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Introduction
High-throughput sequencing approaches are some of the most powerful tools for study-
ing and characterizing microbial communities. Bacterial phylogeny and taxonomy can 
be characterized using marker genes, such as 16S rRNA gene sequences which are pre-
sent in all bacteria, and it is sufficiently large for informatics and analysis purposes [20, 
30]. However, the potential for contamination which is defined as non-intended intro-
duction of bacteria during sample collection, DNA extraction, and PCR amplification 
into the sample of interest is high; thus a low signal-to-noise ratio poses a major problem 
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in analyses of such data [7, 33, 42]. Contamination is particularly problematic when 
studying low yield samples because of significant impacts on results [33, 42]. Therefore, 
it is necessary to identify, minimize, and filter contaminants as a potential source of bias 
that leads to skew data analysis.

Attempts to experimentally control or eliminate sources of contamination can be 
challenging if not impossible. To minimize or identify contamination, strategies such 
as inclusion of negative controls or blanks for every batch of samples and use of them 
through the  entire extraction, amplification, or library preparations have been sug-
gested [5, 33]. One of the advantages of sequencing the blanks is the ability to detect and 
quantify the levels of contamination as well as their the sources. [5, 9, 27, 31, 33]. How-
ever, including an appropriate negative control is not always easy and in the majority of 
microbiome published studies controls have not been included [18, 42] and [33] recom-
mended keeping records of kits and other reagents, performing technical replicates, and 
using sample randomization across kits and PCR runs into control measurement error. 
Some researchers have proposed using mock communities as a positive control during 
extraction, amplification, and sequencing alongside experimental samples [7]. Positive 
controls are commercially available in the form of defined communities, however their 
validity for a particular microbiome research is not guaranteed and standardized proto-
cols for designing positive controls might not be available [18].

None of the above experimental methods are capable of eliminating existing con-
taminants completely, easily, and reliably in all cases. Therefore, strategies that use 
the power of bioinformatics and statistical methods to clean sequencing data must be 
introduced. For example, [21] identified and removed Operational Taxonomic Units 
(OTUs) as potential contaminants if they have strong negative correlation with amplicon 
counts after 16S library preparation. However, in many cases, contaminant OTUs might 
occur on the host as well as being present as contamination and therefore, this leads 
to a higher than desired false positive rate. Ad hoc methods such as removing genes or 
taxa with total read count or percentage smaller than or below an empirical threshold 
across all samples [2, 23, 32, 39, 43] are easy to implement and relatively common among 
microbiome studies. However, choosing an appropriate filtering threshold is a complex 
problem by itself and an arbitrary choice can bias the results. In addition, the impact of 
taxa or genes is not directly proportional to their numeric abundance and there might 
be biological signal among rare taxa—or genes—that is of interest; thus removing low 
abundance taxa could lead to loss of important information.

The decontam package in R introduced by [8] has been developed to identify con-
taminants using statistical models. [8] demonstrated the accuracy of their method 
to remove contaminants from a data set generated by [33]. However, a major limita-
tion of decontam is that it assumes contaminants and true signals are distinct from 
one another, and this assumption is violated in the case of cross-contamination due to 
sequences from pooled samples. [26] developed the R package microDecon which is 
based on proportions of contaminant OTUs or Amplicon Sequence Variants (ASVs) in 
blank samples to identify and remove contaminant reads from meta-barcoding data. 
They demonstrated that their method is robust to both high and low contamination lev-
els. They also showed that their approach can recover the real community from the con-
taminant community even with a large overlap between the two. However, similar to [8], 
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in case of the existence of cross-contamination, this method is not effective as it assumes 
a common source of contamination. Recently, [36] introduced the R package PERFect 
for microbiome filtering using covariance matrices and compared them to traditional fil-
tering procedures. They showed that for a very strong signal, PERFect provides a more 
effective contaminant reduction when the signal-to-noise ratio is high. A limitation of 
their methods is that it is skewed toward retaining dominant taxa, however, this is a 
common limitation among any filtering methods that does not take into account other 
types of information such as knowledge about blanks or negative controls.

Here, we propose and validate a method to identify and remove non-bacterial signals 
that are observed due to contamination or sequencing errors in microbiome data. We 
use the fact that bacteria live in communities where they rely on one another, and their 
interactions or coexistence are major drivers of microbial community and function. We 
utilize a graph model to represent and characterize these interactions and/or coexistence 
by assuming each taxon is a node and pairwise-bacterial associations are edges in this 
biological network. We use an information theoretic functional to estimate the strength 
of these interactions and remove isolated taxa that are not informative to the network as 
potential noise. We apply permutation and bootstrap based hypothesis testing to meas-
ure the probability of increase in information loss due to taxa removal is random. We 
validate our method using the [7] mock community data set. Finally, we compare the 
performance of commonly used ad hoc filtering methods with our proposed method.

The rest of this paper is organized as follows. In Sect.  2, we introduce our filtering 
method using graph models and information loss measurement. Statistical inference 
based on bootstrap and permutation hypothesis testing is presented in Sect. 2. Method 
validation and comparison with traditional filtering methods using [7] data set are pro-
vided in Sects. 3 and 4, respectively. Finally we conclude the paper in Sect. 5.

Materials and methods
We propose a method to identify and remove contaminated sequence reads from data 
sets, while accounting for the amount of information loss due to this removal. Note that 
the proposed method can be applied to both OTU and ASV count tables.

Mathematical definition

Here, we define notations which will be frequently used in the following sections. 
Consider a high-dimensional count matrix where each input represents the count of 
sequence reads of a taxon, which, for simplicity, we will assume to be a bacterial spe-
cies or strain. Let Xn×m be a microbial abundance matrix. For each i = 1, · · · , n and 
j = 1, · · · ,m , let xij be the observed count of the j-th taxon in the i-th sample and Xj 
denotes the abundance of the j-th taxon across all n samples. Generally, the number of 
samples is considerably less than the number of taxa, that is n << m.

The proposed method: network‑based contaminant identification

Graph theory is an important concept in statistics and can be used to describe the 
relationships between random variables [24, 40]. A network (or a graph) is defined as 
a set of nodes connected by edges [28]. Microbial interactions can be represented as 
a connectivity network, where nodes correspond to taxa and the edges represent the 
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associations between taxa [41]. One potential association measure is mutual infor-
mation (MI) which is a non-directional connectivity measure. MI was introduced by 
Shannon in 1948 [34] as a measure of statistical dependence between two random 
variables. Unlike Pearson or Spearman correlation coefficients, the most widely used 
association measures, that quantify linear and monotonic relationships, respectively, 
MI can be used to estimate non-linear relationships [10, 37].

MI measures the expected reduction in uncertainty about X that results from learn-
ing Y, or vice versa. This quantity can be formulated as

where H(X), known as “entropy,” is the average amount of information, or surprise, a 
variable X has. It is defined to be

where p is the probability of observing the i-th value of the bin measurement data xi ∈ X  
using partition-based methods such as histograms. The conditional entropy is the uncer-
tainty of X given Y and it is formulated as

where p(x, y) is the joint probability density of measurements X and Y.
From equation (3) we can derive the following identity

where H(X ,Y ) = − x∈X ,y∈Y p(x, y) log p(x, y) is the joint entropy which measures the 
amount of uncertainty in the two random variables X and Y taken together.

MI possesses the following desirable properties. 

(1)	 It is symmetric: I(X;Y ) = I(Y ;X),
(2)	 I(X;Y ) ≥ 0 , equality holds if and only if the two variables are independent,
(3)	 I(X;Y ) ≤ H(X ,Y ).

In situations where X is uniquely determined by Y, knowledge of Y dictates a single 
possible value of X. It then follows that the conditional entropy satisfies H(X |Y ) = 0 
and therefore MI has the maximum value of I(X;Y ) = H(X) . Moreover, the stronger 
the relationship between two variables, the greater is the MI. Kinney and Atwal [22] 
proved that MI places the same importance on linear and nonlinear dependence.

Here, we use MI as an association measure and transform it into network adjacen-
cies. A network adjacency A = (Aij) satisfies the following conditions: 

(1)	 0 ≤ Aij ≤ 1,
(2)	 Aij = Aji,
(3)	 Aii = 1.

(1)I(X;Y ) = H(X)−H(X |Y ),

(2)H(X) = −
∑

x∈X

p(x) log p(x),

(3)H(X |Y = y) = −
∑

x∈X

p(x, y)

p(y)
log

p(x, y)

p(y)
,

(4)H(X |Y ) = H(X ,Y )−H(X),
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For m taxa X1, · · · ,Xm an adjacency matrix I  is a m by m matrix where each entry is the 
amount of information shared between each pair of taxa. We construct our adjacency 
matrix based on MI by satisfying three above conditions: (1) transformation to [0,  1]; 
(2) symmetrization; and, (3) setting diagonal values to 1. It can be easily seen that MI is 
bounded below by 0 and it is symmetric. However, it is not bounded above by 1 and the 
diagonals are not equal to 1 but rather are the entropy of the variable, H(X). To satisfy the 
above conditions, we divide each entry of the mutual information matrix I  by one of its 
upper bound which is a joint entropy between each pair of taxa, resulting in adjusted adja-
cency matrix Ĩ .

Therefore, for each pair of taxa Xj and Xj′ , the adjusted mutual information is calculated 
as

The result of this transformation is a m by m matrix Ĩ  where each entry varies between 0 
and 1. Also, if j = j′ , then Ijj′(Xj;Xj′) = H(Xj) and H(Xj ,Xj′) = H(Xj) so Ĩjj′(Xj;Xj′) = 1 . 
Thus our transformation (5) satisfies the conditions of a network adjacency.

In the following subsection, we describe an approach that results in an unweighted adja-
cency matrix based on the adjusted mutual information measure we defined above.

Filtering using unweighted network adjacency

A filtered unweighted network adjacency between taxa Xj and X ′
j can be defined by hard 

thresholding the adjusted mutual information-based adjacency matrix Ĩ  using signum 
function.

where τ is the hard threshold parameter. Hard thresholding leads to the intuitive concept 
of taxa connectivity (i.e., a binary variable indicating whether two species do or do not 
interact), and it is commonly used to construct sparse covariance matrices [38, 44].

Choosing the threshold τ

In many biological networks, hard thresholding of the association adjacency matrix is based 
on the scale-free criteria (defined below) of a graph and often applied when m << n [1, 3, 
44]. In other words, it is assumed that the probability that a node is connected with k other 
nodes (the degree distribution of a network) is characterized by a power-law distribution

where k is the node degree, and γ is some exponent reported in some biological graphs to 
be 2 < γ < 3 [4]. We choose the threshold τ by fitting a linear function f (k) = −γ̂ k + b̂ 
to the empirical degree distribution in log space and estimating the coefficient of vari-
ation, ( R2 ), of the fit. We choose the threshold that results in the highest R2 value . In 
addition to high R2 values, it is recommended [38, 44] to have a high mean connectivity 
so that the network contains enough information. We compute the mean degree k̄ for 

(5)Ĩjj′(Xj;Xj′) =
Ijj′(Xj;Xj′)

H(Xj ,Xj′)
, j, j′ = 1, · · · ,m

(6)I
∗
jj′(Xj;X

′
j ) =

{
1 if Ĩjj′(Xj;X

′
j ) ≥ τ

0 otherwise
,

(7)P(k) ∼ k−γ ,
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each threshold τ , by taking the average over the degree of all nodes. It is expressed as 
follows

We use mean connectivity as a tie breaker for thresholds that could produce the same R2 
value. Choosing an appropriate threshold which provides us with the highest R2 and a 
high k̄ , we build our network based on I∗

jj′ and remove isolated nodes (taxa), i.e., nodes 
that have a connectivity degree of 0. Because isolated nodes do not share information 
with other taxa, we assume they are potential contaminants, and we may remove them 
without significant loss of information. Conversely, nodes (taxa) that create non-trivial 
subgraphs (i.e., subgraphs having more than one node) are assumed to be true taxa.

Subnetworks with minimal information loss

Hidaka et al. [17] proposed a method of searching graph partitions (separations of the 
vertex set) which leads to the minimal information loss. In another work, Smirnova et al. 
[36] proposed a filtering loss measure to remove taxa with insignificant contribution to 
the total covariance. Inspired by the these ideas, we propose a method to filter taxa in a 
network based on total mutual information.

To do this, first we define the connectivity degree dj of the j-th node for j = 1, · · · ,m 
in the weighted graph; this is the sum of the weights on all edges adjacent to node j. The 
formula for connectivity degree dj is

where we take Ĩjj′ to be the weight on the edge connecting nodes j and j′ . Next, we sort 
the connectivity degree dj in an increasing order. Following this, we remove nodes (taxa) 
based on sample quantile values of sorted connectivity degrees for all taxa j = 1, · · · ,m . 
Finally, we compute the information loss according to the following formula:

where � · �2F is the Frobenius norm, sometimes also called the Euclidean norm, Ĩ ′
k is the 

adjusted mutual information matrix after removing all taxa below the kth quantile. Here, 
�Ĩ ′

k�
2
F represents the total information shared between taxa after removing certain num-

ber of taxa.

Statistical inference: hypothesis testing

Hypothesis testing using a permutation test

In this subsection we present an algorithm based on permutation testing, described in 
Algorithm 1, inspired by François et al. [14] to compare the difference in information loss 
due to various quantile removal. Let q1, · · · , qℓ be the quantile values. We are interested in 
testing if the information loss by removing the taxa with degree less than qk is significantly 

k̄ =

∑m
j′=1

∑m
j=1 I

∗
jj′

m

(8)dj =

m∑

j′=1

Ĩjj′ ,

(9)�k = 1−
�Ĩ ′

k�
2
F

�Ĩ�2F

,
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different from removing taxa with degree less than qk+1 , i.e., H0 : �k = �k+1 . A permuta-
tion test is a non-parametric hypothesis test [16] and is commonly used to assess the sta-
tistical significance when the distribution of the test statistic is not known and needs to be 
empirically derived. Here, we introduce essential notations for Algorithm 1.

For all 1 ≤ k ≤ ℓ , define Ĩ ′
k to be the Ĩ  after removing taxa with degree less than qk , and 

let rk be the number of taxa removed. Let �k+1 = �k+1 −�k . If D is any subset of the col-
umns of the full OTU table, define ĨD as the adjusted mutual information matrix of D.

Hypothesis testing using bootstrap

In the previous subsection we described a permutation test as a useful hypothesis testing 
tool. Here we use bootstrap methods [13], Algorithm 2, to test the same hypothesis. Again, 
we specifically wish to test H0 : �k = �k+1 . Similar to permutation tests, a bootstrap 
hypothesis test is based on a test statistic. Here, we introduce essential notations for Algo-
rithm 2. Let q1, · · · , qℓ be quantile values. Let X = (xij) for 1 ≤ i ≤ n and 1 ≤ j ≤ m be the 
taxa count matrix. For all 1 ≤ k ≤ ℓ , define Ĩ ′

k to be the columns of Ĩ  after removing taxa 
with degree less than qk . Define Xk to be the subset of the columns of X corresponding to 
the columns of Ĩ ′

k . Let �k be the covariance matrix of Xk and mk be the number of taxa in 
Xk . Consider the test statistic

We next describe our bootstrap process and bootstrap test statistic t∗ . For each k and 
b = 1, . . . ,B , sample mk +mk+1 columns with replacement from (Xk ,Xk+1) and name 
this matrix N ∗ . In addition, we denote the first mk columns of N ∗ , Z∗ and the remaining 
mk+1 columns Y ∗ . Let �∗(Z∗) ( Ĩ ′(Z∗) ) and �∗(Y ∗) ( Ĩ ′(Y ∗) ) be the covariance (adjusted 
mutual information) matrices of Z∗ and Y ∗ , respectively. Let Ĩ ′(N ∗) be the adjusted 
mutual information matrix of N ∗ and define,

(10)tk =
�k+1 −�k√

��k+1�
2/mk+1 + ��k�

2/mk

.
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Lastly, define our bootstrap test statistic to be

Evaluating the filtering method
Mock microbial community

To test our method, we used a publicly available mock community data set given in 
Brooks et al. [7] where the ground-truth was known. These data consist of prescribed 
proportions of cells from seven vaginally-relevant bacterial strains: Atopobium vagi-
nae, Gardnerella vaginalis, Lactobacillus crispatus, Lactobacillus iners, Prevotella bivia, 
Sneathia amnii, and Streptococcus agalactiae to quantify and characterize bias intro-
duced in the sample processing pipeline such as DNA extraction, PCR amplification, 
and sequencing classification. The data consist of 240 sequenced samples; the resulting 
sequencing and ASV identification pipeline produced a table with 46 ASVs. Therefore, 
there were 39 false and 7 true ASVs produced in the upstream sequencing and analyses 
of the data. Of the approximately 3.67M total reads in the data set, 99.9% were attrib-
uted to the 7 true bacterial species. The most frequent of the contaminant species (Pseu-
domonas gessardii) was only present at a frequency of 6.81× 10−5.

We start by constructing an unweighted network of vaginal microbiome data. 
Table 1 reports the results for varying the threshold parameter τ for the mock com-
munity data. It can be seen that the coefficient of determination R2 = 0.97 clearly 
favors τ = 0.45 . Based on these results, we use τ = 0.45 to construct the unweighted 
network. Because of the large drop in R2 after τ = 0.45 , we investigated the removal 
of individual edges with mutual information scores between 0.45 and 0.5. It seems 
the large drop was at least partially due to removing the edge between Atopobium 
vaginae and Streptococcus agalactiae (mutual information = 0.469, R2 = 0.38 ); in 

(11)�∗(Z∗) = 1−
�Ĩ ′(Z∗)�2F

�Ĩ(N ∗)�2F

and �∗(Y ∗) = 1−
�Ĩ ′(Y ∗)�2F

�Ĩ(N ∗)�2F

.

(12)t∗kb =
�∗(Y ∗)−�∗(Z∗)− (�k+1 −�k)√
��∗(Y ∗)�2/mk+1 + ��∗(Z∗)�2/mk

.
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other words, removing this particular network edge significantly altered the topol-
ogy such that it no longer fit a scale-free distribution nearly as well.

In Fig. 1 we have established the adjusted mutual information unweighted network 
of this dataset. It can be seen that I∗ can reflect the true connection between the 
microbiome as a subnetwork and the majority of noise taxa are indicated as isolated 
nodes. In addition, we can define the weighted network where weights are adjusted 
mutual information ( ̃I  ), this is shown in Fig.  2. It can be seen that in these types 
of networks all the nodes are connected to all other nodes. Here, edges are colored 
based on the strength of the connectivity between adjacent nodes from very weak 
(light grey), moderate (grey), strong (black). Notice that the weight between majority 
of true taxa is strong, however we can see three subnetworks of noise that strongly 
share information.

Fig. 1  Schematic diagram of an unweighted microbiome network based on adjusted mutual information. 
a Adjacency matrix with τ = 0.45 threshold; b the microbiome network diagram was formed according to 
the relationship among 46 taxa. We indicate contaminant taxa as CON.(arbitrary number) for convenience in 
illustrative purpose

Fig. 2  Schematic diagram of a weighted microbiome network based on adjusted mutual information. a 
Adjacency matrix; b the microbiome network diagram was formed according to the relationship among 46 
taxa. We indicate contaminant taxa as CON.(arbitrary number) for convenience in illustrative purpose
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Receiver operator characteristic (ROC)

Here we use an ROC curve to evaluate the classification accuracy of each taxon in this 
data set using a thresholding parameter τ in reference to the binary outcome D, which 
takes 0 (noise taxon) or 1 (true taxon). In order to do this, we measure the degree dj of 
each node (taxon) in our unweighted network obtained by different hard thresholding 
parameter τ . For each taxon, convention dictates that a true taxon is defined as dj ≥ τ . 
The classification accuracy of each taxon is then evaluated by considering a confusion 
matrix. It cross-classifies the predicted outcome for taxon with dj ≥ τ versus the true 
outcome D. For the fixed cutoff τ , the true positive fraction is the probability of identify-
ing a taxon as a true signal, when it is truly a taxon.

In general, ROC analysis assesses the trade-offs between the test’s fraction of true pos-
itives versus the false positives as τ varies over the range of 0 to 1.

and the false positive fraction is the probability of identifying a taxon as a true signal, 
while it is a noise taxon.

Because τ is not fixed in advance, one can plot TPF (sensitivity) y-axis against FPF
(1-specificity) x-axis for all possible values of τ . If TPF(τ ) = FPF(τ ) , for all τ , it is a use-
less test with regards to the binary prediction. A perfect test that is completely informa-
tive about the signal status has TPF(τ ) = 1 and FPF(τ ) = 0 for at least one value τ . In 
other words, an excellent model has an area under the ROC curve (AUC) near 1 which 
indicates a good measure of separability. A model with area near 0 indicates a good 
measure of separability but a poor classification accuracy. An area under the ROC curve 
of 0.5 means the model has no class separation ability and is considered to be a random 
classifier. Figure 3 shows the ROC curve, assessing true versus false positive rate with 
AUC = 0.86 demonstrates the good performance of the method. We point out that using 
an ROC analysis to assess a diagnostic method is only possible when the truth is already 
known (as is the case with the mock data) and would not be part of analyzing normal 
microbiome data. The ROC also corroborates that τ = 0.45 was the best threshold value, 
as determined by the R2 analysis.

Information loss

We use the Brooks et  al. [7] data set to estimate the amount of information loss by 
removing different percentages of taxa and investigate if the difference in information 
loss by removing percentages of taxa with degree less than qk versus qk+1 is significant. 
Figure 4 illustrates the results for this mock community data set. The left panel displays 
the information loss and the right panel displays the difference in information loss. 
The data set was sorted according to the increasing connectivity degree of taxa using 
the adjusted mutual information adjacency matrix. For example, a cutoff assignment of 
1% removes 1% of the taxa with the lowest connectivity degree. It is clear that applying 
percentile based filtering changes the amount of information loss, Fig. 4. For example, 
information loss has a drastic increase from 0.86 to 0.91 filtering threshold, while there 
is no or minimal change in information loss between removing 81% and 86% of taxa. This 

TPF(τ ) = P(dj ≥ τ |D = 1),

FPF(τ ) = P(dj ≥ τ |D = 0).
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provides us with the intuition that 86% of taxa can be removed from the further analysis 
without loosing significant amount of information and these taxa could be the result of 
sequencing or PCR error, especially in high-throughput sequencing data sets.

Figure 5 shows information loss versus the number of taxa that are removed based on 
the lowest connectivity degree one at a time. We can see that after removing true signals 
(indicated by taxonomic name) the information loss values increase dramatically. From 
the Figs. 4 and 5, it is clear that information loss increases after removing a certain num-
ber or percentage of taxa. However, we need to investigate whether this rise of informa-
tion loss is due to random errors or a real effect. In other word, we want to determine 
whether the information loss after removing less than qk of taxa is significantly different 
from information loss after removing qk+1 of taxa, where qk is the k-th quantile value of 
connectivity degree. To do this, we use permutation and bootstrapping approaches to 
test the null hypothesis which indicates that removing taxa with degree less than qk+1 
versus qk does not make any difference in information loss and hence we can remove 
them from further analysis. We follow the Algorithms 1 and 2 by setting M = 500 , 
B = 500 , α = 0.05 , and q = (0.01, · · · , 0.96) . The results of our permutation and boot-
strapping tests are shown in Table 2; the second column shows that there is a significant 
loss of information after removing ≥ 91% of taxa (p-value< 0.05 ) at 5% significance level. 
As an alternative, we follow Algorithm 2 to apply bootstrap method for hypothesis test-
ing to approximate p-value.  In Table 2  the third column shows that the bootstrap test 
gives similar results to permutation tests which also indicates that there is strong evi-
dence that removing 91% of taxa will result in loosing significant amount of information.

Comparison study on mock community data from Brooks, et al.
Here, we use the data set in [7] to assess the performance of our method and compare 
results to alternative methods. More specifically, we consider four traditional methods 
which have been commonly employed for filtering of microbiome data: (1) Traditional 
1: we retain taxa with more than 0.1% , 5% , and 1% relative abundance in at least one 
sample [11, 15, 25, 29]. (2) Traditional 2: we retain taxa with at least 5 reads in at least 3 
samples [19]. (3) Traditional 3: we retain taxa presented in more than 5 samples [6]. (4) 
Traditional 4: we remove samples with fewer than 100 reads and taxa with fewer than 10 
reads, as well as taxa which present in fewer than 1% of samples [12].

Results presented in Table 3 indicated that MI-based filtering method performs better 
than Traditional 2, 3, and 4 as well as Traditional 1 for the choice of 0.1% . In particular, we 
can see that our MI-based method removed 84.8% of taxa with minimum loss of informa-
tion and preserved all taxa which were true signals. Traditional 1 filtering method with a 
retention threshold of 1% and 5% performed as well as the MI-based method, however, 
when the retention threshold was 0.1% this method retained 2.6% of contamination. For 
the Traditional 2 filtering method, following filtering 78.3% of taxa, this method retained 
7.7% noise signals. Similarly for the Traditional 3 and 4 filtering methods, they filtered 
58.7% and 60.9% of taxa, respectively; these two methods were the most permissive and 
retained 30.8% and 28.2% of noise, respectively. In comparison to the R PERFect pack-
age [36], the default settings using the “simultaneous” and “permutation” algorithms fil-
tered 78.2% and 82.6% of the taxa and retained 7.7% and 2.6% of the noise, respectively 
(i.e., slightly worse than our proposed method). It should be noted that these PERFect 
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results are depedent on parameter choice (see Table  1 of [36] for a full listing of their 
results under different parameter choices for the Brooks et al. [7] data ).

Our proposed method was therefore successfully able to identify and remove con-
taminants from these data which results in dimensionality reduction of the data that 

Table 1  Microbiome network characteristics for different hard thresholds τ

The second column contains coefficient of variation R2 that varies between 0 and 1, where 0 indicates that the power-law 
model explains none of the variability of the empirical degrees, while 1 indicates the model perfectly fit the data. k̄ and −γ 
are the average node degree and the exponent of the power-law distribution, respectively. Bold values indicate the chosen 
level of thresholding (highest R2)

τ R
2

k̄ −γ

0.05 0.71 5.96 − 0.85

0.10 0.86 3.65 − 1.00

0.15 0.75 2.30 − 0.56

0.20 0.75 1.87 − 0.64

0.25 0.84 1.61 − 0.60

0.30 0.84 1.39 − 0.61

0.35 0.70 1.17 − 2.68

0.40 0.74 1.04 − 0.69

0.45 0.97 0.70 − 0.97
0.50 0.56 0.43 − 4.53

0.55 0.56 0.22 − 3.90

0.60 0.57 0.17 − 3.96

0.65 0.56 0.17 − 3.96

0.70 0.56 0.17 − 3.96

0.75 0.56 0.17 − 3.96

0.80 0.56 0.17 − 3.96

0.85 0.56 0.17 − 3.96

0.90 0.56 0.17 − 3.96

0.95 0.57 0.17 − 3.96

Fig. 3  ROC curve describing true positive versus false positive rate of the unweighted adjusted mutual 
information network model predicting true taxa for the Brooks et al. [7] data
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can reduce computation time and improve interpretation of downstream analyses. 
The proposed method has two advantages in addition to its superior performance in 
comparison with above mentioned traditional methods. First, it does not required a 
choice of threshold which is critical and not easy to obtain. Second, it is able to detect 
true taxa with low abundance. Most of the traditional methods have subjective pre-
determined thresholding value that might have adverse effects on the analysis due to 
loss of important information within filtered taxa. Our proposed method chooses a 
filtering threshold based on hypothesis testing and information loss. As mentioned 
earlier, these traditional methods remove taxa with low abundance and hence any 
important taxon with low abundance is removed leading to significant loss of infor-
mation. However, MI-based filtering method, removes taxa based on their interac-
tions with other taxa and therefore it can preserve low abundance taxa in case of their 

Fig. 4  Information loss for the Brooks et al. [7] data. a Information loss as a function of threshold. Taxa 
are sorted according to the increasing connectivity degree of taxa and are removed based on different 
percentiles. b Difference in information loss that evaluates the slope at each taxon

Fig. 5  Information loss for the Brooks et al. [7] data. Information loss as a function of number of taxa being 
removed. Taxa are sorted according to the increasing connectivity degree of taxa and are removed one at a 
time. We indicate contaminant taxa as CON.# for convenience in illustrative purpose
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strong association with other taxa. This allows us to study significant taxa that occur 
in low abundance. Our method also provides another advantage in comparison to 
methods such a microDecon [26] and decontam [8]: it does not require negative 
control samples to calibrate the algorithm. Therefore our methods reduce the cost of 
sequencing in comparison.

Obviously, the Brooks et al. [7] data are overly simplisitic. Because of the fact that this 
mock community has only 7 true species and 39 false species (contaminants/sequenc-
ing noise), all of the methods performed relatively well except for the Traditional 3 and 
4 filtering methods. (Table 3). Unfortunately, data for large complex communities—like 
those that the method will typically be applied to—where the true composition is known 
are not available. However, our MI filtering based method has been applied to the gut 
microbiome of dairy calves [35]. In this analysis, the raw ASV table had 431 putative 

Table 2  P-values by permutation and bootstrapping test based on 500 randomizations each

Bold values indicate levels of filtering that significantly altered the MI network

Percentage of taxa removal p-value by permutation p-value by bootstrapping

0.01–0.06 1.000 0.508

0.06–0.11 1.000 0.514

0.11–0.16 1.000 0.503

0.16–0.21 1.000 0.491

0.21–0.26 1.000 0.511

0.26–0.31 1.000 0.575

0.31–0.36 1.000 0.644

0.36–0.41 1.000 0.525

0.41–0.46 0.999 0.601

0.46–0.51 1.000 0.663

0.51–0.56 1.000 0.507

0.56–0.61 0.996 0.585

0.61–0.66 0.994 0.666

0.66–0.71 0.997 0.534

0.71–0.76 0.445 0.722

0.76–0.81 0.994 0.753

0.81–0.86 0.314 0.813

0.86–0.91 < 0.002 < 0.002

0.91–0.96 < 0.002 < 0.002

Table 3  Comparison of 6 commonly used traditional filtering method with MI-based filtering 
method for Mock community data set in [7]

Filtering method # Taxa
preserved

Filtered% Preserved
contamination%

Traditional 1-0.1% 8 82.6 2.6

Traditional 1-1% 7 84.8 0.0

Traditional 1-5% 7 84.8 0.0

Traditional 2 10 78.3 7.7

Traditional 3 19 58.7 30.8

Traditional 4 18 60.9 28.2

MI-based 7 84.8 0.00
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species. After filtering using the mutual information criterion, 76% of the ASVs were 
determined to be contamination and the resulting refined data only had 57 ASVs, thus 
making downstream analyses much easier and more interpretable (see Slanzon et al. [35] 
for further details). Of course, we do not know how accurate that filtering process was 
because the true composition of these data is unknown, but it does demonstrate the util-
ity of our methods.

Conclusion
Removing contaminants prior to any downstream analysis is an essential step in 
metagenomic sequencing data research. Host associated contaminants significantly 
complicate analysis, particularly in low microbial biomass body sites. Contamination 
can cause analysis of sequencing reads to result in false positive or false negative and 
hence decreasing the reliability of the analysis. Here, we developed a simple method that 
uses  a combination of graph theory and information theoretic functionals to identify 
and remove contaminants in metagenomic data sets. Our results suggest that mutual 
information based filtering method can improve the accuracy of detecting contami-
nants, especially in comparison with the commonly used traditional filtering methods.

To fully explore the strengths and weaknesses of our proposed filtering method, evalu-
ation on different labeled mock community data sets is necessary. Unfortunately, labeled 
data sets are expensive and difficult to obtain and thus hindered our ability to test our 
method further. We believe that it is possible to improve the threshold selection in the 
unweighted graph given improved (ground-truthed) data with which to work. Looking 
solely for isolated nodes is not sufficient as it is unable to filter out random interaction 
between contaminants nodes. When the number of nodes increases we can expect more 
random interaction between contaminants, making the isolated node approach even 
less powerful. We believe more advanced methods from graph theory could remedy this 
short coming. Future work could include but are not limited to examining the efficiency 
of techniques such as dense community detection, dense subgraph selection, and vertex 
selection based on vertex centrality. These sophisticated node selection methods could 
provide a more powerful filtering method in the unweighted graph.
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