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Abstract 

Background:  Breast cancer is currently one of the cancers with a higher mortality rate 
in the world. The biological research on anti-breast cancer drugs focuses on the activity 
of estrogen receptors alpha (ERα ), the pharmacokinetic properties and the safety of the 
compounds, which, however, is an expensive and time-consuming process. Develop-
ments of deep learning bring potential to efficiently facilitate the candidate drug selec-
tion against breast cancer.

Methods:  In this paper, we propose an Anti-Breast Cancer Drug selection method 
utilizing Gated Graph Neural Networks (ABCD-GGNN) to topologically enhance the 
molecular representation of candidate drugs. By constructing atom-level graphs 
through atomic descriptors for each distinct compound, ABCD-GGNN can topologi-
cally learn both the implicit structure and substructure characteristics of a candidate 
drug and then integrate the representation with explicit discrete molecular descriptors 
to generate a molecule-level representation. As a result, the representation of ABCD-
GGNN can inductively predict the ERα , the pharmacokinetic properties and the safety 
of each candidate drug. Finally, we design a ranking operator whose inputs are the 
predicted properties so as to statistically select the appropriate drugs against breast 
cancer.

Results:  Extensive experiments conducted on our collected anti-breast cancer 
candidate drug dataset demonstrate that our proposed method outperform all the 
other representative methods in the tasks of predicting ERα , and the pharmacokinetic 
properties and safety of the compounds. Extended result analysis demonstrates the 
efficiency and biological rationality of the operator we design to calculate the candi-
date drug ranking from the predicted properties.

Conclusion:  In this paper, we propose the ABCD-GGNN representation method to 
efficiently integrate the topological structure and substructure features of the mol-
ecules with the discrete molecular descriptors. With a ranking operator applied, the 
predicted properties efficiently facilitate the candidate drug selection against breast 
cancer.

Keywords:  Graph neural network, Breast cancer, Molecular representation, Drug 
prediction, Bioinformatics, Deep learning, Feature engineering, Decision support 
system
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Background
Breast cancer is currently one of the most common cancers in the world with a higher 
fatality rate. According to the related statistics, more than 2 million new cases of breast 
cancer were diagnosed, where 0.6 million cases died. It accounted for about 15% of all 
cancer deaths among women worldwide [1]. Meanwhile, drug development is a process 
with long period and high candidate attrition rate. It was reported that the attrition rate 
of drug candidates has reached 90% [2]. Therefore, the research on anti-breast cancer 
drug with the assistance of in-silico tools is an urgent task pending for solutions.

The research on breast cancer is closely related to estrogen receptors [3, 4]. Studies 
have found that estrogen receptor alpha (ERα ) is expressed in no more than 10% of nor-
mal breast epithelial cells, but about 50%-80% of breast tumor cells; and the experimen-
tal results of mice deficient in the ERα gene show that ERα does play a very important 
role in the development of the breast. At present, anti-hormone therapy is often used in 
breast cancer patients with ERα expression, which regulates the level of estrogen in the 
body by regulating the activity of estrogen receptors. Therefore, ERα is considered an 
important target for the treatment of breast cancer, and compounds that can antagonize 
the activity of ERα may be candidate drugs for the treatment of breast cancer [5–7].

In order for a compound to be a candidate drug, in addition to having good biological 
activity, it also needs to have good pharmacokinetic properties and safety in the human 
body, collectively known as ADMET (Absorption, Distribution, Metabolism, Excretion, 
Toxicity) properties [8]. Among them, ADME mainly refers to the pharmacokinetic 
properties of the compound, which describes the law of the concentration of the com-
pound in the organism over time, and T mainly refers to the toxic and side effects that 
the compound may produce in the human body. No matter how active a compound is, if 
its ADMET properties are poor, for example, it is difficult to be absorbed by the human 
body, or the metabolism rate in the body is too fast, or it has some toxicity, then it is still 
difficult to become a drug, so ADMET properties need to be optimized.

At present, in the field of drug research, regarding time and cost consuming [9, 10], 
Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) model is one 
of the most representative in-silico prediction tools to evaluate biological activity and 
ADMET properties of candidate drug compounds. By leveraging the disease-related tar-
gets, e.g. ERα , and modeling them as dependent variables, QSAR/QSPR models can pre-
dict new compound molecules with better biological activity, physicochemical property, 
and toxicological responses, and realize preliminary virtual screening for drugs.

With the development of the field of bioinformatics, diverse machine learning based 
methods have been proposed and applied into QSAR/QSPR modeling for drug property 
prediction [11–14]. The process can be generally divided into three stages. The first stage 
is traditional machine learning method represented by linear regression [15], random 
forest [16], and support vector machine (SVM) [17]. Such representation methods are 
dependent on hand-craft discrete features from the descriptors and the fingerprints of 
molecules to model the ADMET properties [18, 19], which is, however, time-consuming 
and inefficient. The second stage is sequential-based deep learning method represented 
by CNN [20–23] and LSTM [24]. Such methods can map the structure of compounds 
into a sequential dimension and aggregate the molecule-level features. Given their 
remarkable performance improvement compared with traditional machine learning 
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methods, in recent years, sequential-based deep learning methods have been the most 
popular in-silico methods for QSAR/QSPR modeling. However, existing sequential-
based deep learning methods are still based on hand-craft discrete features from the 
descriptors and the fingerprints of molecules, which means that these methods cannot 
further reflect the topological characteristics implicit in the molecular structure.

Recently, the popularity of graph neural networks in the bioinformatics community 
brings potential to further enhance the molecular representation, which is the third 
stage of QSAR/QSPR modeling [25–30]. Graph neural networks are naturally suitable 
for modeling topological structure of non-Euclidean data like molecule and can realize 
global feature extraction from the global structure [31–35]. Currently, a series of graph-
based deep learning methods have been proposed for molecular representation and 
applied for QSAR/QSPR modeling. For example, Duvenaud et  al. [36] proposed con-
volutional networks on graphs to represent molecular fingerprints, which mapped the 
features of fingerprints into molecular structure via graph convolution operations. In 
terms of graph based ADMET prediction, Feinberg et al. [37] utilized a modified graph 
convolutional networks to model ADMET properties at Merck. Montanari et  al. [38] 
demonstrated that graph convolutional neural networks are much more competitive to 
predict physicochemical ADMET endpoints; Feinberg et al. [39] proposed PotentialNet 
which applied graph convolution neural networks to conduct multi-task ADMET prop-
erty prediction.

Although many variants of graph neural networks have been developed for molecu-
lar representation and ADMET prediction, limitations of existing methods still exist. 
First, existing graph-based methods only map the descriptors into a global molecule-
level strucrure, which means that they may fail to mine the intrinsic knowledge implicit 
in the key chemical substructures of the molecules. The significance of biological sub-
structure within a compound is neglected. Second, compared with feature engineering-
based machine learning models, GNN models are generally less sensitive to the source 
of atomic descriptors [40, 41], which means that graph-based methods are less explain-
able and are not good at representing known explicit knowledge. Therefore, exist-
ing graph-based methods fail to integrate the implicit topological knowledge with the 
explicit discrete descriptor knowledge. Third, most of the existing graph-based methods 
for ADMET modeling are modified from graph convolution neural network. Such meth-
ods follow the transductive learning strategy, which is more computationally expensive 
and time-consuming compared with inductive learning strategy. Meanwhile, in terms of 
QSAR/QSPR modeling task, most of the existing methods focus on ADME or ADMET 
property prediction, while neglect the prediction of biological activity. In addition, to 
our knowledge, there is still no graph-based QSAR/QSPR model focusing on anti-breast 
cancer drug selection.

Inspired by the recent progress claimed above, in this paper, we propose the ABCD-
GGNN representation method to topologically realize QSAR/QSPR model for ERα and 
ADMET prediction. ABCD-GGNN can topologically learn both the structure and sub-
structure representations of molecules and deeply integrate them with discrete molecu-
lar descriptor representation, which strongly enhances the molecular representation 
performance and can realize inductive prediction on activity, property, and toxicity. In 
addition, we design a whole framework of anti-breast cancer drug selection based on 
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ABCD-GGNN with a decision-support setting. With an extra ranking operator applied 
based on the predicted properties from ABCD-GGNN, selection of candidate drugs 
against breast cancer can be efficiently facilitated, which may hugely benefit the research 
on anti-breast cancer drugs. The contributions of this paper are threefold:

•	 We propose an Anti-Breast Cancer Drug selection method utilizing Gated Graph 
Neural Networks (ABCD-GGNN), which topologically learns both the implicit 
structure and substructure characteristics of a candidate drug, and integrates with 
explicit discrete molecular descriptors to better generate a molecular-level represen-
tation. As a result, activity, property, and toxicity of the candidate drugs can all be 
inductively predicted.

•	 We design a whole framework of anti-breast cancer drug selection based on ABCD-
GGNN to automatically assist researchers with a decision-support setting. To our 
best knowledge, this is the first work aiming to deal with anti-breast cancer drug 
development via graph-based deep learning method.

•	 Extensive experiments conducted on our collected anti-breast cancer candidate drug 
dataset demonstrate the outstanding performance of our proposed ABCD-GGNN 
representation method and the rationality of our designed framework for candidate 
drug selection.

Methods
In this section, we first introduce the candidate drug dataset we collect. Then, we illus-
trate the implementation of our anti-breast cancer drug selection method based on 
ABCD-GGNN step by step. As the pipeline shown in Fig. 1, our designed drug selection 
process can be decomposed into four stages: 1) topological molecular graph representa-
tion based on GGNN which integrates both structure and substructure characteristics of 
the molecule, 2) discrete property representation based on machine learning algorithm, 
3) integration of the molecular representation of ABCD-GGNN and prediction for ERα 
and ADMET, and 4) candidate drug selection based on our designed ranking operator.

Dataset

To evaluate the efficiency of our proposed method, we collect a dataset containing 1974 
organic compounds that may be the candidate drugs of anti-breast cancer. The dataset 
provides the simplified molecular input line entry system (SMILES) and 729 molecular 
descriptors of each organic compound. The 729 molecular descriptors include diverse 
descriptions on the characteristics of molecule in two-dimension and three-dimension. 
The dataset labels the ERα value expressed as pIC50 for each organic compound. Mean-
while, to objectively evaluate the pharmacokinetic properties and the safety of each 
organic compound, the dataset quantifies them with 5 property labels: absorption, dis-
tribution, metabolism, excretion, and toxicity (ADMET). In our collected dataset, the 
5 properties are referred to 5 metrics: Caco-2, CYP3A4, human Ether-a-go-go Related 
Gene (hERG), and Human Oral Bioavailability (HOB), respectively. Due to the page limit 
of the paper, we present a detailed illustration of a candidate drug sample in Additional 
file 1: Table 1 of the Appendix section.
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Topological molecular graph representation

In the stage of topological molecular graph representation, graph neural networks are 
adopted to atomically model the structure of a drug so as to learn the topological molec-
ular features three-dimensionally for the final representation of ABCD-GGNN. With 
the atom node information globally interacted in the graph structure, both topologi-
cal structure and substructure features can be well represented and integrated. We first 
illustrate the implementation of the topological structure representation. Then we illus-
trate how topological substructure representations are generated and integrate with the 
topological structure feature to enhance the topological molecular representation. The 
whole framework of the topological molecular graph representation based on ABCD-
GGNN is shown in Fig. 2.

Atom‑level topological structure graph construction

Graph construction is the kernel stage for the topological graph representation. Given 
that a graph is denoted as G = (V ,E) where V (|V | = n) is the set of graph nodes and E 
is the set of graph edges. In terms of atom-level graph construction for candidate drugs. 
V denotes the atom set in a molecule and E denotes the chemical bond set in a molecule.

Fig. 1  The pipeline of the whole candidate drug selection method
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In terms of the feature initialization for each atom node, here we summarize 8 
atomic descriptors from the corresponding SMILES and 729 molecular descriptors, 
which are atom type, number of bonds, formal charge, chirality, hydrogen bound 
number, hybridization, aromaticity, and atom mass. The detailed descriptions on the 
8 atomic descriptors are listed in Table 1. Every atomic descriptor is transferred into a 
one-hot vector and are concatenated to form a 39-dimension vector as the initializa-
tion of an atom feature.

In terms of edge construction for each molecular graph, we construct an adjacent 
matrix A ∈ R|V |×|V | to describe the connection relationship between atom nodes. The 
element in A, e.g., ai,j is the connection type between i-th node and node j-th node. 
The connection type varies among 0, 1, 2, 3, and 1.5, which denotes the bond type: 
single bond, double bond, triple bond, and aromatic hydrocarbon, respectively.

Graph‑based global information interaction

Getting the molecular graph constructed, we then employ GGNN [42] to realize the 
global information interaction between the atom nodes. GGNN learns node represen-
tations through neural networks with gated recurrent units (GRU), so that informa-
tion from neighborhood can be fused and enrich the own representation. Information 
fusion between nodes strengthens continuously with the interaction time t increased 

Fig. 2  Framework of the topological molecular graph representation for the ABCD-GGNN representation 
method

Table 1  Descriptions of components of the feature initialization for the atomic nodes

Atomic descriptor Description Vector size

Atom type 12 types of atoms in the 200 molecules of the dataset 12-digit 0/1 vector

Number of bonds The number of chemical bonds that the atom participates in 6-digit 0/1 vector

Formal charge The integer-form electric nucleus of the atom 5-digit 0/1 vector

Chirality CW, CCW, unspecified, or other 4-digit 0/1 vector

Hydrogen bound number Atomic bound hydrogen atom charge 5-digit 0/1 vector

Hybridization sp, sp2, sp3, sp3d, or sp3d2 5-digit 0/1 vector

Aromaticity Whether the atom is part of an aromatic hydrocarbon 1-digit 0/1 vector

Atom mass The mass of the atom A normalized 
number between 
0 and 1
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and can finally achieve global information interaction of the whole topological struc-
ture. In this way, we can finally get a topological structure representation for a candi-
date drug. Detailed interaction functions are listed as follow:

where σ is the sigmoid function, and parameters W, U, and b are trainable weights and 
biases. ot denotes the information that a node could receive from its adjacent neighbors 
in time step t. zt and rt are functions that control update gate and reset gate, respectively, 
which determine to what degree the neighborhood information contributes to the cur-
rent node embedding.

Topological molecular representation readout

With the topological structure representation of the distinct molecule updated, we then 
aggregate the atom-level representations into a molecule-level representation in the 
readout stage. The readout functions are designed as follow:

where f1 and f2 are two multilayer perceptrons (MLP) which perform as a soft attention 
weight and a non-linear feature transformation, respectively.

The readout functions are designed as above with the intention to reflect the truth 
that all atom node representations contribute to the information aggregation by getting 
through averaging function and a max-pooling function, while only part of atom nodes 
with higher weights distributed by attention mechanism contribute more [34]. Conse-
quently, here we get the topological structure representation of the molecule hG for fur-
ther prediction.

Substructure graph construction and integration

Subgraphs are believed to imply significant attribute characteristics that may further 
extract and enhance the original graph representation [43], especially to the graph 
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representation of molecules whose substructures represent scaffolds of molecule 
which should imply much attribute knowledge.

Therefore, we additionally extract the substructures from SMILES of the mole-
cules via the SMILES pair encoding algorithm. Given Gsub = S1, · · · , Sn denotes the 
subgraph set of n substructures extracted from the graph G. Then, we construct the 
atom-level subgraphs and get through the global interaction via GGNN and repre-
sentation readout operations as the original graph does. Consequently, we get a sub-
structure-level representation set Hsub = hS1 , · · · , hSn.

Considering that the contributions different substructures make to the molecular 
representation are uneven, here we adopt an attention mechanism to dynamically 
adjust the weights of the original graph and each subgraph. In this way, both molecu-
lar graph representation and diverse substructure graph representations get deeply 
integrated. In other words, the topological graph representations of the candidate 
drugs are strongly enhanced. Detailed formulas of the attention mechanism and the 
feature integration is shown below:

where w0, · · · ,wn is distributed attention weights. c, W, and b are trainable parameters 
to be learned. Consequently, here we finally get the topological molecular graph repre-
sentation h that deeply integrate the structure and substructure characteristics of the 
molecule.

Discrete molecular descriptor representation

Molecular descriptors are the discrete expression of a molecule which may imply the 
potential chemical properties as a candidate drug. Given that the anti-breast cancer 
candidate drug dataset provides 729 molecular descriptors of all the candidate drugs, 
which is a quite large number. Here we first employ XGBoost algorithm to select the 
descriptors that count more. Then, we further reduce the dimensionality of the inte-
grated molecular descriptor representation to realize the molecular descriptor repre-
sentation readout.

Discrete molecular descriptor selection

Considering the redundancy and sparsity of the raw molecular descriptors, we 
believe it is necessary to select the more property-related descriptors with the help of 
machine learning method. Therefore, here we apply XGBoost, a decision-tree-based 
ensemble Machine Learning algorithm that uses a gradient boosting framework, 
to select the top 50 property-related descriptors for further feature integration and 
readout.

In terms of the implementation of XGBoost, we first set the objective function, i.e., the 
loss function as below:

(8)wj =
exp

(
ej
)

∑
k≤|Hsub|+1 exp (ek)

, ej = cT tanh
(
Whj + b

)

(9)h =w0 × hG + w1 × hS1 + · · · + wn × hSn
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where L(φ) is the differentiable convex loss function, which represents the gap between 
the predicted value ŷi and the target value yi to avoid under-fitting; the function ∑

k �
(
fk
)
 can reduce the complexity of the model. The additional regularization term 

helps avoid overfitting. When the regularization parameter is set to 0, the goal is back to 
the traditional gradient tree boosting algorithm. Since the model is trained by addition, 
the prediction at time step t equals the prediction at time step t-1 plus the function at 
time step t. The formula is shown below:

Second, we utilize Taylor expansion formula for approximation.

where gi = ∂ŷi(t−1)l
(
yi, ŷ(t−1)

)
 and hi = ∂

2
x̂t (−1)

l
(
yi, ŷ(t−1)

)
 are the first partial derivative 

and the second partial derivative, respectively.
To make each sample on a leaf node, the node score is defined as ft(x) = Wq(x) . The 

optimal weight is defined as W ∗
j = −

Gj

Hj+�
 according to the quadratic function to find the 

most value formula, where Gj =
∑

i gi,Hj =
∑

i hi . Thus, the optimal function value is 
defined as obj = − 1

2

∑
j

G2
j

Hj+�
+ γT  and can rank the most properties-related molecular 

descriptors consequently. Discrete molecular descriptor representation readout With the 
50 molecular descriptors selected, we then concatenate them in to a 50-digit vector as a 
molecule-level representation. Since the contribution of each descriptor, as is ranked by 
XGBoost algorithm above, should be uneven, we adopt the attention mechanism to dynam-
ically adjust the weight of each digit. Then, to further integrate the discrete molecular 
descriptor representation so as to better integrate with the topological molecular represen-
tation, we reduce the dimensionality of the molecular descriptor representation in to a 
39-digit vector with a fully connected layer, which make the two representation readouts in 
the same size. The formulas are shown below:

where hm is the representation readout of the discrete molecular descriptors.
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Metric Prediction

Based on the topological graph representation and the molecular descriptor repre-
sentation, a final representation of anti-breast candidate drug can be integrated to 
predict both the ERα value and the ADMET properties.

Topological and discrete property representation integration

To adaptively adjust the contribution the topological graph representation and molec-
ular descriptor representation make to the prediction result, we design the hyper 
parameter � ∈ (0, 1) to weight and integrate the two types of features as the formula 
shown below:

where hABCD−GGNN is the final integrated representation of the anti-breast candidate 
drugs.

In this stage, we can claim that the molecular representation based on ABCD-
GGNN is completed.

Prediction and training process

We treat the prediction of ERα value and ADMET properties as a regression task and 
a two-class classification task, respectively. In terms of ERα value prediction, the rep-
resentation hABCD−GGNN  gets fed into a fully connected layer. Parameters are trained 
through the mean square error.

where W, b denote trainable parameters, m denotes the batch size, and yERα denotes the 
ground truth value of ERα.

In terms of ADMET properties prediction, the representation hABCD−GGNN  gets fed 
into a softmax layer to make prediction. Parameters are trained through the cross-
entropy function.

where W, b denote trainable parameters and yADMET denotes the i-th element of the 
one-hot label.

(17)hABCD−GGNN = �h+ (1− �)hm
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(
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)2

(20)y
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(21)Loss =−
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(
y
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Candidate drug selection

To comprehensively consider both the two types of attributes when evaluating the 
potential of the candidate drugs, here we design a ranking operator consisting of 
feature binning and scorecard. By scoring each candidate drug, a ranking list can 
be generated, which can efficiently facilitate the research on anti-breast cancer drug 
selection.

Feature binning

Since the ADMET properties are binary while the ERα value is a continuous value, 
here we select chi-square binning. The adjacent intervals are the smallest chi-square 
value are merged together until the definite stopping criterion is met. we set the chi-
square threshold (obtained from the significance level and degree of freedom), and 
calculate the chi-square for each pair of adjacent values as the formula shown below:

where Aij is the feature number of the j-th class attribute in the i-th interval, and Eij is 
the expectation of Aij.

Setup of scorecard

To set up the scorecard for the candidate drug ranking, we first calculate the corre-
sponding score of the attribute as below:

wherewoei = ln
pyi
pni

 is the woe value calculated based on the results of binning and 
denotes the difference between the response value and the non-response value, βi is the 
regression coefficient, an is the regression intercept term, factor is the scale factor, and 
offect
n  is the offset.
Finally, the calculation formula of the scorecard is defined as below to get the scores 

of the candidate drugs.

Results
In this section, 1) we first evaluate the performance of our proposed ABCD-GGNN 
on our collected anti-breast cancer candidate drug dataset and compare them with 
other representative models. 2) Then, we make extensive characteristics analysis and 
ablation study to demonstrate the effectiveness and contribution each stage makes 
for the ABCD-GGNN representation. 3) Finally, we demonstrate the biological 
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rationality of applying the ABCD-GGNN prediction results into the ranking operator 
for candidate drug selection.

Performance of ABCD‑GGNN

Baselines and evaluation metrics

Keeping track of the representation methods applied in the study on drug prediction, we 
compare the representation performance of ABCD-GGNN with those of representative 
baseline models, which can be categorized into two types: 1) traditional machine learn-
ing methods, for example, Linear Regression and Random Forest for ERα prediction 
and SVM for ADMET prediction; 2) deep learning methods, for example, Bi-LSTM and 
Graph-CNN for ADMET prediction. Detailed descriptions of these baslines are shown 
as follow:

•	 Linear Regression a representative supervised learning method. Based on one or 
more independent variables, linear regression can model a best-fitting relationship 
for regression problem.

•	 Random Forest an ensemble learning method that constructs decision trees during 
training. It can realize prediction on the mean prediction of trees for regression tasks 
by utilizing random subspace method and bagging during tree construction.

•	 SVM a traditional supervised learning method. By maximizing the margin between 
data samples, SVM can perform well on both regression and classification problem.

•	 Bi-LSTM a representative sequential deep learning method which consists of two 
LSTMs: one forward and the other backwards direction. Bi-LSTM effectively capture 
the contextual information in time dimension.

•	 Graph-CNN one of the most representative graph neural network method. By com-
bining CNN with spectral theory, Graph-CNN is more advantageous in dealing with 
the discriminative feature extraction of signals in the discrete spatial domain and can 
better describe the intrinsic relationship between different nodes of the graph.

To better reflect the performance of the compared models, in the ERα prediction task, 
we adopt the of mean square error loss (MSE) and R-Square (R2) as the evaluation met-
ric, while in the ADMET prediction task, we adopt the of mean square error loss (MSE) 
and R-Square (R2) as the evaluation metric, Precision, Recall, F-score (F1), Area Under 
the ROC Curve (AUC), and Area Under the Precision-Recall curve (AUPR) as the evalu-
ation metric.

Experimental settings

In terms of the detailed dataset setting, we keep the ratio of positive samples and 
negative samples close to 1:1 for each property. In addition, we utilize ten-fold cross-
validation to evaluate the performance of all the compared methods. Positive and nega-
tive samples are kept balanced in each fold. We divide the dataset in a ratio of 8:1:1 as 
training set, validation set, and test set, respectively. The hyperparameters were tuned 
according to the performance on the validation set. Empirically, we set the learning rate 
as 0.01 with Adam optimizer and the dropout rate as 0.5. The interaction step of GGNN 
is set as 2. The hyper parameter � is set as 0.6.
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Performance of ABCD‑GGNN

The performance of the compared models on the prediction of ERα and ADMET 
are presented on Tables 2 and 3, respectively. It can be observed that our proposed 
ABCD-GGNN outperforms all the representative models on the two prediction 
methods. Specifically, in the ERα prediction task, ABCD-GGNN achieves the lowest 
loss value and highest R2 value, which means that the prediction results of our pro-
posed model can better fit the expected ERα value with lower error. In the ADMET 
prediction task, ABCD-GGNN achieves the highest performance on Precision, 
Recall, F1, AUC, and AUPR, and prevails other models in a large margin. There-
fore, it can be concluded that our proposed ABCD-GGNN representation method 
achieve a splendid performance on the property prediction for anti-breast cancer 
candidate drug.

Table 2  Performance comparison on the prediction of ERα

We run all models 10 times and report the mean test MSE and R2

Model MSE R2

Linear Regression 2.156 0.276

Random Forest 0.5147 0.6133

SVM 0.6878 0.6273

ABCD-GGNN 0.4811 0.7741

Table 3  Performance comparison on the prediction of ADMET

We run all models 10 times and report the mean test precision, recall, F1, AUC, and AUPR

Model Dataset Precision Recall F1 AUC​ AUPR

SVM MN 0.7843 0.6709 0.6943 0.7957 0.8209

HOB 0.7733 0.7498 0.7607 0.8104 0.6239

hERG 0.8080 0.7589 0.7791 0.8239 0.8494

CYP3A4 0.8397 0.7998 0.8133 0.8518 0.8591

Caco-2 0.8453 0.7807 0.8068 0.8552 0.7525

BiLSTM MN 0.8226 0.7310 0.7537 0.8195 0.7731

HOB 0.7462 0.7008 0.7165 0.7711 0.7337

hERG 0.8350 0.7914 0.7968 0.8452 0.8196

CYP3A4 0.8838 0.8627 0.8741 0.9129 0.8952

Caco-2 0.8134 0.7954 0.8021 0.8533 0.8258

Graph-CNN MN 0.8629 0.8293 0.8461 0.8710 0.8623

HOB 0.8110 0.7635 0.7824 0.8369 0.8061

hERG 0.8495 0.8690 0.8556 0.9081 0.8585

CYP3A4 0.8913 0.8827 0.8840 0.9304 0.8731

Caco-2 0.8479 0.8227 0.8306 0.8740 0.8881

ABCD-GGNN MN 0.9255 0.9613 0.9430 0.9714 0.9862

HOB 0.8637 0.8804 0.8712 0.9130 0.9273

hERG 0.8914 0.8839 0.8842 0.9303 0.9456

CYP3A4 0.9474 0.9163 0.9355 0.9487 0.9322

Caco-2 0.8828 0.8832 0.8829 0.9296 0.9134
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Characteristics analysis and ablation study

Runtime analysis of the compared methods

We conduct the experiments to calculate the mean runtime of ABCD-GGNN and other 
compared baselines on both ERα value prediction and ADMET property prediction 
tasks. All experiments are conducted on NVIDIA GeForce RTX 2070. All deep learning 
methods are set with early stopping. Detailed statistics are shown in Table 4. It can be 
seen that all deep learning methods take more time compared with traditional machine 
learning methods. In addition, our proposed ABCD-GGNN takes the most runtime, but 
the runtime of ABCD-GGNN is still on the same order of magnitude as the other deep 
learning methods. Since all the prediction tasks are conducted through inductive repre-
sentation learning, overall, the runtimes of all these methods are acceptable.

Ablation study of the two representation modules in ABCD‑GGNN

To demonstrate the effectiveness of both representation readout: discrete descriptor rep-
resentation and topological graph representation, we take ablation study on the ABMET 
prediction task. The results are shown in Table 5. It can be seen that the performance of 
ABCD-GGNN is better than any single representation readout, which demonstrates that 

Table 4  Statistics of the runtime (s) on both ERα value prediction and ADMET property prediction 
tasks

ERα value prediction ADMET property prediction

Method Runtime Method Runtime

Linear Regression 0.0937 SVM 3.7634

Random Forest 3.9162 Bi-LSTM 19.0383

SVM 3.4928 Graph-CNN 62.8520

ABCD-GGNN 73.4433 ABCD-GGNN 76.1681

Table 5  Ablation study to demonstrate the impact of discrete descriptor representation and 
topological graph representation for ABCD-GGNN on the ADMET prediction task

We run all models 10 times and report the mean test precision, recall, and F1

Model Dataset Precision Recall F1

Discrete molecular descriptor 
representation (w/o)

MN 0.8942 0.8763 0.8823

HOB 0.8392 0.8550 0.8439

hERG 0.8547 0.8631 0.8561

CYP3A4 0.9274 0.9104 0.8967

Caco-2 0.8584 0.8722 0.8646

Molecular graph representa-
tion (w/o)

MN 0.7986 0.7316 0.7471

HOB 0.8006 0.8348 0.8219

hERG 0.7618 0.7092 0.7153

CYP3A4 0.8718 0.8026 0.8193

Caco-2 0.8162 0.8023 0.8025

ABCD-GGNN MN 0.9255 0.9613 0.9430

HOB 0.8637 0.8804 0.8712

hERG 0.8914 0.8839 0.8842

CYP3A4 0.9474 0.9163 0.9355

Caco-2 0.8828 0.8832 0.8829
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both representation readouts contribute to the final representation and are complemen-
tary to each other. Meanwhile, the two representation modules are effectively integrated 
according to the hyper parameter �.

Ablation study of the hyper parameter �

In addition, since our designed hyper parameter � ∈ (0, 1) controls the trade-off between 
the two views of representation, we also conduct the ablation study to seek the optimal 
value of � for anti-breast cancer candidate drug selection. Figure 3 exhibits the perfor-
mance of ABCD-GGNN with a varying � on ADMET prediction tasks. � = 1 means we 
only utilize the topological molecular graph representation, and � = 1 means we only 
utilize the discrete property representation. On all the five property prediction tasks, the 
precision is consistently higher with larger � value. This can be explained by the high 
performance of topological molecular graph representation. The model reaches its best 
when � = 0.6 , performing slightly better than only utilizing topological molecular graph 
representation.

Ablation study of the pooling operation in the readout stage

We designed fusion strategy in the readout stage of ABCD-GGNN, which utilizes both 
average pooling and max pooling operations to better represent each compound. To 
demonstrate the effectiveness of the fusion of the two pooling operations, we take the 
ablation study in terms of the pooling operation selection as is shown in Table 6. It can 
be seen that our designed fusion strategy does contribute to better representation per-
formance for ADMET prediction tasks. Meanwhile, the average pooling and max pool-
ing operations are complementary to each other.

Fig. 3  Precision of ABCD-GGNN with a varying � on ADMET prediction tasks

Table 6  Ablation study on the pooling operation in the readout stage of ABCD-GGNN for ADMET 
prediction

We run all models 10 times and report the mean test precision

Pooling operation MN HOB hERG CYP3A4 Caco-2

Average pooling 0.9173 0.8586 0.8840 0.9329 0.8751

Max pooling 0.9086 0.8514 0.8792 0.9245 0.8684

Fusion 0.9255 0.8637 0.8914 0.9474 0.8828
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Ablation study of the interaction step in molecular graph representation

Interaction step is the key parameter which controls the global information interac-
tion of molecular graph representation. Therefore, we coduct the ablation study to seek 
the optimal number of interaction step for anti-breast cancer candidate drug selection. 
Figure  4 presents the performance of molecular graph representation with a varying 
number of the graph layer on ADMET prediction tasks. The result reveals that with the 
increment of the layer, a node could receive more information from high-order neigh-
bors and learn its representation more accurately. Nevertheless, the situation reverses 
with a continuous increment, where a node receives from every node in the graph and 
becomes over-smooth. On all the five property prediction tasks, the representation 
method overall reaches its best when interaction step is set as 2.

The effect of XGBoost feature selection

In the stage of discrete molecular descriptor representation, a XGBoost is adopted to 
select the top 50 molecular descriptors, which is intended to reduce the redundancy 
of the original 729 molecular descriptors. To demonstrate the effectiveness of the 
XGBoost, we conduct analysis on the 50 molecular descriptors from the XGBoost. The 
scores of and the heatmap of the selected 50 molecular descriptors are shown in Fig. 5a, 

Fig. 4  Precision of the molecular graph representation part of ABCD-GGNN with a varying interaction step 
on ADMET prediction tasks

(a) (b)

Fig. 5  The score list and heatmap of the 50 molecular descriptors selected from the XGBoost in the stage of 
discrete molecular descriptor representation. a Score list, b heatmap
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b, respectively. It can be seen that the correlation between the selected descriptors are 
commonly low, which fits our expectation that the 50 molecular descriptors should be in 
low redundancy.

The effect of the ranking operator

We also conduct result analysis to demonstrate the biological rationality of the ranking 
operator for the final candidate drug selection. We first comprehensively consider the 
predicted value of the model’s biological activity value and the classification value of the 
ADMET property, and perform a cluster analysis on it, as shown in Fig. 6. For example, 
to analyze the results of cluster analysis, SMILES35 and SMILES33 are classified into 
one category, and SMILES3 and SMILES2 may also be the same category. Figure 7 shows 

(a) (b)

Fig. 6  Visualization of the clustering analysis on the results of the ranking operator. a Cluster heatmap, the 
correlation of clustered samples is stronger, b k-means clustering analysis
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Fig. 7  The scoring result of the candidate drugs through the ranking operator
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the quantitative evaluation of the anti-breast cancer ability of the compounds based 
on the scoring mechanism, where the horizontal axis arranges the compounds in the 
order of the cluster analysis results in Fig. 6, and the vertical axis represents the scor-
ing of the compounds in this article. It can be seen that the compounds with similar 
scores are close in the horizontal direction, that is, they are also classified in the same 
category (with similar properties) in the cluster analysis. For example, two compounds 
of SMILES35 and SMILES33 belong to the same class and have similar scores. In other 
words, the ranking operator can make a reasonable quantitative assessment of the com-
pound’s anti-breast cancer ability based on the classification prediction results of the 
compound.

Discussion
We evaluated the effectiveness of ABCD-GGNN in predicting ERα , and the pharma-
cokinetic properties and safety of the compounds, by benchmarking on compound data-
set containing SMILES and 729 molecular descriptors. In contrast to previous studies, 
ABCD-GGNN focuses on learning the the structure and substructure characteristics of 
a candidate drug topologically, and integrating with discrete molecular descriptors to 
form a more optimal molecular-level representation of feature of a drug.

The experimental results of our method ABCD-GGNN confirm two perspectives to 
improve the performance of methods for predicting the properties of molecular com-
pounds. From a computational perspective, advanced artificial intelligence methods 
such as graph neural networks can be utilized to construct a better representation of 
molecular compound properties based on the structure and substructure of molecules. 
From a biological perspective, effective integration of structural and substructural fea-
tures of molecules and other characteristics that reflect the properties of molecules 
(i.e., molecular descriptors) can better model the characteristic expression of molecu-
lar compounds and help researchers understand the biological mechanisms involved. 
Conclusions above are based on the facts that 1) molecular descriptors can determine 
the biological activity of compounds as independent variables; 2) graph neural networks 
enable global feature extraction to further enhance the molecular representation; and 3) 
as illustrated in Table 5, the ablation experimental results demonstrated that the inte-
gration of topological features and discrete descriptor features can further enhance the 
performance of molecular representation.

If a large number of molecular descriptor classes are available, we suggest using a 
regression model to evaluate the correlation of descriptors with compound properties 
and the coupling between descriptors , so as to reduce the redundancy and sparsity of 
the original molecular descriptors. We analyzed the original 729 molecular descriptors 
using the XGBoost model, and the results are shown in Table  1, where 50 molecular 
descriptors with low redundancy status were selected, and they had the highest correla-
tion with the compound properties.

For the selection of anti-breast cancer drugs, we suggest a ranking operator consist-
ing of feature binning and scorecard to select the appropriate anti-breast cancer drugs 
statistically. Figure 7 shows the quantitative evaluation of the anti-breast cancer ability 
of the compounds based on the scoring mechanism. Compounds with similar scores 
can remain similar in the clustering analysis, implying that the ranking operator can 



Page 19 of 21Gao et al. BMC Bioinformatics          (2022) 23:382 	

comprehensively consider ERα , and the pharmacokinetic properties and safety of the 
compounds, which consists with the biological significance.

In summary, in this paper, we give full consideration to the high correlation between 
ERα expression and breast cancer, and the significance of ADMET properties of a com-
pound. By employing the ABCD-GGNN representation method, our designed frame-
work can integrate multi-view features of compounds and efficiently select candidate 
drugs for researchers for further drug discovery. Given the universality and adapatbility 
of molecular representation methods, it is expectable that such framework, with corre-
sponding modification, can also be utilized for the research on other drug selection and 
contribute to intelligent administration in the pharmacology community.

Conclusion
In this paper, we propose the ABCD-GGNN representation method aiming at topologi-
cally representing the features of anti-breast cancer candidate drugs and predicting the 
ERα value and ADMET properties of the organic compounds. With the ranking opera-
tor employed, research on the drug selection can be facilitated based on these signifi-
cant metrics. Our proposed ABCD-GGNN representation method topologically learns 
both the implicit structure and substructure characteristics of a candidate drug and then 
deeply integrate them with explicit discrete molecular descriptors to strongly enhance 
the molecule-level representation. Extensive experiments conducted on our collected 
anti-breast cancer candidate drug dataset demonstrate that our proposed model outper-
forms all the other representative methods. Extended analysis also proves the biological 
rationality of our designed anti-breast cancer candidate drug selection strategy.
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