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Introduction
In recent years, the analysis of the sweat metabolome has received increased attention from 
several fields of study [1–3]. For example, sweat has been in the focus of forensic scientists 
since it is possible to analyze metabolomic profiles of finger-prints that have been found 
(e.g., at a crime scene) [4]. Also, drug testing can easily be performed on sweat samples. 
One advantage of this method is to not only identify already illegal substances but their 
metabolic degradation products as well, thereby allowing scientist to distinguish between 
drug consumption and mere contact [1]. Another application of sweat metabolomics is 

Abstract 

Metabolomic time course analyses of biofluids are highly relevant for clinical diagnos-
tics. However, many sampling methods suffer from unknown sample sizes, commonly 
known as size effects. This prevents absolute quantification of biomarkers. Recently, 
several mathematical post acquisition normalization methods have been developed to 
overcome these problems either by exploiting already known pharmacokinetic infor-
mation or by statistical means. Here we present an improved normalization method, 
MIX, that combines the advantages of both approaches. It couples two normalization 
terms, one based on a pharmacokinetic model (PKM) and the other representing a 
popular statistical approach, probabilistic quotient normalization (PQN), in a single 
model. To test the performance of MIX, we generated synthetic data closely resem-
bling real finger sweat metabolome measurements. We show that MIX normalization 
successfully tackles key weaknesses of the individual strategies: it (i) reduces the risk of 
overfitting with PKM, and (ii), contrary to PQN, it allows to compute sample volumes. 
Finally, we validate MIX by using real finger sweat as well as blood plasma metabolome 
data and demonstrate that MIX allows to better and more robustly correct for size 
effects. In conclusion, the MIX method improves the reliability and robustness of quan-
titative biomarker detection in finger sweat and other biofluids, paving the way for 
biomarker discovery and hypothesis generation from metabolomic time course data.

Keywords:  Metabolomics, Finger Sweat, Blood Plasma, PKM, PQN

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Gotsmy et al. BMC Bioinformatics          (2022) 23:379  
https://doi.org/10.1186/s12859-022-04918-1

BMC Bioinformatics

†Mathias Gotsmy and Julia 
Brunmair contributed equally

*Correspondence:   
juergen.zanghellini@univie.ac.at

1 Department of Analytical 
Chemistry, Faculty of Chemistry, 
University of Vienna, Vienna, 
Austria
2 Vienna Doctoral School 
in Chemistry, University 
of Vienna, Vienna, Austria
3 Joint Metabolome Facility, 
University and Medical University 
of Vienna, Vienna, Austria

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04918-1&domain=pdf


Page 2 of 30Gotsmy et al. BMC Bioinformatics          (2022) 23:379 

in diagnostics for personalized medicine, where the focus is put on discerning metabolic 
states of the body and trying to optimize nutrition and treatment based upon information 
of biomarkers in sweat [5–7].

Sweat metabolomics offers several technical advantages. Firstly, sweat is a rich source of 
biomolecules and thus offers great potential for biomarker discovery [8, 9]. Secondly, sweat 
sampling is easy compared to sampling other biofluids (e.g., blood or urine). Moreover, it is 
non-invasive and can, in principle, be rapidly repeated.

Several sampling methods have been developed [2, 3, 9, 10]. However, most of them work 
in a very similar manner: a water absorbing material is put onto the skin’s surface to col-
lect sweat for some (short) time. Sweat metabolites are subsequently extracted from this 
material and analyzed [3, 10]. Methods differ, however, in if and how they induce sweating. 
Some methods induce increased sweating by physical exercise [9] or chemical stimulation 
[2], whereas in other studies no sweat induction is performed and the natural sweat rate is 
sufficient for metabolomic analysis [3, 11].

Regardless of the exact sampling method, most of the above mentioned studies suffer one 
major drawback. The sweat flux is highly variable, depending not only on interindividual 
differences but also on body location, temperature, humidity, exercise, and further fac-
tors that may change multiple times over the course of one day [12, 13]. For example, even 
with conservative estimates a variability of sweat flux, qsweat , on the finger-tips between 
0.05 and 1 mg cm−2 min−1 needs to be accounted for [13–16]. This is a major challenge for 
comparative or quantitative studies, which has been acknowledged by many, e.g. [1, 4, 8, 
17–19], however only actively approached by few – most notably [9].

The key problem is associated to the fact that often one is interested in the true metab-
olite concentrations, C ∈ R

nmetabolites , of nmetabolites metabolites, which is obscured by an 
unknown and time-dependent sweat flux. Thus, the measured metabolites’ intensities are 
not proportional to C but to the metabolite mass vector, M ∈ R

nmetabolites,

Here asample and τ denote the surface area of skin that is sampled and the time it takes 
to collect one sample, respectively. We emphasize that throughout the manuscript, 
the mass of a metabolite is defined as the measured abundance of the metabolite in a 
measured sample and neither as the molar mass or mass to charge ratio. Moreover, we 
acknowledge that without a calibration curve, the measured abundances have an arbi-
trary peak-area unit and are thus strictly neither absolute masses nor concentrations. 
The proportionality constant that scales measured intensities to mass units is deter-
mined by the calibration curve. The proper calibration curve is not further discussed 
here but is assumed to be linear and available when applicable.

Metabolic concentration shifts happen in the span of double-digit minutes to hours, 
whereas sampling times are usually low single-digit minutes, therefore it is possible to 
assume that C changes little over the integration time τ [20]. Thus (1) simplifies to 

with an unknown sweat volume during sampling

(1)M̃(t) = asample

∫ t

t−τ

C(t ′) qsweat(t
′) dt ′.

(2a)M̃(t) ≈ C(t) V (t),
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 and the problems reads: given M̃ , how can we compute C if we don’t know V ?
The need to calculate absolute metabolite concentrations from small biological sam-

ples of unknown volume is not unique to sweat metabolomics but known throughout 
untargeted metabolomics. The problem is commonly referred to as size effects [21]. For 
the sake of consistency with previous publications on this topic, we will use the term 
“size effects“ throughout this publication. We emphasize that in this context, it specifi-
cally refers to perceived differences in measured abundances due to changing sample 
volumes and/or dilutions and not to effects of different numbers of measurements per 
sample, also referred to as sample size effects [22].

Three strategies have been developed to tackle size effects:
Direct sweat volume measurement. Measuring V  , for instance via microfluidics [9, 

23, 24], is the most straight forward method to solve (2) and typically very accurate 
with minimally required volumes in the range of ∼ 5 to 100 µ L [9, 23, 24]. However, in 
the case of sweat sampling, it may take quite some time, large sample areas, or increased 
(i.e., induced) sweating to collect enough sweat for robust volume quantification. 
Another alternative is the volume estimation via paired standards [25], however, such 
a method increases the complexity of sample preparation. Either option would impede 
fast and easy sample collection and analysis.

Indirect sweat volume computation. If the chemical kinetics of targeted metabolite 
concentrations are known, then kinetic parameters and the sweat volume at each time 
point can be simultaneously determined by fitting the measured mass vector to Eq. 2. 
Recently, we used this strategy to computationally resolve not only sample volumes 
in the nL to single digit µL-range but also accurately quantify personalized metabolic 
response patterns upon caffeine ingestion [20]. Albeit feasible for the determination of 
individual differences with knowledge of reaction kinetics, this method quickly becomes 
unconstrained when too little prior information is available. Therefore, it is not suited 
for the discovery of unknown reaction kinetics. Moreover, this method requires several 
sampling time points to allow modeling the kinetics of different metabolites, thereby 
decreasing the simplicity of sampling.

Statistical normalization. With this approach the aim is to normalize the mass vec-
tor by the apparent mass of a marker that scales proportionally to the sample volume 
so that the ratio becomes (at least approximately) independent of the sample volume. 
Various strategies have been developed for untargeted metabolomics; for example, nor-
malization by total measured signal [26], and singular value decomposition-based nor-
malization [27]. However, one of the best performing methods – probabilistic quotient 
normalization (PQN) – simply assumes that the median of the ratio of two apparent 
mass vectors is proportional to the sample volume [21, 28–30]. Although PQN does not 
allow one to compute sample volumes per se, it enables one to assess differential changes 
[28].

In this study, we explore the performance of three different normalization methods 
on synthetic data. We illustrate the disadvantages of two previously published meth-
ods only focusing on either targeted or untargeted metabolites, respectively. A third 

(2b)V (t) := asample

∫ t

t−τ

qsweat(t
′) dt ′,
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normalization method is developed by combining both strategies in a single MIX model. 
We show that MIX significantly outperforms its preceding normalization methods. To 
validate the results, we use MIX to characterize caffeine metabolization measured in the 
finger sweat as well as diphenhydramine metabolization measured in blood plasma.

Theory
Probabilistic quotient normalization

Definition. Probabilistic quotient normalization (PQN) assumes that for a large, untar-
geted set of metabolites the median metabolite concentration fold change between two 
samples (e.g., two measured time points, tr and ts ) is approximately 1, 

Consequently, fold changes calculated from M̃ instead of C are proportional to the ratio 
of V ,

with

 In order to minimize the influence of experimental errors

often replaces the dedicated sample in M̃j(ts) in the denominator of Eq. 3c [28]. There-
fore, the normalization quotient by PQN is calculated as

QPQN is a relative measure and distributes around 1. In analogy to Eq. 3b, we define its 
relation to the (sweat) volume V PQN as

where V ref denotes some unknown, time-independent reference (sweat) volume. Note 
that with real data only QPQN(t) values can be calculated, but V PQN(t) as well as V ref 
remain unknown.

Discussion. Mref
j  can be defined differently depending on the underlying data. How-

ever, the choice of reference is usually not critical to the outcome of PQN [28]. As no 
control or blank measurements are available, and the abundances of metabolites can 
range several orders of magnitudes, in this study, we used a metabolite-wise median 
reference for QPQN calculation. Moreover, PQN might be sensitive to missing values; 

(3a)QC = median

{
Cj(tr)

Cj(ts)

}
≈ 1, j ∈ [1, nmetabolites].

(3b)QM = QC V (tr)

V (ts)
≈

V (tr)

V (ts)

(3c)QM = median

{
M̃j(tr)

M̃j(ts)

}
, j ∈ [1, nmetabolites].

(4)Mref
j = median

{
M̃j(ti)

}
, i ∈ [1, ntime points]

(5)QPQN(t) = median

{
M̃j(t)

Mref
j

}
, j ∈ [1, nmetabolites].

(6)QPQN(t) = V PQN(t)

V ref ,
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however, in this study, we only focused on (real and synthetic) data sets where 100% of 
values were present.

The biggest advantage of PQN is that no calibration curves and prior knowledge about 
changes over time of measured metabolites are required. Moreover, PQN is independent 
of the number of sample points measured in a time series. However, its major drawback 
is that the normalization quotient is not an absolute quantification and only shows rela-
tive changes. I.e., it does not quantify V  as given in Eq. 2 directly with an absolute value 
but instead normalizes relative abundances between samples and time points. Another 
critical assumption is that sweat metabolite concentrations need to be – on average – 
constant over the sampled time series. Whereas this is reasonable to assume for the 
sweat of healthy humans [20], one has to take care when investigating disease states (for 
example, cystic fibrosis, which is known to alter the sweat’s composition [31]).

Pharmacokinetic normalization

Definition. In the pharmacokinetic model (PKM) we assume that we know at least the 
functional dependence, i.e. the pharmacokinetics, but not necessarily the value of the k 
(pharmaco-)kinetic parameters θ ∈ R

k for 2 ≤ ℓ ≤ nmetabolites metabolites. Without loss 
of generality we (re-)sort M̃ such that the first ℓ elements (collected in the vector M̃ℓ ) 
correspond to metabolites with known pharmacokinetic dependence, while the remain-
ing nmetabolites − ℓ elements (collected in the vector M̃ℓ+ ) correspond to metabolites with 
unknown kinetics. Then Eq. 2 takes the form of 

with physically meaningful bounds;

V PKM(t) as well as θ can be obtained by parametric fitting of M̃PKM
ℓ (t) . Note that this 

allows not only to compute absolute values of CPKM
ℓ (t; θ) but – with V PKM(t) – also of all 

other concentrations via Cℓ+(t) = M̃ℓ+(t)/V
PKM(t).

As V PKM(ti) may be different at every time step ti , we need to know the (pharmaco-)
kinetics of at least two metabolites; otherwise, the number of parameters is larger than 
the number of data points.

Discussion. The biggest advantage of this method is that it can implicitly estimate abso-
lute values of V  without the need for direct measurements. Therefore, sweat volumes 
can become smaller than the minimum required in volumetric methods, and shorter 
sampling times also become possible. A drawback of this method is the fact that it is 
only feasible if one has prior knowledge of relevant pharmacological parameters (i.e., 
ingested dose of metabolites of interest, volume of distribution, body mass of specimen, 
range of expected kinetic constants), which is limiting the approach to studies where 
at least two metabolites together with their pharmacokinetics are well known. Moreo-
ver, calibration curves of metabolites of interest and sufficiently many samples in a time 

(7a)
(
M̃ℓ (t)

M̃ℓ+(t)

)
=

(
Cℓ (t; θ)

Cℓ+(t)

)
V

PKM(t)

(7b)Vlower bound ≤ V PKM(t) ≤ Vupper bound,

(7c)θlower bound ≤ θ ≤ θupper bound.
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series are required for robustly fitting the equation system. In a previously performed 
sensitivity analysis, an increase in the quality of fit was observed as the number of sam-
ples increased from 15 to 20 time points per measured time series [20].

Mixed normalization

Definition. The mixed normalization model (MIX) is a combination of PQN and PKM. It 
is designed to incorporate robust statistics of untargeted metabolomics via its PQN term 
as well as an absolute estimation of V  via its PKM term.

Optimal parameters of MIX are found via optimization of two equations, 

and

where additional transformations T (PKM and PQN term) and scaling Z (PQN term) 
can be applied to account for random and systematic errors (section "Hyperparameters") 
and VMIX(t) and θ are constrained between physically meaningful bounds,

 E.g. bounds for V  can be calculated by Eq. 2b and minimal and maximal sweat rates 
from literature.

Discussion. We hypothesize that the MIX model can combine the advantages of PQN 
and PKM normalization models. Moreover, we believe that MIX inherits the statistical 
robustness of PQN while simultaneously estimating absolute values as fitted by PKM. 
Several prerequisites are necessary for normalization with PKM or MIX. However, if 
they are fulfilled, the improved goodness of normalization by using MIX instead of PKM 
usually does not come with an additional price as in many metabolomics studies, tar-
geted and untargeted metabolites are measured in combination, and thus, all additional 
data required by MIX is already available.

Methods
Implementation

A generalized version of PKM and MIX (where an arbitrary number of independent 
metabolite kinetics can be modeled) was implemented as a Python class. As input it 
requires the number of metabolites used for kinetic modeling ( ℓ ), a vector of time points 
as well as the measured mass data ( M̃ , matrix with time points in the rows and metabo-
lites in the columns). MIX additionally takes a QPQN = [QPQN(t1), ...,Q

PQN(tntime points)]
T 

vector (calculated with the PQN method from all metabolites, nmetabolites ) for all time 
points of a time series. Upon optimization (carried out with self.optimize_
monte_carlo, which is a wrapper for SciPy’s optimize.curve_fit [32]) the kinetic 

(8a)T

[(
M̃ℓ (t)

M̃ℓ+(t)

)]
= T

[(
Cℓ (t; θ)
Cℓ+(t)

)
VMIX(t)

]

(8b)ZT
[
QPQN(t)

]
= ZT

[
VMIX(t)

]

(8c)Vlower bound ≤ VMIX(t) ≤ Vupper bound,

(8d)θlower bound ≤ θ ≤ θupper bound.
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constants and sweat volumes are optimized to the measured data by minimizing the 
functions listed in Eqs. 9b and 9c for PKM and MIX respectively: 

where

Var(V) is the variance of V (which is the vector of estimated V over all time points), T 
is a transformation function, Z is a scaling function, and L is the loss function. The key 
difference between PKM and MIX is that the fitted V  in MIX are biased towards relative 
abundances as calculated by PQN. An important additional hyperparameter of the MIX 
model is � , which weights the error residuals of LPKM and LPQN . Its calculation is dis-
cussed in section "Hyperparameters". If � = 1 , the MIX model simplifies again to a pure 
PKM model.

To summarize, an overview of the differences between PKM and MIX models is given 
in Additional file 1: Table S1 and a flow chart of data processing for MIX normalization 
is given in Fig. 1.

Hyperparameters

Several hyperparameters can be set for the PKM and MIX Python classes.

(9a)min(LMIX) = min(LPKM + L
PQN)

(9b)L
PKM =

ntime points∑

i=1

nmetabolites∑

j=1

L

[
�

(
T (M̃ij)− T (Cij V

MIX
i )

)2]
,

(9c)L
PQN =

ntime points∑

i=1

L

[
(1− �)

(
ZT (VMIX)i − ZT (QPQN)i

)2
Var(T (VMIX))

]
,

Fig. 1  Flow chart for data processing for MIX normalization
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Kinetic function. Firstly, it is possible to choose the kinetic function used to calculate 
C . In this study we focused on a modified Bateman function F(t) with 5 kinetic param-
eters ( ka, ke, c0, lag , d ): 

with

This function was designed to be flexible and able to represent several different metab-
olite consumption and production kinetics, as exemplified by Fig. 2. Intuitively, ka and ke 
correspond to kinetic constants of absorption and elimination of a metabolite of inter-
est with the unit h −1 . c0 is the total amount of a metabolite absorbed over the volume of 
distribution with the unit mol L −1 . Additionally to these parameters which are also part 
of the classical Batman function [33], we here introduce lag and d. The lag term with the 
unit h shifts the function along the X-axis, intuitively defining the starting time point of 
absorption of a metabolite of interest, whereas the d term with the unit mol L −1 shifts 
the function along the Y-axis.

Loss function, L. L calculates the loss value after estimation of the error residuals of the 
model (Eq. 9). It can be set via self.set_loss_function to either cauchy_loss 
or max_cauchy_loss (or max_linear_loss). In both cases the loss is calculated as 
a Cauchy distribution of error residuals according to SciPy [32]. The difference, however, 
is that cauchy_loss only uses the absolute error residuals, whereas max_cauchy_
loss uses the maximum of relative and absolute error residuals (thus the word max is 
expressed in its name). The reason for its addition was that a good performance has been 

(10a)F(t) =

{
b(t)+ d if b(t) ≥ 0
d if b(t) < 0

(10b)b(t) = c0
ka

ke − ka

(
e−ka(t−lag) − e−ke(t−lag)

)
.

Fig. 2  Examples of concentration time series that can be modeled with the modified Bateman equation 
used. The legend shows the kinetic parameters used to create the respective curves. All parameters are 
within the bounds that were used for kinetic parameter fitting
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achieved in a previous study [20]. In this study we used the max_cauchy_loss loss 
function for PKM models and cauchy_loss for MIX models. The choice of L is inter-
twined with the choice of T which becomes clear in the following paragraph.

Transformation function, T. T transforms the measured data M̃ as well as the cal-
culated QPQN , CV  , and V before calculation of the loss (Eq.  9). Two different trans-
formations, none and log10, can be set during initialization with the argument 
trans_fun. As originally reported [20] no transformation was done for PKM (i.e. 
trans_fun=’none’), 

For MIX models, however, a log-transform was performed (i.e. trans_fun=’log10’),

 as the error on measured data is considered multiplicative [34] and the sweat volume 
log-normally distributed (Additional file 1: Fig. S1). To avoid problems with concentra-
tions of the size 0 a small number (i.e., the size of optimizer precision [32]) is added.

In a sensitivity analysis study, we tested the quality of normalization of MIX with dif-
ferent L and T hyperparameters and concluded that a combination of cauchy_loss 
for L and log10 for T performed best (Additional file 1: Fig. S2C, D). This is in agree-
ment with literature where logarithmic transformations performed well in combination 
with PQN for size effect normalization of sweat measurements [35].

Scaling function, Z. Z describes a scaling function performed on T (QPQN) and T (V) . 
Scaling is performed to correct for noisy data (see Results section "In fluence of noise on 
PQN"). Two strategies can be set with the scale_fun argument during initialization of 
the MIX model class, standard or mean. In this study, all MIX models employ stand-
ard scaling, i. e. 

We additionally implemented mean scaling which differs depending on the choice of T 
with

Optimization strategy. The optimization of both PKM and MIX models is done with 
a Monte Carlo strategy where the initial parameters are sampled randomly from a uni-
form distribution between their bounds. Performing a sensitivity analysis, we previously 
showed that this method is preferable to a single fitting procedure [20]. In this study, the 
number of Monte Carlo replicates for model fitting was set to 100.

Weighting of MIX loss terms. A weighting constant for every measured data point can 
be used by the model. In a sensitivity analysis study, we found that the choice of � is not 
critical to the quality of normalization as long as it is not extremely tilted to one side (i.e., 
� close to 0 or 1, Additional file 1: Fig. S2A, B). Thus we propose a method where the loss 
terms are weighted by the number of data points fitted for each of both loss terms but 

(11a)T (M̃) = M̃.

(11b)T (M̃) = log10(M̃ + 10−8)

(12a)ZT (QPQN) =
T (QPQN)−mean(T (QPQN))

Std(T (QPQN))
.

(12b)ZT (QPQN) =

{
T (QPQN)−mean(T (QPQN)) if trans_fun=’log10’

T (QPQN)/mean(T (QPQN)) if trans_fun=’none’.
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not by the number of metabolites used in the calculation of each term (Additional file 1: 
Equation S1). For such a method the solution for � is given by Eq. 13.

Full and minimal models

In this study, we differentiate between full and minimal models. With full models, we 
refer to pharmacokinetic normalization models (PKM or MIX) where all metabolites of 
a given data set are used for the pharmacokinetic normalization. This means that, for 
example, if nmetabolites = 20 all 20 metabolites were modeled with the modified Bate-
man function and thus in Eqs. 7a and 8a, ℓ = nmetabolites and M̃ℓ+ is an empty vector. 
On the other hand, minimal models are models where only the few known, better con-
strained metabolites were modeled with a kinetic function. This means that the informa-
tion used for PKMminimal   does not change upon the addition of (synthetic) metabolites. 
Therefore, its goodness of fit measure should stay constant within statistical variability 
upon change of nmetabolites . This behaviour was used to verify if the simulations worked 
as intended and if  no biases in the random number generation existed. On the other 
hand, the MIXminimal model still gained information from the increase of nmetabolites as 
the PQN part of this model was calculated with all nmetabolites . Therefore, changes in the 
goodness of fit measures for MIXminimal are expected. We emphasize that the defini-
tion of full and minimal models is specific to this particular study. Here we explicitly set 
ℓ = 4 , which originates from previous work where 4 targeted metabolites (caffeine, par-
axanthine, theobromine, theophylline) with known kinetics were measured [20].

Synthetic data creation

Three different types of synthetic data sets were investigated. The first two types of data 
sets (sampled from kinetics, section  "Sampled kinetics" and sampled from means and 
standard deviations, section "Sampled mean and standard deviation") test the behaviour 
of normalization models in extreme cases (either all metabolites describable by pharma-
cokinetics or all metabolites completely random). Finally, the third type of data set (sam-
pled from real data, section "Sampled from real data") aims to replicate measured finger 
sweat data as close as possible. In sum, the performance of normalization methods on all 
three types of data sets can show how they behave in different situations with different 
amounts of describable data.

In all three cases, data creation started with a simple toy model closely resembling the 
concentration time series of caffeine and its degradation products (paraxanthine, theo-
bromine, and theophylline) in the finger sweat as described elsewhere [20]. The respec-
tive parameters are listed in Additional file 1: Table S2. With them, the concentration of 
metabolites #1 to #4 were calculated for 20 time points (between 0 and 15 h in equidis-
tant intervals, Fig. 3). Subsequently, new synthetic metabolite concentration time series 
were sampled and appended to the toy model (i.e., to the concentration vector, C(t) ). 
Three different synthetic data sampling strategies were tested, and their specific details 
are explained in the following sections. Next, sweat volumes ( V  ) were sampled from a 

(13)� =
1

ℓ+ 1
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log-normal distribution truncated at ( 0.05 ≤ V ≤ 4µL ) closely resembling the distri-
bution of sweat volumes estimated in our previous publication [20], Additional file  1: 
Fig.  S1. Finally, an experimental error ( ǫ ) was sampled for every metabolite and time 
point from a normal distribution with a coefficient of variation of 20% and the synthetic 
data was calculated as

For every tested condition, 100 synthetic data replicates were generated, and the nor-
malization models were fitted.

Sampled kinetics

In simulation v1, data was generated by sampling kinetic parameters for 
new metabolites from an uniform distribution. The distribution was con-
strained by the same bounds also used for the PKM and MIX model fitting: 
(0, 0, 0, 0)T ≤ (ka, ke, c0, lag , d)

T ≤ (3, 3, 5, 15, 3)T . Subsequently the concentration time 
series of the synthetic metabolites were calculated according to the modified Bateman 
function (Eq. 10).

Sampled mean and standard deviation

Means and standard deviations of the concentration time series of metabolites were cal-
culated from untargeted real finger sweat data (for details, see section "Real finger sweat 
metabolome data"). The probability density function of both can be described by a log-
normal distribution (Additional file 1: Fig. S3). For the data generation of simulation v2, 
per added metabolite, one mean and one standard deviation were sampled from the fit-
ted distribution and used as an input for another log-normal distribution from which a 

(14)M̃(t) = diag
(
C(t) V (t)

)
ǫ(t).

Fig. 3  Theoretical concentration C for the first four metabolites of the synthetic data. Kinetic parameters 
used for calculation are listed in Additional file 1: Table S2
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random concentration time series was subsequently sampled. This results in synthetic 
concentration values that behave randomly and, therefore, cannot be easily described by 
our pharmacokinetic models.

Sampled from real data

To get an even better approximation to real data, in simulation v3, concentration time 
series were directly sampled from untargeted real finger sweat data (for details, see 
section  "Real finger sweat metabolome data"). To do so, the untargeted metabolite 
M̃ time series data set was normalized with PQN. As the number of metabolites in 
this data set was comparably large ( nmetabolites = 3446 ) we could assume that the rela-
tive error (or rRMSE, for more explanation, see section "Synthetic data simulations") 
was negligibly small. The resulting values are, strictly speaking, fractions of concen-
trations. However, this does not affect the results as these values are anyways con-
sidered untargeted (i.e., no calibration curve exists) and thus relative. Therefore, the 
PQ normalized data set could be used as ground truth for concentration time series 
sampling. Subsequently, a subset of the original ground truth data was sampled for 
synthetic data generation.

Sampling of noisy data

We investigated the influence of background (i.e. noisy) signal on the performance on 
QPQN (and scaled and transformed variants thereof ). To simulate such an environ-
ment we used data sampled from real data (section  "Sampled from real data"), and 
applied V  only to a fraction of the C vector,

The noise fraction is given by the number of elements of M̃ and M̃n vectors,

where subscript n in M̃n,Cn, and fn denotes them as part of the noise.
Simulations were carried out for 20 equidistant noise fractions between 

0 ≤ fn ≤ 0.95 with nmetabolites = 100 and ntime points = 20 for 100 replicates. The error 
residuals of mean and standard scaled QPQN are calculated as 

with Z defined as in Eq. 12b and

(15)
(
M̃ (t)

M̃n(t)

)
= diag

(
C (t)V (t)

Cn(t)

)
ǫ.

(16)fn =
length(M̃n)

length(M̃)+ length(M̃n)
,

(17a)Mean Scaled Error =

ntime points∑

i

[
ZT (QPQN)i − ZT (V)i

]

(17b)Standard Scaled Error =

ntime points∑

i

[
ZT (QPQN)i − ZT (V)i

]
Std(T (V))
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 with Z defined as in Eq. 12a. For both cases T is defined as the logarithm (Eq. 11b). We 
point out that the multiplication with Std(T (V)) for the standard scaled error is impor-
tant to make the results comparable, as otherwise the error would be biased towards 
the method with smaller scaled standard deviation regardless of the performance of the 
scaling.

Normalization model optimization

Normalizing for the sweat volume by fitting kinetics through the measured values only 
has a clear advantage over PQN if it is possible to infer absolute sweat volumes and con-
centration data. In order to be able to do that, some information about the kinetics and 
the starting concentrations of metabolites of interest need to be known. For example, 
when modeling the caffeine network in our previous publication [20], we knew that the 
lag parameter of all metabolites was 0 and that the total amount of caffeine ingested 
(which corresponds to c0 ) was 200 mg. Moreover, we knew that caffeine and its metabo-
lites are not synthesized by humans and implemented the same strategy into our toy 
model (corresponding to d). As the toy model was designed to resemble such a metabo-
lism, we translated this information to the current study. Therefore, we assumed that the 
first 4 metabolites in our toy model had known c0 , lag, and d parameters. For their cor-
responding ka and ke and the parameters of all other metabolites the bounds were set to 
the same (0, 0, 0, 0)T ≤ (ka, ke, c0, lag , d)

T ≤ (3, 3, 5, 15, 3)T used in kinetic data genera-
tion. Fig. 2 shows examples of concentration time series that can be described with the 
modified Bateman function and parameters within the fitting bounds.

Real finger sweat metabolome data

The real world finger sweat data was extracted from 37 time series measurements 
of Study C from ref. [20]. It was downloaded from MetaboLights (MTBLS2772 and 
MTBLS2776).

Preprocessing. The metabolome data set was split into two parts: targeted and untar-
geted. The targeted data (i.e., the mass time series data for caffeine, paraxanthine, 
theobromine, and theophylline) was directly adopted from the mathematical model 
developed by [36]. This data is available on GitHub (https://​github.​com/​Gotsmy/​finger_​
sweat).

For the untargeted metabolomics part, the raw data was converted to the mzML 
format with the msConvert tool of ProteoWizard (version 3.0.19228-a2fc6eda4) [37]. 
Subsequently, the untargeted detection of metabolites and compounds in the sam-
ples was carried out with MS-DIAL (version 4.70) [38]. A manual retention time 
correction was first applied with several compounds present in the majority (more 
than 90%) of the samples. These compounds were single chromatographic peaks 
with no isomeric compounds present at earlier or later retention times (m/z 697.755 
at 5.57 min, m/z 564.359 at 5.10 min, m/z 520.330 at 4.85 min, m/z 476.307 at 4.58 
min, m/z 415.253 at 4.28 min, m/z 371.227 at 3.95 min, m/z 327.201 at 3.56 min, m/z 
283.175 at 3.13 min, m/z 239.149 at 3.63 min, m/z 166.080 at 1.69 min, m/z 159.113 
at 1.19). After this, untargeted peak detection and automated alignment (after the 
manual alignment) were carried out with the following settings: Mass accuracy MS1 

https://github.com/Gotsmy/finger_sweat
https://github.com/Gotsmy/finger_sweat
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tolerance: 0.005 Da, Mass accuracy MS2 tolerance: 0.025 Da, Retention time begin: 
0.5 min, Retention time end: 6 min, Execute retention time correction: yes, Minimum 
peak height: 1E5, Mass slice width: 0.01 Da, Smoothing method: Linear weighted 
moving average, Smoothing level: 3 scans, Minimum peak width: 5 scans, Alignment 
reference file: C_D1_I_o_pos_ms1_1.mzML, Retention time tolerance: 0.3 min, 
MS1 tolerance: 0.015 Da, Blank removal factor: 5 fold change). No blank-subtrac-
tion was carried out as the internal standard caffeine was spiked into each sample, 
including the blanks. Peak abundances and meta-information were exported with the 
Alignment results export functionality.

Subsequently, we excluded isomers within a m/z difference of less than 0.001Da and 
a retention time difference of less than 0.5min . To further reduce features that are 
potentially background, features with retention times after 5.5min as well as features 
with minimal sample abundances of < 5×maximum blank abundance (except for the 
internal standard, caffeine-D9) were excluded from the data set. This was done on 
a time series-wise basis. Thus the number of untargeted metabolites considered for 
normalization differs with a mean of 343± 152 for the 37 time series of interest.

Fig. 4  Full network (top panel) and subnetwork (bottom panel) of caffeine absorption, conversion to 
paraxanthine, theobromine, and theophylline and their elimination. The system boundary (dashed line) 
represents the human body. m ∈ {paraxanthine, theobromine, and theophylline}
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Size effect normalization. In this finger sweat data set, time series of targeted as well 
as untargeted metabolomics, are listed. The kinetics of the four targeted metabolites 
(caffeine, paraxanthine, theobromine, and theophylline) are known. A reaction net-
work of the metabolites is shown in the top panel of Fig.  4. Briefly, caffeine is first 
absorbed and then converted into three degradation metabolites. Additionally, all 
four metabolites are eliminated from the body. All kinetics can be described with first 
order mass action kinetics [39, 40].

In order to assess the performance of the sweat volume normalization methods, the 
full network was split up into three subnetworks that all contained caffeine and one deg-
radation metabolite each (Fig. 4 bottom panel). The solution of the first order differen-
tial equations describing such network is given in Additional file 1: Eqs.  S2a and S2b. 
Moreover, the 343± 152 untargeted metabolite time series were randomly split up into 
three (almost) equally sized batches, and each batch was assigned to one subnetwork. 
All three networks were subsequently separately normalized with PKMminimal    and 
MIXminimal methods with kinetic parameters that were adjusted to the specific reaction 
network (Fig. 4 bottom panel). Subsequently, the kinetic constants ( k ′1 , k

′
2 , k

′
3 , k

′
4 ) were 

estimated for 37 measured concentration time series. Fitting bounds were not changed 
in comparison to the original publication [20].

As all three subnetwork data sets originate from the same finger sweat measurements, 
the underlying kinetic constants should be exactly identical. As the kinetic constants of 
absorption ( kcafa = k ′1 ) and elimination ( kcafe = k ′2 + k ′3 ) of caffeine are estimated in all 
three subnetworks, we used their standard deviation to test the robustness of the tested 
normalization methods.

Real blood plasma metabolome data

In the study of Panitchpakdi et al. [41] the mass time series of the metabolome was meas-
ured in different body fluids after the uptake of diphenhydramine (DPH). Here, we focus 
on data measured in the blood plasma, which includes the abundances of DPH (known 
kinetics, calibration curve, pharmacological constants) as well as three of its metaboli-
zation products (known kinetics) and the abundances of 13526 untargeted metabolites 
with unknown kinetics.

Preprocessing. The data of peak areas was downloaded from the GNPS platform [42]. 
To reduce the number of metabolites that are potentially background and/or noise in the 
data set, features with minimal sample abundances of < 5×maximum blank abundance 
were excluded from the data set on a time series-wise basis. Thus, the number of untar-
geted metabolites considered for normalization differs with a mean of 1017± 114 for the 
10 time series of interest.

Size effect normalization. We assume that the kinetics of four metabolites (DPH, 
N-desmethyl-DPH, DPH N-glucuronide, and DPH N-glucose) can be described by the 
modified Bateman (Eq.  10). A reaction network of the metabolites is shown in Addi-
tional file 1: Fig. S4. Briefly, DPH is first absorbed and then – with unknown interme-
diates – converted into three degradation metabolites, which are in turn metabolized 
further downstream or eliminated. c0 of DPH was calculated with pharmacological con-
stants for bioavailability, volume of distribution, and dosage of DPH as reported in the 
original publication [41].
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Analogously to the normalization performed on finger sweat data, the full network 
of four metabolites is split up into three subnetworks with only one, shared, targeted 
metabolite (DPH itself ), one additional untargeted metabolite with known kinetic 
(either N-desmethyl-DPH, DPH N-glucuronide, or DPH N-glucose, Additional file  1: 
Fig. S5) and one third of 1017± 114 untargeted metabolites with unknown kinetics. To 
ensure better convergence during fitting of the models, the M̃ data was first scaled to 
values between 0 and 1 by dividing by its metabolite-wise maximum. This factor can be 
multiplied again as part of c0 after the normalization is done. Thereafter, PKMminimal and 
MIXminimal models were fitted onto the scaled M̃ data (with ℓ = 2 ) for all ten measured 
time series. The bounds of parameters were chosen so that previously reported estimates 
[41] are well within range: 0 ≤ k ≤ 5 h−1 for {k ′1, k

′
3} , 0 ≤ k ≤ 1 h−1 for {k ′2, k

′
4} , c

DPH
0  as 

reported in the original publication normalized by the maximum factor, 0 ≤ cm0 ≤ 300 
for m ∈ {N-desmethyl-DPH, DPH N-glucuronide, DPH N-glucose} and lag = d = 0 as 
well as 0.01 ≤ V ≤ 0.03mL.

As all three subnetwork data sets originate from the same plasma time series meas-
urements, the underlying kinetic constants of DPH should be exactly identical. As the 
kinetic constants of absorption ( kDPHa = k ′1 ) and elimination ( kDPHe = k ′2 ) of DPH are 
estimated in all three subnetworks we used their standard deviation to test the robust-
ness of PKMminimal and MIXminimal.

Data analysis

Goodness of normalization. Two goodness of fit measures were calculated to analyze the 
performance of the tested methods. RMSE is the standard deviation of the residuals of 
a sampled sweat volume time series vector ( Vtrue ) minus the fitted sweat volume vector 
( Vfit ), while rRMSE is the standard deviation of the ratio of sampled and fitted V vectors 
normalized by its mean. Intuitively, RMSE is a measure of how much absolute difference 
there is between the fit and a true value, rRMSE, on the other hand, gives an estimate of 
how good the fitted sweat volumes are relative to each other. A visual depiction of RMSE 
and rRMSE is shown in Additional file 1: Fig. S6 and their exact definition is given in the 
equations in 3.3.

Statistical analysis. The significant differences in the mean of goodness of fit measures 
were investigated by calculating p values with the non-parametric pairwise Wilcoxon 
signed-rank test [43] (SciPy’s stats.wilcoxon function [32]). Significance levels are 
indicated by *, **, and *** for p ≤ 0.05 , 0.01, and 0.001 respectively.

Results

Comparison of PKM and MIX

Synthetic data simulations

In order to test the performance of different normalization models, we generated 100 
synthetic data sets with three different methods (simulations v1, v2, v3) and five different 
nmetabolites (4, 10, 20, 40, 60) each, where the underlying C , V  , and ǫ values were known. 
Simulations v1, v2, and v3 differ in the way how C was generated (kinetic, random, 
sampled from real data set, respectively). In order to quantify the normalization model 
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performance, two measures of goodness of normalization were used for the analysis of 
the results: RMSE and rRMSE.

To visualize the obtained normalization performances we plotted the results for 
simulation v3 and nmetabolites = 60 in Fig. 5 for three normalization models (from left 
to right column, PQN, PKMminimal , and MIXminimal ). The top row shows the predicted 
log10(Cj(ti; θ)/Cj(0; θ)) (i.e. the concentration of each metabolite j at each time point i 
divided by its concentration at time 0) as a function of the true log10(Cj(ti)/Cj(0)) val-
ues. It illustrates the correlation of the relative abundances of one metabolite across 
all time points. Good correlations (i.e. high R 2 ) as seen for PQN and MIXminimal result 
in a low rRMSE measure. On the bottom row of Fig. 5 the absolute values of predicted 
V  are plotted as a function of the true V  . There it becomes evident that good correla-
tions of absolute values result in low RMSE measures.

In the following sections, we will focus on the size of RMSE and rRMSE, respec-
tively, as they are both calculated from the predicted V  directly. Note that for PQN, 
no absolute V  can be estimated and, therefore, no RMSE is calculated.

Influence of the number of metabolites. We tracked RMSE and rRMSE of normaliza-
tion methods for different numbers of metabolites ( nmetabolites ) to investigate how the 
methods behave with different amounts of available information. An overview of their 
goodness of normalization measures as a function of nmetabolites on sampled kinetic 

Fig. 5  Relative and absolute normalization performance. In the top row the predicted 
log10(Cj(ti; θ)/Cj(0; θ)) ( i ∈ {1, ..., ntime points} , j ∈ {1, ..., nmetabolites} ) are plotted as a function of the true, 
underlying log10(Cj(ti)/Cj(0)) . The bottom row shows the predicted V  as a function of the true, underlying 
V  . The columns represent different normalization models (PQN, PKMminimal , and MIXminimal from left to right). 
As no absolute V  can be calculated from PQN the bottom left plot is omitted. To illustrate the effect of 
different RMSE and rRMSE sizes (which both are calculated from V  ), we show their mean over 100 replicates 
in comparison to the R 2  values calculated from the points plotted. Intuitively rRMSE is a measure of good 
correlation on the top row whereas RMSE is a measured of good correlation on the bottom row (high R 2 , low 
rRMSE/RMSE respectively)
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data (panels A, B), on completely random data (panels C, D), and on sampled subsets 
of real data (panels E, F) is given in Fig. 6.

PKMfull which fits a kinetic function through all possible metabolites 
( ℓ = nmetabolites ) performs well (low RMSE, low rRMSE) when the C data originates 

Fig. 6  Goodness of normalization measures of synthetic data simulations. The mean for 100 replicates for 
different sweat volume normalization models is given for RMSE (left column) and rRMSE (right column). 
Results for simulations v1, v2, and v3 are shown in rows one, two, and three, respectively. The error bars 
represent standard deviations of the replicates. For the PQN method no RMSE can be calculated
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from a kinetic function (simulation v1, Fig.  6A, B). However, when the underlying 
data does not originate from kinetic time series (simulation v2, Fig. 6C, D) its perfor-
mance is reduced drastically. For PKMfull this is resembled in an increase of RMSE 
(from 0.19± 0.08µL to 0.64 ± 0.16µL for nmetabolites = 60 ) as well as of rRMSE (from 
0.08± 0.02 to 0.28± 0.14 for nmetabolites = 60).

Another observation is the behaviour of PQN. Its rRMSE approaches a value close to 0 
with increasing nmetabolites , indifferently on how the underlying data was generated.

Interestingly, the results from simulation v3 lie between the results from simulations 
v1 and v2. This gets especially evident when comparing the performance of PKMfull in 
Fig.  6. Such a result suggests that not all of the untargeted metabolites measured are 
completely random, but some can be described with the modified Bateman function. 
This leads to the hypothesis that after sweat volume normalization, the real finger sweat 
data (from which values for v3 were sampled) has  a high potential for discoveringun-
known kinetics.

Exact numbers for RMSE and rRMSE for all normalization methods and nmetabolites are 
given in Additional file 1: Tables S3 and S4 respectively. Moreover, pairwise comparisons 
of RMSE and rRMSE of normalization methods relative to the results from PKMminimal 
are plotted in Additional file 1: Fig. S7.

Statistical testing. As at nmetabolites = 60 the goodness of normalization measures 
started to flatten out, we further investigated this condition for statistical significance. 
We used the two-sided non-parametric Wilcoxon signed-rank test to compare pairwise 
differences in RMSE and rRMSE between the tested models. p-values for all combina-
tions are given in Additional file 1: Tables S5 and S6.

As Fig. 6 already indicated, the overall best performance in RMSE as well as rRMSE 
is observed for the MIXminimal model. For nmetabolites = 60 it significantly outperforms 
every other method’s RMSE (Fig. 7). Moreover, MIXminimal ’s performance in rRMSE is 
at least equal to or better than all other tested methods (Additional file 1: Table S6) with 
one exception: the comparison of rRMSE of MIXminimal and PQN in simulation v1 shows 
significant difference ( p = 0.0029 ), however, the absolute values of rRMSE are still very 

Fig. 7  RMSE measures of simulation v3 with nmetabolites = 60 . The significance between the methods was 
calculated on 100 paired replicates with the two-sided Wilcoxon signed-rank test
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similar ( 0.049± 0.010 and 0.047± 0.009 respectively). Compared to the previously 
used PKMminimal [20], the RMSE of MIXminimal improves by 73± 10% , the rRMSE by 
43± 12% (Additional file 1: Fig. S7). Analogously to Fig. 7 for simulation v3, the results 
of simulations v1 and v2 are shown in Additional file 1: Figs. S8 and S9, respectively.

The two-sided version of the Wilcoxon signed-rank test was used to test for any differ-
ence between multiple normalization methods. After it became evident that MIXminimal 
performed best, we used a one-sided version of the Wilcoxon signed-rank test to verify 
if RMSE and rRMSE are significantly decreased by MIXminimal compared to all other 
normalization methods. The resulting p-values are listed in Additional file 1: Table S7. 
Again, MIXminimal significantly outperformed all other tested methods in RMSE and 
rRMSE except for PQN in any of the simulations.

We, therefore, conclude that normalizing the sweat volume by the MIXminimal method 
reduces the error for the estimated V  compared to other tested methods. Compared 
to PKM, MIXminimal has the advantage that its performance does not vary if metabo-
lites’ concentration time series can be described with a modified Bateman function (i.e., 
simulations v1, v2 v3 have little influence on its performance). Therefore, it is especially 
advantageous if this property cannot be guaranteed.

Computational performance

Analysis of metabolomics data sets is usually a computationally exhaustive process. 
There are several steps in (pre-)processing that need to be executed, many of them 
lasting for hours. Therefore, computational time can quickly stack to large numbers. 
Normalization models are no exception to this general rule. As nmetabolites in a pharma-
cokinetic model increases, the time for optimization of pharmacokinetic models may 
become limiting. Therefore, we investigated the average time for one time series nor-
malization for different methods and different numbers of metabolites.

The computational time spent for one optimization step as a function of nmetabolites is 
given in Fig. 8 for simulation v3. It increased for some normalization models, however 

Fig. 8  Time in seconds for optimization of one normalization model in simulation v3. The error bars 
represent the standard deviation of normalization times between 100 replicates
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not for all of them and not equally. Within the investigated range, PQN stays well under 
1 second per normalization, whereas with PKMfull the normalization time increases 
drastically from 1.6± 1.1 s for a model with 4 metabolites to 110± 44 s for 60 metabo-
lites. Similar normalization times were observed for MIXfull maxing out at 19± 22 s for 
nmetabolites = 60 . In stark contrast to the exponential increase in computational power 
needed for full models are the minimal models. Their time to optimize stays nearly con-
stant ( < 3 s ) within the investigated metabolite range (Additional file 1: Table S8).

Here we demonstrate that MIXminimal is not only superior to other tested models in 
terms of its normalization performance but also in terms of computational feasibility. 
We hypothesize that even data sets with thousands of untargeted metabolites will have a 
minor impact on its speed.

Comparison of PQN and MIX

Influence of noise on PQN

In untargeted metabolomics, it is often difficult to distinguish between metabolites 
originating from the actual matrix of interest or from contamination. As PQN includes 
all untargeted metabolites in its calculation, metabolites stemming from contamina-
tion might become a problem as their fold change is independent of the sweat volume, 
which changes the underlying distributions of quotients. Therefore, we investigated the 
influence of different fractions of metabolites originating from contamination (i.e., noisy 
data). Furthermore, we tested if scaling of QPQN values can counteract errors introduced 
by noise.

Figure  9A demonstrates the problem of using the probabilistic quotient normaliza-
tion on noisy raw data. The direction of size effects can still be explained when noise 
is present, however, absolute values of the size effects decrease. Thus, in Fig.  9A, the 
coefficient of variation (i.e., the standard deviation over the mean) of QPQN is a meas-
ure for the average value of the estimated size effect over one synthetically generated 
time series. As the fraction of noise ( fn , X-axis) increases the coefficient of variation 
decreases drastically and approaches 0 when fn → 1.

Figure 9B shows the performance of scaling methods to counteract the reduction of 
coefficient of variation as described above. The mean scaled error (X-axis) and stand-
ard scaled error (Y-axis) as calculated by Eq.  17 are plotted against each other. When 
fn ≤ 0.05 , mean scaling outperforms standard scaling. However, thereafter the standard 
scaled QPQN is less erroneous than the mean scaled version.

When incorporating QPQN values to the MIX model, it is important to correct for 
errors introduced by noise. As this result shows that standard scaling reduces the detri-
mental effect of noise on the calculation of QPQN , we used standard scaling throughout 
the study for MIX normalization. Moreover, this result underlines the good performance 
of standard scaling in biological data sets [44].

Synthetic data simulations with noise

The synthetic data used for the analysis of section "Comparison of PKM and MIX" did 
not contain any metabolites that are classified as noise, i.e., their M̃ is not influenced 
by size effects (Eq. 15). This, however, is not necessarily a realistic assumption as there 
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are many sources of contaminants in metabolome measurements. Noisy metabolites 
can be either introduced by biological means (e.g., metabolites that do not originate 
from sweat but from the surface of the skin in sweat measurements) [45] or by experi-
mental handling [46]. As shown in Fig. 9, this noise in data negatively affects the per-
formance of PQN. Thus, the goodness of PQN in the results of section "Comparison 
of PKM and MIX" is probably overestimated.

To get a more accurate view of the goodness of normalization of PQN and 
MIXminimal , we tested their performance on synthetic data with different fractions of 
noise, fn . In order to do so, we created 100 replicates of synthetic data sampled from 
real data (i.e., simulation v3) for 10 equidistant noise fractions ranging from fn = 0 
to fn = 0.9 with nmetabolites = 60 . In all simulated data, only untargeted metabolites 

Fig. 9  Influence of the fraction of noisy data on the error of PQN calculation. Panel A illustrates the change 
of the coefficient of variance of QPQN (Y-axis) as the noise fraction ( fn , Y-axis with the same tick labels as the 
color bar) increases. Panel B shows the error size of calculated QPQN to true V  with mean scaling (X-axis) and 
standard scaling (Y-axis). The color of points relates to the noise fraction as depicted in the color bar
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were affected by the introduction of noise, as we assumed that for targeted metabo-
lites (i.e., ℓ = 4 ) with known pharmacokinetic behaviour, one can be highly confident 
that the measurements are not originating from contaminants.

The rRMSE of PQN and MIXminimal is plotted in Fig. 10. Only when zero noise was 
present in the synthetic data set MIXminimal did not improve upon PQN. However, as 
the noise  fraction increased, MIXminimal significantly outperformed PQN in terms of 
rRMSE. The p-values for all noise fractions are listed in the Additional file 1: Table S9.

The difference of rRMSE between PQN and MIXminimal in Fig. 10 is related to the dif-
ference of mean and standard scaled errors in Fig.  9B. PQN alone cannot utilize the 
improved performance of standard scaling as Std(T (V)) has to be known for its calcula-
tion (Eq. 17b). However, when normalizing with MIXminimal , Std(T (V)) can be estimated 
from the pharmacokinetic part of the model (Eq. 9c) significantly improving its quality.

Application to real data

Caffeine network

Previously, we identified and quantified four metabolites (caffeine, paraxanthine, theo-
bromine, and theophylline) in a time series after ingesting a single dose of caffeine [20]. 
To investigate the performance of normalization models on a real finger sweat data set, 
we split all measured M̃ time series into three parts that contained pairs of targeted 
metabolites each, only one shared by all, namely caffeine (compare Fig. 4 top and bot-
tom network). Subsequently we fitted a PKMminimal and a  MIXminimal model ( ℓ = 2 ) 
with adapted kinetics (Methods section "Real finger sweat metabolome data") through 
the three sub data sets. Due to the nature of the metabolite subnetworks (Fig.  4 bot-
tom panel) it is possible to calculate two kinetic constants describing the absorption and 
elimination of caffeine ( kcafa = k ′1 and kcafe = k ′2 + k ′3 ) in all three cases. As the data for 
all three subnetworks was measured in the same experiment, we can assume that the 

Fig. 10  Comparison of the rRMSE of PQN and MIXminimal on data with different fractions of noise. Significant 
differences in rRMSE between PQN and MIXminimal were tested with an one-sided pairwise Wilcoxon 
signed-rank test
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underlying ground truth of these constants has to be the same. Therefore, by compar-
ing the standard deviation of kinetic constants, it is possible to infer the performance of 
normalization methods.

In panels A and B of Fig. 11, the standard deviations of fitted kinetic constants within 
one measured M̃ time series are illustrated. Panel A shows that the standard deviations 
of the absorption constant of caffeine, kcafa  , of PKMminimal are significantly larger than 
of the MIXminimal model ( p = 5.8× 10−4, n = 37 , one-sided Wilcoxon signed-rank test). 
Likewise, a significant decrease in the size of standard deviations of MIXminimal was 
found compared to the previously published PKMminimal model ( p = 1.5 10−5 ) for the 
constant of caffeine elimination, kcafe  (panel B, Fig. 11).

In panel E of Fig.  11, one exemplified normalized C time series of caffeine in sweat 
is depicted as fitted for all three subnetworks with PKMminimal and MIXminimal , 

Fig. 11  Method validation with finger sweat (left column) and blood plasma (right column) data from 
Brunmair et al., 2021 [20] and Panitchpakdi et al., 2021 [41] respectively. On panels A to D, the standard 
deviations of constants of absorption and elimination of caffeine and diphenhydramine ( kcafa  , kcafe  , kDPHa  , kDPHe  ) 
between the three modeled subnetworks are plotted. The number of points per method corresponds to 
the number of concentrations time series present in both data sets (i.e., 37 and 10 for sweat and plasma, 
respectively). A one-sided Wilcoxon signed-rank test was used to test for significant differences. Panels E 
and F show the estimated concentration time series of caffeine and DPH plotted from the three different 
subnetworks. The lines are named after the second metabolite with a known kinetic present in the 
subnetwork; however, they all refer to C of caffeine and DPH. The colors of curves and the area between them 
indicate the results from normalization with PKMminimal or MIXminimal , respectively



Page 25 of 30Gotsmy et al. BMC Bioinformatics          (2022) 23:379 	

respectively. The selected time series illustrates the median of differences in standard 
deviations between PKMminimal and MIXminimal from panels A and B of Fig. 11. The area 
enclosed by the Cs of MIXminimal models is smaller than from PKMminimal.

We emphasize that in our original study, the caffeine degradation directly produces 
paraxanthine, theobromine, and theophylline; thus, pharmacokinetic parameters 
k2, k3, k4 are explicitly linked [20]. Therefore, the kinetic network resembled specific 
kinetics of that metabolic pathway (Fig. 4 top panel). In contrast, in previous sections, 
we assumed that the underlying pathway structure is not known. Thus parameters are 
not linked, which implies that parameters are less constrained. Yet, in this section, we 
demonstrated that the fundamental improvement found by switching from PKM to 
a MIX model can also  be translated back again to a more specific metabolic network 
(Fig. 4 bottom panel). In order to support this argument, we show the applicability of the 
MIXminimal normalization method on a real finger sweat data set. The results with real 
data emphasize the validity of the simulations done on synthetic data sets. They show 
that, especially when known metabolic networks are small, the MIXminimal model sig-
nificantly improves the robustness of normalization and thus kinetic constants inferred 
from finger sweat time series measurements.

Diphenhydramine network

In the original study [41], the authors measured time series abundances in the blood 
plasma after the application of a single dose of diphenhydramine (DPH). M̃ from tar-
geted DPH (known pharmacological constants, known kinetics) as well as untargeted 
metabolization products (N-desmethyl-DPH, DPH N-glucuronide, DPH  N-glucose, 
known kinetics) and several other untargeted metabolites (unknown kinetics) were 
reported. Similar to sweat, although less pronounced, plasma also suffers from size 
effects (i.e., a systematic error in the measurements) introduced by biological means or 
preanalytical sample handling [47, 48]. Thus, we used the reported data as a second real 
data set for validation of the performance of MIXminimal . The validation was performed 
in analogy to the caffeine study where a full network (Additional file 1: Fig. S4) is split 
into three subnetworks (Additional file 1: Fig. S5, for details see Methods section "Real 
blood plasma metabolome data").

In panels C and D of Fig. 11, the standard deviations of fitted kinetic constants within one 
measured M̃ and three fitted subnetworks are illustrated. Again, the standard deviations of 
kDPHa  of PKMminimal are significantly larger than of MIXminimal ( p = 2, 0× 10−3, n = 10 , 
one-sided Wilcoxon signed-rank test, panel C). A similar significant decrease of the stand-
ard deviations are also found for kDPHe  ( p = 3.2 10−2 , panel D).

In panel F of Fig. 11, one exemplified normalized C time series of DPH in plasma is 
depicted as fitted for all three subnetworks with PKMminimal and MIXminimal , respec-
tively. The time series was selected as it is closest to the median of the differences in 
standard deviations between PKMminimal and MIXminimal . It is visible that the area 
enclosed by the C resulting from the MIXminimal model is smaller than from PKMminimal.

This validation illustrates the performance of the normalization models presented in 
this study on a data set that was measured independently from the development of said 
methods. The results of the plasma validation study are similar to the results observed 
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for the finger sweat study; again, MIXminimal improves the robustness (i.e. reduces stand-
ard deviations) of size effect normalization.

Even though there is a significant decrease in the standard deviation of kDPHe  with 
MIXminimal compared to PKMminimal , MIXminimal also produced an outlier (Fig. 11D). The 
reason for this outlier is that on rare occasions, MIXminimal is not able to detect any size 
effects due to convergence issues (Additional file 1: Fig. S10A). To investigate these results, 
we performed synthetic data simulations (Additional file 1: Fig.  S10B). There, we found 
that this behaviour of MIXminimal can be observed when two different V vectors are applied 
to ℓ and ℓ+ metabolites. Therefore, we hypothesize that the clearly visible malfunction of 
MIXminimal to detect size effects (i.e. the variance of estimated V is close to 0) gives an indi-
cation to scientists that size effects might not be a major concern in such a data set. In this 
specific blood plasma time series measurement, for example, the size effects might have 
been too small compared to other error sources to be identified by MIXminimal.

To summarize, with this validation, we show that the generalized normalization mod-
els, as implemented in this study, can directly be used for the normalization of real data 
as long as the modified Bateman function is able to describe the measured kinetics rea-
sonably well and size effects are large enough to be detectable.

Discussion
In this study, we present a generalized framework for the PKM normalization model, 
first introduced in reference [20]. Moreover, we extend the existing model to incorporate 
untargeted metabolite information, dubbed as MIX model. Both models are implemented 
in Python and are available at GitHub https://​github.​com/​Gotsmy/​sweat_​norma​lizat​ion.

The quality of normalization methods was tested on synthetic data sets. Synthetic 
data sets are necessary as it is impossible to obtain validation data without funda-
mentally changing the (finger) sweat sampling method as described above [20]. How-
ever, three different synthetic data generation methods (v1, v2, v3) were employed to 
ensure that synthetic data sets are as close to real data as possible. We found that when 
nmetabolites ≥ 60 , MIXminimal performs equally well or better than all other tested nor-
malization methods.

Despite true V  values remaining unknown, the real finger sweat data can be used as 
validation for relative robustness of normalization methods. There, MIXminimal signifi-
cantly outperforms PKMminimal . The decreased variance of kinetic constants estimated 
by MIXminimal likely originates from the fact that QPQN does not differ much for three 
subsets as long as sufficiently many nmetabolites = 60 are present in each subset. On the 
other hand, as only few data points are used for PKMminimal optimization, small errors in 
one of the two targeted metabolites’ measured mass have a high potential to change the 
normalization result.

Additionally, the performance of PKMminimal and MIXminimal were compared on a 
blood plasma data set taken from a study independent of any measurements used for 
the development of the normalization models. There, we were able to demonstrate the 
same improvement from PKMminimal to MIXminimal in normalization robustness. Moreo-
ver, we show that the generalized normalization models as implemented as Python class 
in this study can be easily used for size effect normalization with little additional coding 
necessary.

https://github.com/Gotsmy/sweat_normalization
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To recapitulate, the proposed MIXminimal model has several crucial advantages over 
other tested methods.

•	 MIXminimal significantly outperforms PKMminimal in relative (rRMSE, −43± 12% ) 
and absolute (RMSE, −73± 10% ) errors with as little as 60 untargeted metabolites 
used as additional information (Fig. 7).

•	 MIXminimal is invariant to whether untargeted metabolites follow an easily describ-
able kinetic concentration curve (Fig. 6).

•	 Without noise, MIXminimal performs equally well as PQN for relative abundances, 
but additionally, it estimates absolute values of V  , similar to pharmacokinetic (PKM) 
models (Fig. 6).

•	 When noise is present MIXminimal also outperforms PQN for relative abundances 
(Fig. 10).

•	 MIXminimal performs well in this proof of principle study; moreover, it may be used as 
a basis for further improvements. Firstly, different, more sophisticated statistical nor-
malization methods (e.g., EigenMS [27]) could be used as input for the PQN part of the 
model. Secondly, Bayesian priors describing uncertainties of different metabolites could 
be implemented over the � parameter in a similar fashion as discussed in reference [49].

•	 Strikingly, the results showed that for all normalization methods tested, the RMSE 
and rRMSE values flattened once 60 metabolites were present in the original 
information. This suggested that the presented normalization models, especially 
MIXminimal , can be applied even for biomatrices or analytical methods with as few as 
60 compounds measured.

•	 Although MIXminimal was developed especially with sweat volume normalization in 
mind, it can be easily adapted for other biomatrices, e.g., plasma (Fig. 11).

Conclusion
In this study, we described and defined the MIX metabolomics time series normaliza-
tion model and compared it to PKM. Subsequently, we elaborated several advantages of 
the MIXminimal model over PKM and previously published normalization methods. We 
are confident that this will further improve the reliability of metabolomic studies done 
on finger sweat and other conventional and non-conventional biofluids. However, we 
acknowledge that a more thorough investigation with data sets of several more quanti-
fied metabolites and determined sweat volumes needs to be carried out to assess the full 
potential of the proposed method.
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