± 0.31 98.20 ± 0.29 95.64 ± 1.75 99.61 ± 0.07

Struct2Graph 99.16 ± 0.17 98.29 ± 0.64 97.08 ± 1.01 99.69 ± 0.13

Method MCC F1-score ROC-AUC​ NPV

Decision trees 84.72 ± 1.33 87.01 ± 1.18 89.89 ± 1.04 95.82 ± 0.55

Random forest 94.53 ± 0.70 95.45 ± 0.61 99.66 ± 0.15 99.03 ± 0.11

DeepPPI 92.58 ± 1.66 93.66 ± 1.46 98.96 ± 0.13 98.15 ± 0.61

DeepFE-PPI 96.24 ± 1.11 96.89 ± 0.94 99.49 ± 0.11 99.05 ± 0.16

Struct2Graph 97.03 ± 0.51 97.53 ± 0.41 99.71 ± 0.26 99.40 ± 0.23

Table 10  Bootstrap resampling performance analysis of deep-learning based machine learning 
methods on unbalanced dataset (1:10)

Bold face numbers indicate the best performance

Method Performance (%) on Unbalanced training set - 1:10

Accuracy Precision Recall Specificity

Decision trees 96.63 ± 0.46 91.66 ± 1.47 73.14 ± 2.93 99.26 ± 0.14

Random forest 97.85 ± 0.25 95.87 ± 0.68 82.12 ± 2.28 99.61 ± 0.06

DeepPPI 98.09 ± 0.77 95.30 ± 3.86 83.29 ± 7.49 99.58 ± 0.37

DeepFE-PPI 98.50 ± 0.46 96.56 ± 0.38 87.86 ± 5.00 99.66 ± 0.05

Struct2Graph 99.26 ± 0.15 97.04 ± 0.70 95.59 ± 0.73 99.67 ± 0.10

Method MCC F1-score ROC-AUC​ NPV

Decision trees 80.13 ± 2.06 81.33 ± 1.99 86.20 ± 1.48 97.07 ± 0.45

Random forest 87.60 ± 1.12 88.44 ± 1.11 99.49 ± 0.22 98.03 ± 0.32

DeepPPI 88.01 ± 4.96 88.69 ± 4.82 96.65 ± 1.60 98.35 ± 0.73

DeepFE-PPI 91.27 ± 2.80 91.92 ± 2.72 99.50 ± 0.20 98.69 ± 0.24

Struct2Graph 95.90 ± 0.60 96.31 ± 0.52 99.54 ± 0.22 99.50 ± 0.12
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Bootstrap resampling yields a very similar conclusion, where the Struct2Graph is again 
shown to outperform its deep-learning counterparts, as well as the Random Forest clas-
sifier, consistently for several unbalanced cases (see Tables  7, 8, 9 and 10). When the 
ratio of positive and negative pairs is 1:10, the accuracy, precision and recall statistics for 
the Struct2Graph model are 99.26%, 97.04% and 95.59%, respectively, which are higher 
by 0.76%, 0.58% and 7.73%, respectively than the performance of the next best deep-
learning model, DeepFE-PPI.

While a ratio of 1:10 reflects a significant class imbalance between positive and 
negative examples, the class imbalance in a protein interactome can potentially be 
of the order of 1:100 or even larger. In the absence of a PPI database (consisting of 
3D-structural information) with such huge class imbalance, prevalence-corrected 

Fig. 3  Prevalence corrected precision-recall curves for the balanced database. a AdaBoost classifier, b 
GaussianNB classifier, c kNN classifier, d SVC, e Decision tree classifier, f Random forest classifier, g DeepPPI 
classifier, h DeepFE-PPI classifier, i Struct2Graph (ours) classifier

Fig. 4  Prevalence corrected precision-recall curves for the unbalanced database. a DeepPPI classifier, b 
DeepFE-PPI classifier, c Struct2Graph (ours) classifier
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Precision-Recall Curves (PRCs) have been adopted [77] that reduce the false positive 
rate at the expense of the true positive rate. Figure 3 depicts the prevalence-corrected 
PRCs on the balanced (1:1) for several PPI classifiers. The computation of precision is 
suitably modified with r = 100 [77] for an expected ratio of 1:100 for positive to nega-
tive samples in the real-world data. PRCs best summarize the trade-off between the 
true positive rate and the positive predictive value (PPV) for a classifier using different 
probability thresholds. The AUC (area under curve) in Fig. 3i nearly approaches unity, 
thus guaranteeing excellent discrimination capability of the proposed Struct2Graph 
architecture. Figure  4 depicts the prevalence-corrected PRCs for the deep-learning 
classifiers on the unbalanced (1:10) dataset. As before, the AUC for the Struct2Graph 
architecture almost approaches unity.

Statistical test for comparing PPI prediction algorithms

Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 depict that the Struct2Graph outperforms other com-
peting classifiers on (almost) all metrics. On the other hand, other deep-learning based 
classifiers, such as the DeepPPI and the DeepFE-PPI, do not seem to perform as well as 
the Struct2Graph classifier, they still manage to get reasonably close to Struct2Graph on 
several performance measures. We, thus, compare these two classifiers with the Struct-
2Graph classifier using the Welch’s t-test to elucidate statistically significant evidence in 
favor of the Struct2Graph classifier. In particular, we compare the means of the proposed 
Struct2Graph model with the DeepPPI and the DeepFE-PPI models, respectively, across 
all folds of the cross-validation set for each metric using the one-sided Welch’s t-test. 
Figure 5 depicts the p-value statistical significance for rejecting the null hypothesis that 
means are equal. Here, the rows represent several performance measures, while the 
columns depict scenarios in which the model was trained beginning from the balanced 
(1:1), to unbalanced (1:2, 1:3, 1:5, 1:10) datasets. Recall that a p-value less than 0.05 is 
typically considered to be statistically significant. It can be seen that there is statistically 
significant evidence in favor of superior performance of the Struct2Graph classifier.

Fig. 5  p-value statistical significance when Struct2Graph is compared with a DeepPPI, b DeepFE-PPI, 
using the Welch’s t-test. The columns depict scenarios in which the model was trained beginning from the 
balanced (1:1), to unbalanced (1:2, 1:3, 1:5, 1:10) datasets
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Heterogeneity of the PPI database

The success of any machine learning algorithm is based on the quality of training data it 
is presented with. Of the 4698 positive and 5036 negative examples spanned across 3677 
unique proteins, we first want to make sure that the learning algorithms are not biased 
towards memorizing the training data [78], since some of the proteins in the database 

Fig. 6  Histogram of proteins with only positive interactions. Of the 3677 unique PDBs, 3453 PDBs are 
involved in only positive interactions, i.e., among all the protein–protein pair instances in our database, these 
3453 proteins do not feature in any non-complex forming instance. Moreover, of the 3453 PDBs with only 
positive interactions, nearly 82% unique PDBs are involved in fewer than 4 PPI examples. Consequently, for a 
classifier to memorize data and not “learn” to predict interactions would be extremely difficult without each 
PDB appearing in a relatively large number of PPI instances

Fig. 7  Histogram of proteins with only negative interactions. Of the 3677 unique PDBs, only 104 PDBs are 
involved in just the negative interactions, i.e., among all the protein–protein pair instances in our database, 
these 104 proteins do not feature in any complex forming instance. Moreover, of the 104 PDBs, 23 PDBs 
appear in less than 5 PPI examples. The total number of proteins that are involved in more than 5 PPI 
examples is a very small number (81), i.e., only 2.2% of the entire PDB database considered in our work
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are involved in positive only or negative only interactions. Figure 6 shows the distribu-
tion of number of interactions per protein that are involved in positive only interactions. 
It can be seen that nearly 82% of the unique proteins are involved in four or fewer posi-
tive only interactions. Consequently, for a classifier to memorize the training data and 
not learn to predict positive interactions would be extremely difficult without each pro-
tein appearing in a relatively large number of PPI instances.

Similarly, of the 3677 unique proteins, 104 unique proteins are involved in negative 
only interactions (do not form complexes). Figure 7 shows the distribution of number 
of interactions per protein that are involved in negative only interactions. As seen in 
the histogram, the total number of proteins with negative only interactions appear-
ing in more than five PPI examples is very small (81), and comprise of only 2.2% of 
the entire PDB database considered in our work. Thus, the distribution of data makes 
it implausible for learning algorithms to perform well just by memorizing the train-
ing data. The dataset also consists of 120 unique proteins that are involved in both 
positive and negative interactions. These 120 unique proteins appear in 6335 PPI 
instances in our database. Hence, it would be nearly impossible for any classifier to 
simply memorize the training data, and still be able to predict the interactions almost 
accurately on the test or validation set.

We further validate this by building a random forest classifier that is supplied with 
an input vector of length 3677. The specific choice of length of the input vector is 
directly related to the number of unique proteins in the database. We first create a 
dictionary of all the unique proteins and note down the order in which these unique 
proteins appear in the dictionary. Then, each unique protein is represented by a 3677-
long unit vector with all but one coordinate being zero. The coordinate correspond-
ing to the order of the protein in the dictionary is marked as 1. For predicting the 
interaction of two proteins, say proteins A and B, the unit vectors are summed and 
supplied to the random forest classifier as an input. Recall that the sum operation is 
permutation invariant, and thus interaction prediction for the pair (protein  A, pro-
tein B) is identical to that for the pair (protein B, protein A). Table 11 summarizes the 
performance of the random forest classifiers on balanced and unbalanced datasets, 
trained using only the labels of protein pairs and disregarding any structural informa-
tion. In the balanced scenario, the classifier can be trained with a reasonable accuracy 
of ∼ 91% on both training and test sets. This is still significantly smaller than accu-
racies obtained using Struct2Graph and other deep-learning based classifiers on the 
balanced set. However, as the training database is made more realistic (i.e., biased 

Table 11  Memorization test for the PPI database

Database Accuracy on train-set (%) Accuracy on 
test-set (%)

Balanced (1:1) 91.17 91.07

Unbalanced (1:2) 66.98 50.43

Unbalanced (1:3) 75.25 50.23

Unbalanced (1:5) 83.53 50.43

Unbalanced (1:10) 91.04 50.33
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towards significantly abundant negative examples), the performance on the training 
set drops, while the performance on the test set is completely random ( ∼ 50% ), i.e., 
the random forest classifier acts like a random predictor. In the extreme scenario, 
(1:10 ration between positive and negative examples), the training accuracy appears 
improved, largely because every time the classifier predicts a negative interaction, 
it is likely to be correct since the training set has an abundance of negative exam-
ples. However, on the test set comprising of approximately equal number of posi-
tive or negative examples, the prediction accuracy is still around 50% indicating zero 
learning.

Discussion
The success of Struct2Graph is attributed to the thorough analysis of structural 3D 
information embedded in the form of a graph, which predicts interactions better than 
sequence-based approaches  [13]. In addition, Struct2Graph can potentially identify 
residues that likely contribute to the formation of the protein–protein complex. This 
is achieved by considering the probability tuples {(pi, pj)} of different amino acids dur-
ing the knowledge selection process described in Eq. (3). These probabilities capture 
the relative importance of amino acids and thus reflect different amino acids’ contri-
butions towards interaction prediction. The amino acids with large relative probabili-
ties (top 20%) are identified as important for the formation of the protein–protein 
complex. This importance can stem from either direct participation in the interaction 
process (i.e., binding site) or indirectly through contribution to appropriate protein 
folding that allows formation of the correct binding site geometry.

A demonstration of the potential of Struct2Graph to identify specific interaction 
sites was performed on two example cases (neither part of the training set) with well-
described interacting residues from protein pairs in the literature. Specifically, we 
studied two different interaction types: (1) A protein with multiple ligands competing 
for the same binding area [79]; and (2) A dynamic protein–protein adhesion interac-
tion [80]. The reported interacting residues in these complexes are compared with the 
Struct2Graph’s highest probability residues (top 20%) using standard 2x2 confusion 
matrices. In aggregate (i.e., two case examples with a total of three interacting pairs), 
Struct2Graph identifies interacting residues with 30% sensitivity, 89% specificity, and 
87% accuracy. It should be noted that these protein pair examples are not in the train-
ing set, and Struct2Graph identifies these residues through its knowledge selection 
process in a completely unsupervised manner. Besides, as noted above, the identi-
fied residues could be critical for ensuring correct protein folding conformation and 
therefore indirectly important for predicting binding, but not captured by traditional 
analysis that focuses only on the specific interacting residues identified in the litera-
ture. Detailed results for each example are described:

(1)	 HMGB1 and PSMα1 compete for binding TLR4: Phenol soluble modulins (PSMs), 
short, amphipathic, helical peptides  [81], play a crucial role in Staphylococcus 
aureus virulence, one of the most common causes of human bacterial infections 
worldwide [82]. S. aureus has seven PSMs (PSMα1 − α4 , PSMβ1 − β2 , and δ-toxin) 
which have multiple functions including, cytolysis, biofilm structuring, and inflam-
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matory activation via cytokine release and chemotaxis. PSMs specifically trigger 
the release of high mobility group box-1 protein (HMGB1). Toll-like receptor-4 
(TLR4) interacts with HMGB1 activating nuclear factor NF-κB and proinflam-
matory cytokines production  [83]. However, S. aureus PSMsα1 − α3 significantly 
inhibit HMGB1-mediated phosphorylation of NF-κB by competing with HMGB1 
via interactions with the same residues of TLR4 domain [79]. As such, the specific 
interacting residues for these pairs HMGB1:TLR4 (2LY4 : 3FXI) and PSMα1:TLR4 
(5KHB : 3FXI) have been well described [79].

	 Struct2Graph identifies interacting residues of the HMGB1:TLR4 pair with 90% 
accuracy in which the top 9 predicted residues for TLR4 fall within the reported 
active cavity (residues rank 336–477). In addition, among the top 20% predicted 
residues of HMGB1 were the specific interacting residues Tyr16 and Lys68. For the 
PSMα1:TLR4 pair, Struct2Graph identifies interacting residues with 92% accuracy. 
Again the top predicted residues fall within the previously identified TLR4 active 
cavity (336–477). For PSMα1 , interacting residues Gly2 and Val10 were correctly 
identified. While the overall sensitivity for detecting an interacting residue is ∼ 20% 
for this example, Struct2Graph was able to predict that PSMα1 interacts with TLR4 
in the same area as the HMGB1 binding site. More specifically, the predicted bind-
ing sites for both on TLR4 have 94% concordance. Figure 8a and b shows the resi-
dues predicted to be essential and highlights how Struct2Graph predicts a similar 
site for both interactions.

(2)	 SdrG-Fibrinogen Adhesion: Microbial attachment to host tissues is a crucial step in 
most bacterial infections. Gram-positive pathogens such as Staphylococci, Strepto-
cocci, and Enterococci contain multiple cell wall-anchored proteins that act as an 
adhesin to mediate bacterial attachment to host tissues. These adhesin mediating 
interactions have been termed MSCRAMMs (microbial surface components rec-
ognizing adhesive matrix molecules) [84]. SdrG is an MSCRAMM of Staphylococ-

Fig. 8  Important residue prediction by Struct2Graph for three example scenarios. a TLR4 with HMGB1, 
b TLR4 with PSMα1 , c SdrG and Fibrinogen adhesion. The different colored residues encode different 
information: (i) Red: Top-20% residues identified important by Struct2Graph, (ii) Yellow: Actual binding site 
not identified to be important by Struct2Graph, (iii) Green: True binding site overlapping with a residue 
identified important by Struct2Graph, (iV) Purple: neither important, nor actual interaction site. Recall that 
both HMGB1 and PSMα1 are known to compete for the same binding sites on TLR4, and this is reflected in the 
Struct2Graph predictive analysis as well
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cus epidermidis that binds to the Bβ chain of human fibrinogen (Fg) via dynamic 
“dock, lock, and latch” mechanism [80].

Struct2Graph was used to evaluate the interaction between SdrG (PDB:r19A) and 
a synthetic peptide with homologous sequence to its binding site in Fg (PDB:r17C). 
Interacting residues between SdrG and the synthetic Fg peptide homolog were pre-
dicted with 75% accuracy. Among the high probability residues identified in SdrG 
were 9 exact matches to those in the literature  [80]. This included, Pro337, Ser338, 
Leu340, Phe344, Gln425, Ser437, Tyr577, Asp578, and Asn579. Figure 8c shows the residues 
predicted to be essential for the interaction.

These results show that Struct2Graph provides insight into key residues involved in 
the protein–protein interaction without any training data on the specific nature of these 
interactions. A complete summary of the residues identified by Struct2Graph for the 
preceding examples is included in the supplementary material (see Additional file  1). 
Any high probability residues identified but not confirmed as directly interacting may 
have indirect effects through maintaining appropriate 3D conformation of the protein.

In addition to these specific binding examples, we consider the ability of our attention 
mechanism to predict useful residues across a broader dataset. Our attention mecha-
nism does not necessarily predict interaction sites, but rather residues which are impor-
tant to protein interactions regardless of their proximity to the interface. It has been 
observed that residues throughout the entire peptide chain can drive interactions [85]. 
Therefore, the attention mechanism will identify residues regardless of location that sig-
nificantly alter interaction propensity. To demonstrate this, we analyze the single amino 
acid variation (SAV) dataset presented in [86] (please refer to the supporting informa-
tion Additional file 2 for the human SAV dataset). The authors in [86] performed a large-
scale structural analysis of human single amino acid variations (SAVs) and demonstrated 
that disease-causing mutations are preferentially located within the interface core, as 
opposed to the rim. Their work analyzed a total of 3282 disease-causing SAVs and 1699 
benign polymorphisms occurring in 705 proteins. It is established that the disease-caus-
ing SAVs were 49% more likely to occur in the interface core rather than the rim and 
were 72% more likely to occur in the interface core than in the non-interacting protein 
surface, thus clearly demonstrating a different contribution of core and rim regions to 
human disease. On the other hand, 78.7% of polymorphisms were found to reside within 
surface-accessible residues (241 in interface residues and 1096 in surface non-interface 
residues), i.e, polymorphisms are less likely to be located in the interface core compared 
to the rim.

Since the work in [86] primarily dealt with human database, there is sufficient over-
lap between their dataset and the PPI database used in our manuscript. Of the over-
lapping 2724 disease-causing SAVs (spanning across 342 unique proteins) and 1364 
polymorphisms (spanning across 528 unique proteins), our attention mechanism identi-
fies 33.55% of all disease-causing SAVs as important (attention weights within top-20%), 
while 85.30% of all polymorphisms are identified as unimportant by the proposed atten-
tion mechanism, indicating significant overlap between the previously established SAV 
study and the important residues identified by the proposed attention mechanism.
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Conclusion
Struct2Graph, a GCN-based mutual attention classifier, to accurately predict interac-
tions between query proteins exclusively from 3D structural data is proposed. Since 
the prior study showed that the geometrical and graph theoretical descriptors may be 
sufficient for description of PPI [13], Struct2Graph does not directly use descriptors, 
such as sequence information, hydrophobicity, surface charge and solvent accessible 
surface area, and thus can be generalized to a broader class of nanoscale structures 
that can be represented in similar fashion. This study demonstrates that a relatively 
low-dimensional feature embedding learned from graph structures of individual pro-
teins outperforms other modern machine learning classifiers based on global protein 
features. Our GCN-based classifier achieves state-of-the-art performance on both 
balanced and unbalanced datasets.

Moreover, the mutual attention mechanism provides insights into important resi-
dues that are likely to contribute towards interaction through direct or indirect par-
ticipation. This is achieved through its knowledge selection process in a completely 
unsupervised manner. The identification of important residues is tested for two differ-
ent interaction types: (a) Protein with multiple ligands competing for the same bind-
ing area, (b) Dynamic protein–protein adhesion interaction. Struct2Graph identifies 
interacting residues with 30% sensitivity, 89% specificity, and 87% accuracy. Finally, 
through the analysis of single amino acid variations, the attention mechanism shows 
preference for disease-causing residue variations over benign ones, demonstrating 
that it is not limited to interface residues. This connection between the unsupervised 
discovery of interaction sites and graph representation of proteins is possible thanks 
to the somewhat limited type of atoms and bond patterns that commonly occur in 
such molecules, which makes it possible to characterize properties on local atomistic 
arrangements. Overall, the proposed framework is general and, while subject to avail-
ability of corresponding training data, can be made to predict other kinds of complex 
sets of collective supramolecular interactions between proteins and nanoscale species 
of different chemical composition.
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