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Abstract 

Background:  Epigenetic modifications established in mammalian gametes are largely 
reprogrammed during early development, however, are partly inherited by the embryo 
to support its development. In this study, we examine CpG island (CGI) sequences to 
predict whether a mouse blastocyst CGI inherits oocyte-derived DNA methylation 
from the maternal genome. Recurrent neural networks (RNNs), including that based on 
gated recurrent units (GRUs), have recently been employed for variable-length inputs 
in classification and regression analyses. One advantage of this strategy is the ability 
of RNNs to automatically learn latent features embedded in inputs by learning their 
model parameters. However, the available CGI dataset applied for the prediction of 
oocyte-derived DNA methylation inheritance are not large enough to train the neural 
networks.

Results:  We propose a GRU-based model called CMIC (CGI Methylation Inheritance 
Classifier) to augment CGI sequence by converting it into variable-length k-mers, 
where the length k is randomly selected from the range kmin to kmax , N times, which 
were then used as neural network input. N was set to 1000 in the default setting. In 
addition, we proposed a new embedding vector generator for k-mers called splitD-
NA2vec. The randomness of this procedure was higher than the previous work, 
dna2vec.

Conclusions:  We found that CMIC can predict the inheritance of oocyte-derived DNA 
methylation at CGIs in the maternal genome of blastocysts with a high F-measure 
(0.93). We also show that the F-measure can be improved by increasing the parameter 
N, that is, the number of sequences of variable-length k-mers derived from a single 
CGI sequence. This implies the effectiveness of augmenting input data by converting a 
DNA sequence to N sequences of variable-length k-mers. This approach can be applied 
to different DNA sequence classification and regression analyses, particularly those 
involving a small amount of data.

Keywords:  Recurrent neural network, Gated recurrent unit, Classification, Oocyte, 
Blastocyst, Embryo, Epigenetic modification, Reprogramming, Development
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Background
DNA methylation is an epigenetic modification that occurs primarily at CpG sites and 
regulates gene expression. Hence, DNA methylation significantly impacts various mam-
malian biological processes, including embryonic development, genomic imprinting, 
X-chromosome inactivation, repression of transposable elements, aging, and carcino-
genesis. Global epigenetic reprogramming is an erasure process associated with remod-
eling of epigenetic modifications that occurs in primordial germ cells and early embryos, 
ensuring that a new developmental cycle begins in each generation [1]. A notable excep-
tion to global reprogramming in early embryos is genomic imprinting, in which differ-
ential DNA methylation established in parental gametes is transmitted to the zygote 
and regulates parental-origin-specific gene expression [2]. However, recent studies 
have shown that ectopic methylation induced by environmental factors may also escape 
reprogramming and cause disease susceptibility in subsequent generations [3].

CpG islands (CGIs) are CpG-dense regions in the genome that often overlap with 
gene promoters [4]. Approximately 16,000–22,000 CGIs have been identified within the 
mouse genome, most of which remain unmethylated throughout development. Alterna-
tively, certain CGIs become methylated in specific tissues or are predisposed to methyla-
tion under specific conditions, such as cell culture and carcinogenesis. CGIs can also be 
methylated upon genomic imprinting and X-chromosome inactivation [4]. However, in 
all cases, regardless of methylation status, most CpG sites within a CGI behave similarly, 
and their methylation strongly downregulates associated genes [4].

We have previously studied how DNA methylation introduced at CGIs, including 
imprinting control regions, is transmitted from oocytes to embryos [5–7]. In mouse 
oocytes, approximately 1100 CGIs are methylated via transcription-coupled de novo 
methylation [8]. CGI methylation is then erased after fertilization by reprogramming; 
however, a subset (up to 15%) of CGIs, including the maternally methylated imprinting 
control regions, can remain methylated in blastocysts [8]. This CGI methylation inher-
itance is partly dependent on the sequence-specific methylated-DNA-binding protein, 
Zfp57, which recruits other proteins essential for methylation maintenance [9]. There-
fore, we focused on determining whether CGI sequences contain sufficient information 
to predict methylation inheritance through fertilization and early development. Previous 
studies have reported methods to predict CGI methylation status, or their propensity for 
methylation, of various cell types and tissues based on the sequence and other features 
[10–16]. Notably, Zheng et al. reported a support vector machine-based models that 
achieved high specificity and accuracy involving histone modification data (methylation 
and acetylation) [15]. However, it is difficult to obtain high-quality histone modification 
information from oocytes and blastocysts, due to the scarcity of samples and ethical 
issues (especially when involving humans).

Recurrent neural network (RNN)-based approaches have advantages over the above-
mentioned methods for sequence-based methylation prediction. First, neural networks 
can automatically learn latent feature representations of input data without prior bio-
logical knowledge. In contrast, previous studies used decision trees, support vector 
machines, or logistic regression, which required previously-designed feature vectors as 
input. Second, RNNs take data of variable length as input, including sequences from 
CGIs of different sizes. RNN-based classifiers have been widely used in bioinformatics, 
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for example in KEGRU, for the prediction of transcription factor binding sites [17], 
DNA sequence functions [18], and chromatin accessibility [19]. KEGRU divides DNA 
sequences into k-mer sequences with specified length and stride and, considering each 
k-mer as a word, converts them into pre-trained embedding vectors using the word2vec 
algorithm [20]. It then constructs a bidirectional gated recurrent unit (BiGRU) neural 
network for classification. Although KEGRU is applicable to our experimental aim, one 
challenge remains. From a pool of CGIs that are methylated in oocytes, we selected those 
that could be evaluated in methylated or unmethylated form in the maternal genome 
of blastocysts using single nucleotide polymorphism (SNP) information. However, this 
process resulted in only 272 CGIs, which is not sufficient to train RNNs.

Hence, we designed CMIC (CGI Methylation Inheritance Classifier) as a new method 
of converting a CGI sequence into k-mer sequences. A CGI sequence is partitioned into 
variable-length k-mers such that neighboring k-mers do not overlap, which is repeated 
N times. The variable-length k-mer sequences share the methylation status of a CGI 
as a class label. Thus, we augmented the amount of input data given to the GRU net-
work. Furthermore, the variable-length k-mer sequences from the entire set of informa-
tive CGIs were also used to create pre-trained embedding vectors using the word2vec 
algorithm, and this new embedding assignment method is called splitDNA2vec. The 
sequence of the embedding vectors is passed to a BiGRU layer to predict the DNA meth-
ylation status of the input sequence, which we designated as CGI methylation classifica-
tion method CMIC.

We show that CMIC achieves a high F-measure of 0.93. We also discuss how the value 
of N affects the prediction results of the CMIC. Taken together, this work demonstrates 
that converting a CGI sequence into multiple variable-length k-mer sequences is effec-
tive for predicting its DNA methylation status.

Methods
An outline of our proposed method CMIC is as follows (see Fig. 1). When CMIC takes a 
DNA sequence s as input, 2N variable-length k-mer sequences are generated by splitting 
s and its reverse complement into k-mers where such a length k is determined at ran-
dom according to the discrete uniform distribution on an interval. Each variable-length 
k-mer sequence is taken as the input to the BiGRU neural network of CMIC. The k-mers 
of a given variable-length k-mer sequence are converted to the corresponding embed-
ding vector in the embedding layer. Next, the resulting sequence of embedding vectors 
is given to the BiGRU layer. The output to the input variable-length k-mer sequence is 
interpreted as the probability of s being unmethylated.

Generating sequences of random‑length k‑mers from DNA sequences

In the first step of CMIC, an input DNA sequence s is split into non-overlapping k-mers 
with lengths randomly determined according to a discrete uniform distribution on the 
interval from a minimum to a maximum length, kmin and kmax , respectively. This step is 
repeated N times for each s and its reverse complement. As a result, 2N variable-length 
k-mer sequences are generated from the same s sequence. These sequences are referred 
to as cognate because the source DNA sequence is the same. These variable-length k-
mer sequences are used as inputs to the BiGRU neural network of CMIC. This process 
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is a data augmentation method as the number of input instances is increased (see, for 
example, [21]).

Furthermore, such multiple cognate variable-length k-mer sequences are alterna-
tive views of the original DNA sequence. Thus, multiple cognate variable-length k-mer 
sequences are expected to make the trained neural network more robust.

Neural network architecture

We here describe the design of the BiGRU neural network of CMIC. As mentioned in 
the previous section, the input layer takes a variable-length k-mer sequence as input. 
The second layer of the network is an embedding layer in which each k-mer of the given 

Fig. 1  Framework of CMIC. Given a DNA sequence s, multiple variable-length k-mer sequences of s are 
generated first. The input layer of the neural network takes a variable-length k-mer sequence of as the input. 
The second layer is an embedding layer in which each k-mer of the inputted sequence is in order mapped 
to the corresponding embedding vector. The initial embedding vectors in the embedding layer are created 
using our new embedding vector generation method called splitDNA2vec. The third layer is a BiGRU layer 
comprising forward and backward directional GRU neural networks. The two outputs of the previous layer 
are concatenated into a single vector, and inputted into the next fully connected layer followed by a sigmoid 
activation function. The output is interpreted as an estimation of the probability that S is unmethylated
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sequence is converted to the corresponding real vectors of dimension D. We initialized 
the embedding vectors of the layer with the embedding vectors generated by our embed-
ding vector generation method, splitDNA2vec, described in the subsequent subsection. 
The resulting embedding vector sequences are passed to the BiGRU layer, where they are 
processed in the forward and backward direction. The GRU at each time in each direc-
tion holds a hidden state represented by a H-dimensional vector. The last hidden states 
of the forward and backward directions are concatenated into a single vector. This vector 
is inputted into a fully connected layer followed by a sigmoid activation function. The 
output of the function is the total output of this network, and is interpreted as the prob-
ability of the input being unmethylated.

A training dataset is a pair of variable-length k-mer sequence xi and its methylation 
status yi ∈ {0, 1} for i = 1, . . . ,M , where yi = 1 (0, resp.) indicates unmethylated (meth-
ylated, resp.). We denote the parameters of the neural network of CMIC by w . Let 
y = (y1, . . . , yM) and ŷ = (ŷ1, . . . , ŷM) be the observed (true) and predicted methylation 
statuses of x1, . . . , xM . In the process of training the model, the model parameter w is 
optimized with the training dataset by minimizing the loss function

where α is the weight decay hyper-parameter, ‖w‖2 is the L2 norm, and E(ŷ, y) is the 
cross-entropy function, defined as

In addition to the embedding vector dimension D, GRU hidden vector dimension H, and 
weight decay rate α , there are several hyper-parameters of the BiGRU aspect of CMIC 
used in the learning process namely, epoch, e, learning rate, r, batch size, b, and dropout 
rate, d. The dropout technique is applied in the BiGRU layer [22]. Their default values 
are given in Table 1. We train the network by Adaptive Moment Estimation (Adam) [23], 
a stochastic gradient descent optimization algorithm.

splitDNA2vec: generator of embedding vectors of random‑length k‑mers

Here, we formulate our new embedding vector creation method, called splitDNA2vec. 
The embedding vectors in the embedding layer of CMIC are initialized with the output 
of this method. First, variable-length k-mer sequences are generated using the same pro-
cedure as in the first step described for CMIC with N = 1000 from all available CGIs, 
which are equivalent to training and test data. The generated variable-length k-mer 
sequences are inputted into the word2vec algorithm with the continuous bag-of-words 
(CBOW) model. The parameter of the word2vec algorithm is configured as follows. The 
context window size is set to 10. The minimal count of a word, i.e., the k-mer, is cmin = 1 . 
Namely, all occurrences of k-mers are counted. The dimension of embedding vectors is 
set to D = 20.

This process of generating 2N variable-length k-mer sequences from a DNA sequence 
is inspired by dna2vec [24] in which a given DNA sequence is repeatedly segmented 
into overlapping k-mers, extracted from a sliding window of striding one, whose lengths 

L(w) = E(ŷ, y)+ α · �w�2

E(ŷ, y) = −

M

i=1

(yi log ŷi + (1− yi) log(1− ŷi)).
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are randomly chosen according to a discrete uniform distribution. The major differ-
ence between the dna2vec and our method, splitDNA2vec, is that our variable-length 
k-mer sequences have higher randomness than those of dna2vec because the length and 
the start position of an extracted k-mer are both random in our method, while only the 
length of k-mers are randomized in dna2vec. Furthermore, splitDNA2vec generates N 
sequences of variable-length k-mers from the same DNA sequence, though dna2vec 
generates only one sequence of variable-length k-mers from a DNA sequence.

In place of splitDNA2vec, we also evaluated the case where the embedding layer is 
initialized with the dna2vec algorithm output. Furthermore, we considered a shuffled 
version of splitDNA2vec, denoted by splitDNA2vec-sh, in which the mapping of k-mers 
to embedding vectors made by splitDNA2vec is randomly shuffled. Finally, we examined 
how these embedding vector initialization methods affect performance of CMIC.

Gated recurrent unit

In this section, we explain the BiGRU neural network used in CMIC. The GRU was for-
mulated by Cho et al. [25], and is similar to a long short-term memory (LSTM) [26], but 
simpler as it does not use an output gate. We discuss performance of the CMIC variants 
with the standard RNN and LSTM architectures in the result section.

We here explain the architecture of GRU. The reset gate takes as input the input at 
time step t, xt , and the output (hidden) vector at time step t − 1 , ht−1 . This gate outputs 
a reset gate vector, rt , given as

where Wr and Ur are weight matrices for xt and ht−1 , respectively, br is a bias, and σ is a 
sigmoid function. Similarly, the update gate outputs an update gate vector, zt , defined as

Wz and Uz are weight matrices for xt and ht−1 , respectively, and bz is a bias.
Using rt as a regulator, GRU generates h̃t the candidate activation vector at time step t, 

calculated as

where W and U are weight matrices, bh is a bias, and ⊙ is the Hadamard product. Note 
that tanh is the hyperbolic tangent function, whose range is [−1, 1] . Further, the reset 
gate vector rt is used as a coefficient representing how much the output vector, ht−1 , 
should be forgotten to make the candidate activation vector, h̃t.

The output vector at time step t, ht , is the affine combination of ht−1 and h̃t with a 
ratio of zt : (1− zt) ; that is,

where 1 is the vector filled with ones of the same dimension as zt.
To enhance the predictability of CMIC, we use the BiGRU model, which is the GRU 

version of the BiRNN model [27]. Namely, it has forward and backward GRU networks, 
where an input is processed in the forward and backward directions, respectively, which 

rt = σ(Wrx
t +Urh

t−1 + br)

zt = σ(Wzx
t +Uzh

t−1 + bz).

h̃t = tanh(Wxt +U(rt ⊙ ht−1)+ bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t ,



Page 7 of 20Maruyama et al. BMC Bioinformatics          (2022) 23:371 	

we call BiGRU layer. The output of a BiGRU layer is formulated by merging the last hid-
den state vectors of two directions with an appropriate mode, like concatenation, sum-
mation, average, and multiplication. Concatenation is adopted in this work.

Materials

We use the data obtained by whole-genome bisulfite sequencing (WGBS) of mouse fully 
grown oocytes (FGOs) [6, 7, 28, 29] and blastocyst (GSE174311). The FGOs are obtained 
from the mouse strain C57BL/6J (Kyudo Co, Japan), and the blastocysts are derived from 
in vitro fertilization of C57BL/6J oocytes with JF1/Ms mouse (Genetic Resource Center, 
National Institute of Genetics, Japan) sperm. At the time of the experiments the mice 
were at least 10 weeks old. The locations of CGIs are based on the mm10 assembly of 
the mouse genome and obtained from the UCSC genome annotation database [30]. The 
WGBS reads of the FGO and blastocyst were mapped to the mouse genome using Bis-
mark [31].

For allelic-specific methylation analysis of blastocysts, reads were mapped to an 
N-masked genome sequence generated based on the published SNP data of JF1 [32]. 
Allelic reads were selected using SNPsplit [33].

Methylation status of CGIs

For each CGI, we count the number of WGBS reads covering a CpG site within the CGI 
and that of reads represented as methylated. We define the DNA methylation ratio of a 
CGI as the count for methylation to the whole count. If the whole read count of a CGI is 
less than the threshold T, it is not used in any further analysis. Then, a CGI is labeled M 
(methylated) if its methylation ratio is greater than or equal to a threshold βM , while it 
is labeled U (unmethylated) if its methylation ratio is lower than a threshold, βU . Table 2 
shows the setting of these parameters for FGO and maternal genome of blastocyst. The 
distribution of methylation ratios in the maternal genome of mouse blastocysts of the 
CGIs that are methylated in FGOs is given in Additional file 1: Fig. S1.

Our target data is the methylation status, either M or U, of CGIs that belongs to class M 
in FGOs, in the maternal genome of blastocyst. These classes are respectively denoted as 
M2M (DNA methylation inheritance) and M2U (DNA methylation loss). The number of 
M2M CGIs is 182, and that of M2U CGIs is 90. Among them, there are 150 M2M CGIs and 
60 M2U CGIs with lengths of at most 500 bp. These CGIs are suitable for learning mod-
els because longer sequences require much more time to train models. We use them in 
3-fold stratified cross-validation.

Performance metrics

The output of CMIC to an input variable-length k-mer sequence is the probability of the 
input being unmethylated. We determine the predicted class label as “unmethylated” if 
the probability is greater than 0.5 or “methylated” otherwise.

As a performance metrics, we use balanced accuracy, F-measure, MCC (Matthews 
correlation coefficient), and AUC. We calculate these performance metrics in 3-fold 
stratified cross-validation and show the average with the standard error.
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Results
Finding the best pair of the lower and upper bounds of the variable length of extracted 

k‑mers

Recall that kmin and kmax are the lower and upper bounds of the variable-length k-mers 
which a given DNA sequence are split into. We here find the best pair of kmin and kmax 
with the other default parameters. We set the search space of the pairs of kmin and kmax 
such that kmin = 2, . . . , 11 and kmax = 3, . . . , 12 such that kmax − kmin ≥ 1.

The F-measure based on a 3-fold cross-validation is summarized in the bar graph in 
Fig. 2 where bars are grouped by kmax . Results show that as kmax increases, so too do the 
F-measure values with a small kmin value of approximately 2, 3, and 4. Given that splitD-
NA2vec assigns the embedding vectors of such short and longer k-mers simultaneously, 
these embedding vectors likely acted synergistically to characterize CGI sequences. 
Among them, (kmin, kmax) = (4, 12) achieved the highest F-measure, 0.93. This pair of 
values was used as the default in subsequent analyses. The balanced accuracy, MCC, and 
AUC graphs appear similar to that in Fig. 2 (Additional File 1: Figs. S2, S3, and S4).

Lastly, in the case of kmax values greater than 12, considering that CMIC marked the 
highest F-measure with kmax = 12 , we ran splitDNA2vec with kmax = 13 ; however, this 
process was incredibly time consuming, particularly in executing word2vec; Thus we 
have not examined this case in depth.

Evaluation of splitDNA2vec

We next analyzed the extent to which the embedding vectors, used in the embedding 
layer, affect prediction of the CGI methylation status. For this purpose, we consid-
ered three different methods for generating embedding vectors, as shown in Table  3. 
The first method was our default scheme, splitDNA2vec, the second method was 

Fig. 2  F-measure of CMIC with different pairs of kmin and kmax . The search space of the pairs of kmin and kmax 
are set to be kmin = 2, . . . , 11 and kmax = 3, . . . , 12 with kmax − kmin ≥ 1 . The bars are grouped by kmax
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splitDNA2vec-sh, which randomly shuffles the mapping of k-mers to embedding vectors 
made by splitDNA2vec, and the final method was dna2vec, which has been described 
above. Recall that dna2vec generates a sequence of variable-length k-mers from a DNA 
sequence. Here we extended dna2vec which generates 1000 sequences of variable-length 
k-mers from the same sequence. This extension is denoted by dna2vec-N1000.

This embedding vector assignment to k-mers is an unsupervised learning process. 
Thus, the DNA sequences of our dataset, including training, test, and long CGI datasets, 
were applied without their class labels. Note that each method generates N = 1, 000 var-
iable-length k-mer sequences from an input CGI sequence, save for the original dna2vec.

We further formulated more specific embedding vector methods derived from each of 
the four methods described above, from the view point of whether the embedding vec-
tors in the embedding layers are updated in the training process of the neural network 
part of CMIC, as in [34]. More specifically, these vectors were treated as variable weights 
of the network (V) or constant vectors (C). For splitDNA2vec, we denoted the two ver-
sions as splitDNA2vec-V and splitDNA2vec-C, and the remaining versions in the same 
way. Thus, we compared the resulting eight methods with the remaining parameters as 
default.

The F-measure on the test datasets of the eight different options explained above are 
shown in Fig. 3. This result has some interesting implications.

First, the best method was found to be splitDNA2vec-V with an F-measure of 0.914, 
followed by splitDNA2vec-C with an F-measure of 0.906. This implies that even if the 

Fig. 3  F-measure with different schemes for embedding vectors shown in Table 3. The x-axis represents the 
eight methods to be compared: splitDNA2vec-C, splitDNA2vec-V, splitDNA2vec-sh-C, splitDNA2vec-sh-V, 
dna2vec-C, dna2vec-V, dna2vec-N1000-C, and dna2vec-N1000-V. The y-axis shows the F-measure on test 
datasets
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embedding layer is freezed, CMIC can achieve same-level performance due to the effec-
tiveness of the embedding vectors constructed by the splitDNA2vec method. Moreover, 
the splitDNA2vec-C method offers the advantage of not requiring further updates of the 
initial embedding vectors given by the splitDNA2vec method in the process of end-to-
end training of the CMIC neural network. Thus, we use splitDNA2vec-C as the default 
setting in further analyses.

Second, we can see that dna2vec-N1000-C and dna2vec-N1000-V are superior to 
dna2vec-C and dna2vec-V, highlighting the benefit of generating multiple sequences of 
variable-length k-mers from the same CGI sequences. The highest F-measure obtained 
was 0.40, given by dna2vec-N1000-C, which is significantly lower than the 0.91 of splitD-
NA2vec. Given that the primary difference between splitDNA2vec and dna2vec-N1000 
is the presence/absence of overlap between neighboring extracted k-mers, this result 
implies that overlapping neighboring k-mers have less information than non-overlap-
ping ones.

Third, in terms of the F-measure, dna2vec-C and dna2vec-V yielded worse results than 
the randomly-shuffled version of splitDNA2vec, splitDNA2vec-sh-C and splitDNA2vec-
sh-V, respectively. The option “window” of word2vec, specifying the length of consecu-
tive k-mers used as an instance to train the word2vec model, was set to 10 in all eight 
methods for embedding vectors. A possible drawback of dna2vec is that the genomic 
region covered by a sliding window of size 10 is shorter than splitDNA2vec due to over-
lapping between neighboring k-mers.

The graphs of balanced accuracy, MCC, and AUC are similar to Fig. 3 (given in Addi-
tional file 1: Figs. S5, S6, and S7).

The number of variable‑length k‑mer sequences strongly affects DNA methylation 

inheritance prediction

The total number of class M2U CGIs is 60, which may not be sufficient to adequately 
train CMIC. We then increased N, the number of sequences of variable-length k-mers 
generated from an input CGI sequence, which are directly taken as input for the net-
work. The result is shown in Fig. 4.

As N increases to 900, the F-measure gradually improved and attained an F-measure 
of 0.93 at N = 900 . Subsequently, the curve plateaued. This result clearly indicates that 
multiple sequences of variable-length k-mers should be used to train models.

The graphs of balanced accuracy, MCC, and AUC are similar to Fig. 4 (given in Addi-
tional file 1: Figs. S8, S9, and S10).

Predictability of the trained model for long CGIs

In this work, we limited the length of CGIs in training datasets to 500 bp as longer 
sequences cause the unfolded form of the CMIC neural network to be deeper and make 
the learning process more difficult. If a key feature for determining the methylation 
inheritance of a CGI was encoded in a relatively short region, the network trained with 
the short CGIs could learn the feature and accurately predict the methylation inherit-
ance of CGIs longer than 500 bp with the same level predictability. We then examined 
the F-measure of the trained CMIC with the short sequences for the longer ones.
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Fig. 4  F-measure of CMIC with different numbers of variable-length k-mer sequences generated from an 
input CGI sequence, N. The x-axis represents values of N. The y-axis shows the F-measure with N 

Fig. 5  F-measure of CMIC trained with short CGIs for long CGIs. The x-axis indicates the range of CGI 
sequence lengths. The y-axis indicates the F-measure
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The length distribution of long M2M and M2U CGIs is given in Table 4. The F-measure 
of prediction on these sequences is given in Fig. 5.

The average F-measure for the CGI length intervals [501, 600], [601, 700], [701, 800], 
[701, 800], [801, 900], 1000 and more are 0.90, 0.89, 0.94, 0.96, 0.74, and 0.96, respec-
tively. Recall that, to this point, the best F-measure with the default parameter values 
was 0.93. Unexpectedly, three intervals attained F-measure values higher than 0.93. This 
result implies that some genomic features for methylation inheritance are embedded 
within regions of 500 bp or shorter, and are shared by many long CGIs.

The graphs of balanced accuracy, MCC, and AUC are similar to Fig. 5 (given in Addi-
tional file 1: Figs. S11, S12, and S13).

Performance with different recurrent neural network architectures

Though the recurrent unit architecture adopted in CMIC is BiGRU in the default set-
ting, there are other well-known architectures, including the standard RNN unit [35] 
and LSTM unit [26]. We then consider the variants of CMIC, in which the BiGRU net-
work is replaced with the BiRNN network and the bidirectional LSTM (BiLSTM) net-
work. Furthermore, we considered their unidirectional version, denoted by GRU, RNN, 
and LSTM.

Their F-measures are shown in Fig. 6. First, BiGRU, GRU, BiLSTM, and LSTM have 
comparable F-measures, which are higher than those of BiRNN and RNN. Hence, the 
bidirectionality in the GRU and LSTM architectures is not necessary. This implies that 
the genomic features for DNA methylation status of CGIs can be learned in one direc-
tion. Meanwhile, RNN showed poor performance, however, the bidirectional version, 
BiRNN, compensated for the drawback of RNN to some extent.

Fig. 6  F-measure of CMIC with alternative recurrent units, RNN, BiRNN, GRU, BiGRU, LSTM, and BiLSTM
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The graphs of balanced accuracy, MCC, and AUC are similar to Fig. 6 (given in Addi-
tional file 1: Figs. S14, S15, and S16).

Performance of KEGRU​

Among many neural network-based classifiers for variable-length DNA sequences, the 
model most similar to CMIC is KEGRU [17] in which with a fixed k and a fixed stride, 
a single sequence of k-mers is generated from a DNA sequence. Indeed, their scheme is 
essentially the same as dna2vec. This differs from CMIC, in which the generation of mul-
tiple sequences of variable-length k-mers is performed by splitDNA2vec.

We then carried out comprehensive computational experiments of KEGRU with the 
hyper-parameter values shown in Table 5. We extended the range of k-mer lengths from 
the original lengths, 4, 5, 6, in [17] to 2, . . . , 12 . We also widened the strides range from 
2, . . . , 5 to 1, . . . , 5 . Lastly, the dimensions of embedding vectors, denoted by D, were 
changed from 50, 100, 150, 200 to 20 and 50. In [17], the cases where D = 50, 100, 150 , 
and 200 were compared, revealed relatively similar scores with those for D = 50, 100 , 
and 150. Thus, we adopted D = 50 in addition to our default value D = 20.

Fig. 7a, b presents the F-measure graphs for KEGRU with D = 20 and 50, respectively. 
Broadly speaking, the results are similar with the bars on the left axis showing F-meas-
ures of approximately 0.4, and those on the right, indicating approximately 0.2, some 
of which had large standard errors. A comparison of these results with those shown 
in Fig.  2 indicates the effectiveness of the multiple sequence generation of k-mers of 
splitDNA2vec.

The graphs of balanced accuracy, MCC, and AUC are similar to Fig. 7 (given in Addi-
tional file 1: Figs. S17, S18, S19, S20, S21, and S22).

Characterizing embedding vectors of 12‑mers

When we generate a sequence of variable-length k-mers from a CGI sequence using 
splitDNA2vec, the maximum length is set to be kmax = 12 . However, for example, the 
work on chromatin accessibility [19] used 6-mers, and KEGRU adopted k = 4, 5 , and 6 
as mentioned above for [17]. The reason these relatively short k-mers were selected was 
to avoid overfitting due to long k-mers. However, a long k-mer extracted from a training 
CGI sequence may never occur in any of the test CGI sequences, including the reverse 
complements. Hence, such a long k-mer will be an obstacle to training the models.

However, extracted k-mers are transformed into pre-trained D-dimensional embed-
ding vectors in CMIC. Even if the two long k-mers differ, yet their substrings are simi-
lar or the same, the long k-mers may be mapped into embedding vectors close to each 
other. If this hypothesis is realized within methylated CGIs and/or unmethylated CGIs, 
such long k-mers can contribute to high predictability for CGI methylation inheritance.

To verify this hypothesis, we applied t-Distributed Stochastic Neighbor Embedding 
(t-SNE), which is an algorithm to map high-dimensional data into a low-dimensional 
space based on the distance between data points [36], to the 12-mers generated with 
the default parameter values of CMIC. Given that too many 12-mers were derived 
from CGI sequences of length ≤ 500 , we removed the 12-mers occurring in both 
of methylated and unmethylated CGI sequences as they can not discriminate CGI 
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methylation inheritance. A total of 107,129 12-mers remained. Their plot, generated 
by t-SNE with the default perplexity 30, is shown in Fig. 8. Most unmethylated and 
methylated 12-mers are respectively distributed into different regions according to 
their methylation inheritance. The plots with perplexity 10 and 50 show similar views 
(Additional file 1: Figs. S23 and S24). This implies that there are many 12-mers with 
embedding vectors characteristic of methylation inheritance.

a

b

Fig. 7  F-measure of KEGRU with various lengths of k-mers and strides. The x-axis represents a pair of k and 
stride. a D = 20 . b D = 50
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Predicting the methylation status of CGIs in human lymphocytes

In addition to our original DNA methylation inheritance prediction study aim, we 
also applied CMIC to the prediction of DNA methylation status of CGIs in human 
lymphocytes [37]  used in Bock et al. [12], to evaluate the versatility of CMIC. The 

Fig. 8  Output of t-SNE. Each point corresponds to a 12-mer. The point of a 12-mer extracted from 
unmethylated (methylated, resp.) CGI sequences is represented as u (m, resp.)

Table 1  Default values of hyper-parameters of CMIC.

These values are used without explicit mention of the parameters

Symbol Default value Description

N 1000 Number of variable-length k-mer 
sequences generated from a CGI 
sequence

D 20 Embedding vector dimension

H 256 Hidden variable dimension

e 2 Epoch

r 0.0001 Learning rate

b 32 Batch size

d 0.5 Dropout rate

α 0.01 Weight decay rate
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dataset contains 29 methylated and 103 unmethylated CGIs in chromosome 21. Given 
that this dataset is smaller than that comprising 60 M2U and 150 M2M CGIs, this study 
question is more challenging to CMIC.

As various attribute sets were tested, we selected one with the highest accuracy, 0.919, 
for this analysis. The attribute set is the combination of Class 1 (DNA sequence prop-
erties and patterns) and Class 2 (repeat frequency and distribution). They reported the 
total numbers of true positives (TPs), false negatives (FNs), true negatives (TNs), and 
false positives (FPs) over a 10-fold stratified cross-validation that was repeated 20 times 
(Table 2 in [12]). From this data we calculated balanced accuracy, F-measure, and MCC, 
shown in Table 6.

In the same way, we counted TPs, FNs, TNs, and FPs from the result on test data-
sets of 3-fold stratified cross-validation by CMIC, and gave the performance metrics in 

Table 2  Threshold setting for cell-types.

T is the lower bound for the whole read count of a CGI which is used in analysis. βM is the lower bound for the methylation 
ratio of a CGI which belongs to class M (methylated), βU is the upper bound for the methylation ratio of a CGI which belongs 
to class U (unmethylated)

Sample T βM βU

FGO 100 0.8 0.1

maternal genome of blastocysts 20 0.4 0.1

Table 3  Methods of generating variable-length k-mers.

Each column shows the name of a method, overlapping between adjacent variable-length k-mers, and the method used for 
assigning vector elements

Method k-mer overlap Vector assignment

splitDNA2vec no word2vec

splitDNA2vec-sh no random shuffling of the word2vec 
map from k-mers to embedding 
vectors

dna2vec yes word2vec

Table 4  Distribution of long CGI lengths. Column label “L-” indicates the sequence length range 
[L, L+ 100) for L = 501, . . . , 901 , and 1001- is sequences of length 1001 and more

Class 501- 601- 701- 801- 901- 1001-

M2M 9 8 3 2 3 7

M2U 10 7 3 2 1 7

Table 5  Hyper-parameter setting of KEGRU.

k represents the length of k-mer. In [17], they compared the cases where D = 50, 100, 150 , and 200, and reported almost 
the same scores with D = 50, 100 , and 150. Thus, we adopted D = 50 as well as our default value D = 20

hyper-parameter [17] this study

k 4, 5, 6 2, . . . , 12

stride 2, . . . , 5 1, . . . , 5

D 50, 100, 150, 200 20, 50
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Table 6. As seen, CMIC marked 14% higher balanced accuracy and F-measure and 15 % 
higher MCC.

Note that Bock et al. designed a total of 1,184 sequence-based feature vectors and 
made predictions using support vector machines. Meanwhile, the key vectors of our 
method, which are embedding vectors of variable-length k-mers and hidden vectors of 
the BiGRU layer, are automatically learned by specifying hyper-parameters. This result 
indicates the superiority of CMIC.

Conclusion
In this paper, we addressed whether it is possible to predict if CGIs maintain oocyte-
derived methylation in the maternal genome of blastocysts, based on their sequences, 
and proposed a method, CMIC, for this prediction. A critical issue that arose was an 
insufficient number of available CGIs to train the neural networks. Thus, we designed a 
random data augmentation approach in which an input single DNA sequence was con-
verted to multiple sequences of embedding vectors of extracted variable-length k-mers 
from the DNA sequence. Furthermore, such variable-length k-mers sequences derived 
from our CGI datasets were taken as input to generate embedding vectors of the k-mers. 
This new embedding vector generation method for DNA sequences was splitDNA2vec. 
These embedding vectors were used in the embedding layer of CMIC in the default set-
ting. As a whole, CMIC takes an input CGI sequence, converts it to multiple variable-
length k-mer sequences, and further transforms each k-mer to a specified embedding 
vector. A BiGRU network gives the probability of the input CGI inheriting the DNA 
methylation in the maternal genome of the blastocyst.

In this study, we found that splitDNA2vec works better than dna2vec for the methyla-
tion inheritance classification. Furthermore, we showed that the generation of numerous 
variable-length k-mer sequences from a DNA sequence is effective in augmenting input 
data, because the partition of a DNA sequence to variable-length k-mer sequences pro-
vides different representations of the original DNA sequences.

The design of the proposed method, CMIC, does not depend on DNA methylation. 
Thus, this method should be applicable to other DNA sequence classification problems 
including chromatin accessibility prediction [19].

Abbreviations
CGI	� CpG Island
GRU​	� Gated recurrent unit
RNN	� Recurrent neural network
LSTM	� Long short-term memory
FGO	� Fully grown oocyte
WGBS	� Whole-genome bisulfite sequencing

Table 6  Prediction result on the DNA methylation of CGIs in human lymphocytes

Method balanced accuracy F-measure MCC

CMIC 0.949 0.895 0.866

Bock et al. 0.830 0.784 0.752

Ratio (%) 14 14 15
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Additional file 1. Fig. S1. Distribution of methylation ratios in the maternal genome of mouse blastocyst of the CGIs 
that are methylated in FGOs. The lower bound of class M (methylated) for FGOs is set to βM = 0.8 as shown in Table. 
2. Fig. S2. Balanced accuracy of CMIC with different pairs of kmin and kmax. The search space of the pairs of kmin and 
kmax are set to be kmin = 2, . . . , 11 and kmax = 3, . . . , 12 with kmax − kmin ≥ 1. The bars are grouped by kmax. Fig. S3. 
MCC of CMIC with different pairs of kmin and kmax. The search space of the pairs of kmin and kmax are set to be kmin = 2, 
..., 11 and kmax = 3, ..., 12 with kmax − kmin ≥ 1. The bars are grouped by kmax. Fig. S4. AUC of CMIC with different pairs 
of kmin and kmax. The search space of the pairs of kmin and kmax are set to be kmin = 2, ..., 11 and kmax = 3, ..., 12 with 
kmax − kmin ≥ 1. The bars are grouped by kmax. Fig. S5. Balanced accuracy with different schemes for embedding 
vectors shown in Table 3. The x-axis represents the eight methods to be compared: splitDNA2vec-C, splitDNA2vec-
V, splitDNA2vec-sh-C, splitDNA2vec-sh-V, dna2vec-C, dna2vec-V, dna2vec-N1000-C, and dna2vec-N1000-V. The 
y-axis shows the F-measure on test datasets. Fig. S6. MCC with different schemes for embedding vectors shown in 
Table 3. The x-axis represents the eight methods to be compared: splitDNA2vec-C, splitDNA2vec-V, splitDNA2vec-
sh-C, splitDNA2vec-sh-V, dna2vec-C, dna2vec-V, dna2vec-N1000-C, and dna2vec-N1000-V. The y-axis shows the 
F-measure on test datasets. Fig. S7. AUC with different schemes for embedding vectors shown in Table 3. The x-axis 
represents the eight methods to be compared: splitDNA2vec-C, splitDNA2vec-V, splitDNA2vec-sh-C, splitDNA2vec-
sh-V, dna2vec-C, dna2vec-V, dna2vec-N1000-C, and dna2vec-N1000-V. The y-axis shows the F-measure on test 
datasets. Fig. S8. Balanced accuracy of CMIC with different numbers of variable-length k-mer sequences generated 
from an input CGI sequence, N. The x-axis represents values of N. The y-axis shows the F-measure with N. Fig. S9. 
MCC of CMIC with different numbers of variable-length k-mer sequences generated from an input CGI sequence, 
N. The x-axis represents values of N. The y-axis shows the F-measure with N. Fig. S10. AUC of CMIC with different 
numbers of variable-length k-mer sequences generated from an input CGI sequence, N. The x-axis represents values 
of N. The y-axis shows the F-measure with N. Fig. S11. Balanced accuracy of CMIC trained with short CGIs for long 
CGIs. The x-axis indicates the range of CGI sequence lengths. The y-axis indicates the F-measure. Fig. S12. MCC 
of CMIC trained with short CGIs for long CGIs. The x-axis indicates the range of CGI sequence lengths. The y-axis 
indicates the F-measure. Fig. S13. AUC of CMIC trained with short CGIs for long CGIs. The x-axis indicates the range 
of CGI sequence lengths. The y-axis indicates the F-measure. Fig. S14. Balanced accuracy of CMIC with alternative 
recurrent units, RNN, BiRNN, GRU, BiGRU, LSTM, and BiLSTM. Fig. S15. MCC of CMIC with alternative recurrent units, 
RNN, BiRNN, GRU, BiGRU, LSTM, and BiLSTM. Fig. S16. AUC of CMIC with alternative recurrent units, RNN, BiRNN, 
GRU, BiGRU, LSTM, and BiLSTM. Fig. S17. Balanced accuracy of KEGRU with various lengths of k-mers and strides. 
The vector size is set to 20. The x-axis represents a pair of k and stride. Fig. S18. MCC of KEGRU with various lengths 
of k-mers and strides. The vector size is set to 20. The x-axis represents a pair of k and stride. Fig. S19. AUC of KEGRU 
with various lengths of k-mers and strides. The vector size is set to 20. The x-axis represents a pair of k and stride. Fig. 
S20. Balanced accuracy of KEGRU with various lengths of k-mers and strides. The vector size is set to 50. The x-axis 
represents a pair of k and stride. Fig. S21. MCC of KEGRU with various lengths of k-mers and strides. The vector size 
is set to 50. The x-axis represents a pair of k and stride. Fig. S22. AUC of KEGRU with various lengths of k-mers and 
strides. The vector size is set to 50. The x-axis represents a pair of k and stride. Fig. S23. Plot generated by t-SNE with 
perplexity 10. Fig. S24. Plot generated by t-SNE with perplexity 50.
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