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Results: We show in a simulation study that filtering can lead to some increase

in power for RNA-sequencing data, too aggressive filtering, however, can lead to a
decline. No uniformly optimal filter in terms of power exists. Depending on the sce-
nario different filters may be optimal. We propose an adaptive filtering strategy which
selects one of several filters to maximise the number of rejections. No additional adjust-
ment for multiplicity has to be included, but a rule has to be considered if the number
of rejections is too small.

Conclusions: For a large range of simulation scenarios, the adaptive filter maximises
the power while the simulated False Discovery Rate is bounded by the pre-defined
significance level. Using the adaptive filter, it is not necessary to pre-specify a single
individual filtering method optimised for a specific scenario.
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Background

In next generation RNA-sequencing experiments (RNA-seq), thousands of genomic
features (typically genes) are investigated to study differential expression levels among
several experimental conditions. Often the number of replicates per condition is small.
When testing each gene individually, multiple testing procedures have to be applied to
avoid an increase in false positive results and the power to detect truly differentially
expressed (DE) genes between conditions is often low.

It has been shown that data filtering can increase the number of rejections or the
power, respectively, of high-throughput experiments [1-3]. Filtering removes genes
with, e.g., low counts or small variation in the pooled sample, or genes whose counts
are so poorly measured, that their expression level cannot be determined. In RNA-
seq, genes with low counts across all replicates or samples (also called libraries)
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are assumed to provide little evidence for differential expression as a gene must be
expressed at some minimum level before it is likely to be transformed to a protein
or to be biologically important [4]. On the other hand, genes with low variation in
the pooled sample and which therefore have small chance of showing a significant
differential expression in the final analysis, are removed. Only genes that pass a pre-
specified filter are part of the final analysis and are considered in the multiple testing
procedure. With a lower number of genes, a less stringent multiplicity adjustment can
be applied and thus the probability to detect truly DE genes is increased.

Several methods for filtering were proposed for RNA-seq data, e.g., filtering based
on the maximum or the mean of the observed counts across all groups (e.g., treat-
ment conditions) for each gene, with varying thresholds for the selection. It has been
shown that filtering should be based on blinded data, i.e., independent of the groups,
to avoid inflation of the Type I error rate (for details, see [5]). However, there is no
consensus or rule on the choice of the filtering process or the threshold values. E.g.,
the vignette of the bioconductor package EdgeR [4] states: 'As a rule of thumb, genes
are kept if they are expressed in at least one condition. Users can set their own defi-
nition of genes being expressed. Thus, in practice, a user may apply various filtering
strategies and chose the rule leading to the ’best’ result for the final analysis. However,
it has not been investigated, how this approach affects the Type I error rate and the
power.

In this paper, we propose an adaptive filter for RNA-seq data which selects one
out of several filtering methods aimed at maximising the number of rejections. In a
large range of simulation scenarios, practically no impact on the False Discovery Rate
(FDR) is observed, if several filters are considered and the filter leading to the larg-
est number of rejections is selected. No additional adjustment for multiplicity for the
number of considered filters has to be included. The only additional rule that has to be
considered is that if the number of rejections is too small (and lies below a specified
filter parameter), a previously defined reference filter has to be chosen for the final
analysis. Otherwise the FDR may be inflated. In the next section, we show that no
uniformly optimal filter in terms of multiple power exists and that the proposed adap-
tive filter leads to the largest power without inflation of the FDR for many different
simulation scenarios. The merits of the new adaptive filter procedure are illustrated
using simulated and real data. In the Methods section, we review the data processing
steps for RNA-seq data and define the adaptive filter.

Results

We first perform simulation studies to compare filtering methods from the literature
with regard to multiple power, defined as the proportion of correctly rejected false
null hypotheses under all false null hypotheses, i.e. the proportion of correctly identi-
fied truly DE genes under all DE genes (hereinafter denoted as power). Since there is
no consensus rule on the choice of the filtering process, we propose the new adaptive
filter approach which searches for the best filter in terms of the number of identi-
fied genes (as described in more detail in the Methods section). We then analyse the

impact of the adaptive filter on the multiple power and the FDR.
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Simulation settings

In the simulation study, we consider experiments comparing two groups of independ-
ent samples with m = 10000 two-sided null hypotheses Hy;, i = 1,...,m (correspond-
ing to genes or features, hereinafter referred to as genes). The two groups are of sizes
n1 = ny = 10, and we consider different proportions g of true null hypotheses, i.e. non-
DE genes, in the range from 0.5 to 1. To simulate RNA-seq data, we consider a wide
range of strategies (see Table 1 and Additional file 1).

Filtering was performed in two steps: We first filtered the raw counts and removed
genes with only zero counts in both groups. This filter is denoted as the basic filter.
Based on the remaining genes, the data were normalised and for each gene a p-value for
group comparison was calculated (see Methods section). Next, one of the filters listed
in Table 2 was applied to the raw counts. The unadjusted p-values of the hypotheses
selected by the two filters (the basic filter and the chosen additional filter) were then
adjusted for multiplicity. In our simulations we examined and discussed two methods
for multiplicity adjustment, the local False Discovery Rates (Ifdr) [14, 15] and the Ben-
jamini-Hochberg (BH) procedure [16]. The significance threshold o was set to 0.05 (for
alternative analysis pipelines, see the Methods and the additional files). For the adaptive
filter strategy;, all filters in Table 2 are applied separately and the method that leads to the
largest number of rejections is selected as the actual filter. Note that in the simulations
we also considered the options to perform no filtering at all and the option to perform
no further filtering step after the basic filter (these options are in the following referred
to as 'none’ and ’basic’). The considered filters (Table 2) are parameterised by thresh-
olds with the exception of the Jaccard filter, which has no parameter. For each of these
filters we considered a range of thresholds. Such thresholds can be specified as abso-
lute constants (e.g. a minimum mean count) or as percentile percentages (e.g. the 5%
percentile of the observed mean counts). For mean and max-based filtering, we chose
thresholds based on percentile percentages and for CPM and zero-based filtering a fixed
set of thresholds is used. For the comparisons in Figs. 1 and 2, the corresponding pro-
portions of filtered genes (i.e. removed genes) in the respective scenario are plotted and
computed after removing genes with only zero counts. Note that also for methods based

Table 1 Simulation strategies. More details for each setting can be found in the Additional file 1

Simulation  Description and data sources

NB The count data are assumed to follow a negative binomial distribution (NB), dispersion and mean
parameters are fixed and equal for all Hy or Hj, respectively.

NB with Read counts follow a NB distribution, dispersion and mean parameters vary across genes and
distributed are based on real RNA-seq data sets according to [2] (real data sets Kidney [6], Bottomly [7], and
parameters Sultan [8], see Table 3).

SimSeq [9] Counts based on real data read counts adjusted by a correction factor to generate differential
expressions, dependence between genes is imitated from real data sets Bottomly [7], Kidney [6],
and mouse [10].

PROPER[11]  Read counts follow a NB distribution, dispersion and mean parameters vary across genes and

are based on a real RNA-seq data set (Cheung [12]). Additional noise is introduced due to zero
baseline expressions in the original data leading to many genes with zero counts only.

PROPER As PROPER. Here, the empirical average expressions sampled from the Cheung data are standard-
with fixed ised to reach a fixed sequencing depth.
sequencing

depth [11]
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Table 2 Types of filtering methods

Filter Description Considered thresholds

Mean-based These filters are based on the gene-wise overall mean Percentile % = {1,2,3,4,5,8,11,
counts from both conditions. Genes with a mean expression 14, 17, 20, 23, 26, 29, 32, 35, 38,
less than some threshold given by the specified percentile 41,44,47,50, 55,60, 65, 70,75, 80,
percentage of mean counts are removed by the filter and not 85, 90}
considered for the test decision (e.g., [2]).

Max-based  Genes with maximum counts (over both conditions ) less Percentile %= {1,2,3,4,5,8,11,
than a threshold given by the specified percentile percentage 14, 17, 20, 23, 26, 29, 32, 35, 38,
of maximum counts are removed from the analysis and not 41,44, 47,50, 55, 60, 65, 70, 75, 80,
considered for the test decision (e.g., [2]). 85,90}

CPM Robinson and Oshlack (2010) [13] propose to base filtering c={1,2,5,25,50,100}
on counts per million (CPM). Genes with CPM values less than
threshold ¢ in more than min(ny, ny) samples are removed.

Jaccard Max-based filter [2] where the filter threshold v* is determined
with the Jaccard similarity index. To compute the index for a
pair of replicates, the gene counts are first dichotomised for a
cut-off v: a gene count is either larger than v or not. Then the
number of counts larger than threshold v in both replicates
divided by the number of gene counts larger in any of the
two replicates is calculated resulting in values between 0 (dis-
similar) and 1 (similar). The global Jaccard index is the average
of the index across all pairs in each condition. The calculations
are repeated for several threshold values v and the threshold
v*with the greatest similarity is found by fitting a loess curve
through the set of candidate thresholds. v* is then used as a
threshold in a max-based filter.

Zero-based  This filter counts the sum of zero counts per gene and u={16,...,1}
removes genes with more than u zeros from the analysis.
Note that the basic filter is the zero-based filter with threshold
u=n.

on percentiles percentages, the actually observed proportions plotted in the Figures may
differ from the nominal percentages due to ties.
All simulations were performed with R version 3.6.0 or higher [17]. At least 1000 simu-

lation runs were performed for each scenario.

Comparison of individual filtering strategies
We first compare the individual filtering methods with regard to the power. A compari-
son with the adaptive filtering approach is reported in the next section.

For several simulation settings, the power of each filter as a function of the propor-
tions (across all simulation runs) of filtered genes among the set of genes selected by
the basic filter is shown in Figs. 1 and 2 for the lfdr adjustment and 7o = 0.8. The cor-
responding results for wp = 0.5 and 0.99, simulations based on other real data sets, and
for the BH procedure can be found in Additional file 2: Figs. S1, S2, S13-S15. For a better
comparison of filtering methods in the plots, the thresholds are transformed to the cor-
responding proportions of filtered genes. Only the proportion of selected genes reported
for the basic filter is based on the total number of hypotheses 1, the proportion of no
filtering is always 0.

It can be seen that in many scenarios mean and max-based filters maximise the power,
however, the optimal percentile percentage depends very sensitively on mp, the simula-
tion setting and the multiplicity adjustment. Often the optimal filter is not unique, as

several methods/percentile percentages lead to the same or very similar power values.
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Fig. 1 Power comparison of different filters. Power values for several filtering methods and simulation
strategies for ¢ = 0.05, mg = 0.8, m = 10000, ny = ny, = 10 (orn; = n2 = 5for SimSeq (Bottomly)). The
power of each filtering method is plotted as a function of the actual mean proportion of filtered genes across
all simulation runs for the set of genes with at least one non-zero count; only the proportion of the basic filter
is based on the total number of hypotheses m. The basic, Jaccard and no filter results are represented by a
point because these methods are based on a fixed threshold
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Fig. 2 Power comparison of different filters and sequencing depths. Power values for several filtering
methods for PROPER simulation for @ = 0.05, 7o = 0.8, m = 10000, n1 = n, = 10 and sequencing depths
5m, 10m, and 50m. The power of each filtering method is plotted as a function of the actual mean proportion
of filtered genes across all simulation runs for the set of genes with at least one non-zero count; only the
proportion of the basic filter is based on the total number of hypotheses m. The basic, Jaccard and no filter
results are represented by a point because these methods are based on a fixed threshold

For example, for NB data simulation more than half of the genes should be removed to
maximise power and the larger mp, the more genes should be removed by the filter. For
the NB simulation with distributed dispersion and mean parameters, however, optimal
power values are achieved for much lower percentile percentages. The basic filter (which
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in this simulation setting is equivalent to no filtering as zero counts in the whole sample
are very unlikely) as well as all other filters with very low percentile percentages show a
good performance in all considered scenarios. In other scenarios, e.g., SimSeq simula-
tions with counts based on the mouse or Bottomly data sets, the max and mean-based
filters have higher power values if the percentile percentage of filtered genes is approx.
between 10% and 20%. However, the advantage in terms of power is only small (between
0.3 and 0.6 percentage points). In contrast, for the SimSeq simulation based on the Kid-
ney data set, hardly any genes should be filtered (see Fig. 1 and in Additional file 2: Figs.
S1, S2, S13-S15). Note that, as expected, the resulting power of the BH adjusted simu-
lations is larger. Apart from that the curves look rather similar and optimal percentile
percentages are comparable.

The PROPER simulations show rather flat power curves near the optimum, the power
is increased by 0.5 to 2 percentage points in comparison to the basic filter. As this simu-
lation generates many zero genes, the advantage of the basic filter compared to no filter-
ing is very pronounced. The optimal power is observed with the max-based and the zero
filter and lies between the 10% (for rp = 0.5) and 20% percentile (for 9 = 0.99). Figure 2
shows the results of the simulation study with fixed sequencing depths = 5m, 10m, and
50m for the lfdr method. As expected, power increases with sequencing depth. Optimal
power values can be found for the zero and the max-based filter, the optimal percentile
percentage decreases for an increasing sequencing depth from 0.24 to 0.12.

For the simplistic simulation settings such as NB sim and NB sim distributed, the
‘none’ filter often shows similar power values as the basic filter. However, for the SimSeq
and the PROPER simulations, large power increases of more than 20% can be found.
Moreover, as can be seen in Additional file 2: Figs. S4-S7 and 17-19, in many scenarios
the FDR of the 'none’ filter option is increased.

None of the filters is uniformly optimal across all considered scenarios, however, in
many scenarios, mean and max-based filters with low thresholds, zero filter with high
thresholds, the Jaccard or the basic filter generate the highest power values. However,
huge differences in power of more than 60% can be observed if inefficient thresholds are
chosen. Note again, that the optimal filter and/or threshold is unknown in practice.

A modified order of data processing, where filtering was performed before normalisa-
tion and data analysis (order (b)) as described in the Methods section), can be found in
the Additional file 2: Figs. S22 and $23 (multiplicity adjustment with Ifdrs). The results
emphasise the conclusion that the optimal filter depends on the simulation scenario.

Adaptive filter

Since none of the considered filters is uniformly optimal, the adaptive filter may be a
useful option to avoid the risk of choosing an inefficient filter in terms of power. In this
section, the simulation studies presented above are extended and the performance of
the adaptive filter is investigated. The adaptive filter incorporates all filters as described
in Table 2 and finally applies the filter which leads to the largest number of rejections.
To avoid an increase in the FDR under the global null hypothesis where 7o = 1, a filter
parameter / was introduced and a reference filter was defined in advance. [ was set to 5,
i.e. in case of 5 or less rejections, the reference filter and not the adaptive filter is applied.
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Otherwise an inflation of the FDR under the global null hypothesis may be observed. In
our simulation study, the Jaccard filter was specified as the reference filter.

Figures 3 and 4 show the differences in power of the filters compared to no filter-
ing as a function of g, m, or n; = ny for multiplicity adjustment with Ifdrs (Additional
file 2: Fig. S16 for the BH procedure). The parameters mg, 7, or n; = ny are either var-
ying on the x-axis or are fixed at o = 0.8, m = 10000, n; = ny = 10 (simulations for
1o = 0.99 or based on other data sets, can be found in Additional file 2). The adaptive
filter incorporates all thresholds from Table 2; however, the Figures only show the results
for a selection of the considered thresholds: mean and max-based filters with the 1%
and the 90% percentile, the zero-based filter with threshold # = 8, and the Jaccard filter.
In addition, the adaptive filter with filter parameter / = 5 is plotted. Note that we use
different scales on the y-axis to provide information on the methods with high power
values in detail. Therefore, on some plots, filtering methods with very low power and
large power differences are not visible. In most scenarios, this concerns the mean and
max-based filter with the 90% percentile. Additional file 2: Figs. S3 and S16 show results
for the NB simulation with distributed parameters according to the Bottomly data set,
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Fig. 3 Adaptive filter I. Differences in power for adaptive filter and selection of applied filters compared to
no filter for several scenarios. The plotted filtering methods and the corresponding percentile percentages
are given in the legend. 7o = 0.8,m = 10000, ny = n, = 10 or tg, M, and ny = n; are parameters on the
x-axis, « = 0.05 (Ifdr adjustment). Note that the range of the y-axis is chosen result-based; filtering methods
with low power may not be visible on some plots
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m =ny = 10(n; = n, = 5for the SimSeq Bottomly data and ny = n, = 3 for SimSeq mouse data) and

a = 0.05 (Ifdr adjustment). The plotted filtering methods and corresponding percentile percentages are
given in the legend. Note that the range of the y-axis is chosen result-based; filtering methods with low

power may not be visible on some plots

the second row for SimSeq simulation (Kidney data), and row 3 for the PROPER simula-
tion. In Fig. 4, further NB sim distributed, SimSeq and PROPER simulations with vary-

ing sequencing depth as a function of g are shown.

It can be seen that the improvement in power for the adaptive filter is only moderate
compared to some of the individual filtering methods with a large number of rejections.
However, the adaptive filter gives a larger power in all scenarios while individual filters
perform well in tailored settings only. For instance, the Jaccard filter shows a good per-
formance in a lot of scenarios, while for PROPER simulations with sequencing depth
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= 5m and o = 0.5 (Ifdr adjustment), the gain in power for the adaptive filter is up to
22 percentage points compared to the Jaccard filter, for 7o = 0.99 the gain is only 0.7
percentage points. For the SimSeq Bottomly simulations, it is up to approximately 9 per-
centage points.

We investigated the FDR of the adaptive filter in the above simulation scenarios. In
most scenarios with m > 2500 the simulated FDR was below the nominal level 0.05, if
the filter parameter / is 5 or larger. This holds also under the global null hypothesis (see
Additional file 2: Figs. S8-S11, S20, S21). For some simulation scenarios based on Sim-
Seq several of the individual (non-adaptive) filter methods showed an inflated FDR (see
Additional file 2: Fig. S7). For these simulations, especially filters that select only a small
percentage of genes for testing inflate the FDR. As a consequence, also the FDRs of the
adaptive filter are increased (see Additional file 2: Figs. S9 and S19): For lfdr adjustment,
the observed maximum FDR for the SimSeq simulation based on the Bottomly data is
0.098 (719 = 1), for the mouse data 0.17 (w9 = 1). For the latter, the FDR of 79 = 0.95
and 0.99 is also increased to 0.1 and 0.16. For the PROPER simulations and the BH pro-
cedure the simulated FDR of the adaptive filtering (! = 5) is inflated for 79 = 1 and 0.99
to a maximum of 0.069 and 0.071 for large values of m > 1000 (Additional file 2: Fig.
S21), no increase is observed for the lfdr method (Additional file 2: Fig. S11). However,
as above, the increase in FDR for these scenarios is already observed for the individual
(non-adaptive) filtering methods (see [18] for a detailed discussion of FDR control for
count data). This increase causes also the inflation of the FDR of the adaptive filter.

In Additional file 2: Figs. S11 and S21 we also investigate the influence of smaller
m = {100, 500} on the FDR. For the lfdr method, for filter parameter [ = 5, the observed
FDR is lower than o = 0.05 for all scenarios and all values of m. For the BH method,
however, for [ =5 and m = 100 or m = 500, the simulated FDR is larger than 0.05 in
some scenarios with a maximum inflation of 0.062 for the PROPER simulation (# = 100
and o = 0.8). Small increases are also observed for NB distributed simulations and
m = 100 (maximum inflation 0.053). However, for these scenarios, for some of the indi-
vidual filtering methods the observed FDR is larger than c.

Real data application

We applied the adaptive filtering method to several RNA-seq data sets from the litera-
ture. We used the Bottomly, mouse mammary, Kidney and Sultan data sets which we
had already used in the data simulations. Additionally, we reanalysed the Airway data-
set (library airway, [19]) and a random sample of this data set with halved sample sizes
per group to generate an application with potentially lower power (Airway 2). Real data
analyses were further conducted for a random sample of 10 samples per group from the
Kidney data set (in order to have similar group sizes as in the simulation study) and the
Yuen data set from an experiment with de novo assembled transcriptome as a reference
for gene counting (see Table 3, additional information on the data sets can be found in
Additional file 1). R source code can be found in Additional file 4.

In the reanalyses first all genes with only zero counts were removed (basic filter).
Second, the filtering strategies as described in Table 2 were applied. The number of
rejections was calculated (o = 0.05) as well as the proportion of the filtered genes.
Again, filtering was performed after data analysis (see order (a) in Methods section),



Zehetmayer et al. BMC Bioinformatics (2022) 23:388 Page 10 of 16

Table 3 Description of data sets

Data set m(% of genes with ni/ny Description
only zero counts)

Kidney 20531 (3) 72/ 72 non-tumour versus tumour samples [6]
Kidney 2 20531 (5) 10/10 random sample of Kidney data set

Bottomly 36536 (35) 10/11 C57BL/6J versus DBA/2J (mice strains) [7]
Mouse mammary 27179 (21) 6/6 basal versus luminal cell types in mice [10]
Sultan 52580 (83) 2/2 human embryonic kidney versus B cell lines [8]
Airway 64102 (52) 4/4 Airway smooth muscle cell lines [19]

Airway 2 64102 (52) 2/2 random sample of Airway data set [19]

De novo assembly: ni/./na

Yuen 96831 (12) 3/3/3/3 transcriptomes of lucinid clam of 4 organs [20]
Only data simulation: m

Cheung 52580 (76)" 41 lymphoblastoid cell lines from unrelated

individuals [11]

1 only a subset of 17580 genes with a reduced percentage of genes with only zeros is used for data simulation

Table 4 Real data application

No filter Basic Mean-based Max-based Zero-based Jaccard
Bottomly 1443 1324 (35) 1488 (24) 1489 (25) 1417 (15) 1371 (34)
Sultan - 2801 (83) 3511 (11) 3445 (15) 3511 14) 2864 (42)
Airway 0 1029 (48) 1554 (60) 1576 (60) 1235 (26) 1612 (57)
Airway 2 - 102 (52) 275 (80) 347 (80) 120 (16) 197 (54)
Mouse 9151 8772 (21) 9173 (6) 9540 (18) 9192 (5) 8593 (28)
Kidney 13076 13075 (3) 13282 (5) 13299 (4) 11784 (19) 13072 (2)
Kidney 2 5777 6357 (5) 6357 (2) 6355 (3) 6357 (4) 6355 (3)
Yuen
gill vs. mantle 7932 7932 (6) 9912 (38) 10340 (48) 8619 (25) 7932 (0)
gill vs. foot 7534 7534 (8) 9537 (38) 9685 (32) 8194 (27) 7543 (0)
gill vs. vmass 6093 6093 (4) 8079 (44) 8948 (55) 7023 (23) 6093 (0)
mantle vs. foot 5291 5291 (12) 5802 (41) 5911 (36) 5470 (13) 5291 (0)
mantle vs. vmass 2468 2468 (6) 3655 (47) 4007 (68) 3034 (23) 2468 (0)
foot vs. vmass 3605 3605 (7) 5054 (35) 5602 (66) 4178 (27) 3605 (0)

Maximum number of rejections for each filtering method and the corresponding observed proportion of filtered genes in
parentheses (for the basic filter based on all genes, for other filters on the non-zero genes) for several data sets, multiplicity
adjustment with Ifdrs, « = 0.05 Filtering is performed at the end (order (a)). The adaptive filter with the highest number of
rejections is highlighted in bold

in addition, we performed a second data analysis where filtering was performed
before normalisation and data analysis (order (b), Additional file 2: Table S1).

Table 4 shows the resulting maximum number of rejections for the filtering method
and the corresponding observed proportion of filtered genes (for the basic filter based
on all m genes, for other filters based on the non-zero genes) for multiplicity adjust-
ment with Ifdr (in Additional file 2: Fig. S12 shows histograms of estimated lfdrs and
Table S2 shows results for the BH procedure). The adaptive filter with the highest
number of rejections is highlighted in bold. It can be seen that, in most cases, the
max-based filter leads to the largest number of rejections, however, with differing
proportions (between 4 and 80 for 1fdr adjustment and 2 and 70 for BH procedure).
In at least one example, the mean-based, zero-based and Jaccard filters also lead to
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the highest number of rejections. The ordering of the data pre-processing (Additional
file 2: Table S1) has quite a large impact on the number of rejections. Whether it is
better to filter at the very beginning or at the end depends on the data set and on the
filtering method.

Discussion

In this manuscript we investigate an adaptive filtering procedure where several filtering
methods are considered and the filter leading to the largest number of rejections is cho-
sen. The proposed strategy may mimic the actual practise. The more important it is to
investigate the impact of such a procedure on the Type I error rate and power, as it is not
self-evident that such a strategy is sound and does not lead to biased hypothesis tests.
For example, it has been shown that in multiple testing problems where the familywise
error rate is controlled, an adaptive approach without strict rules may generate a high
inflation of the error rate (e.g., [21, 22]). In this manuscript we thus give some justifica-
tion for the proposed strategy when a large number of hypotheses is tested controlling
the FDR and investigate by simulations under which conditions (e.g, with regard to the
number of hypotheses tested) FDR control holds.

It can be seen that the improvement in power for the adaptive filter is only moderate
compared to some of the individual filtering methods with a large number of rejections.
However, which filtering methods and thresholds lead to large power values is in prac-
tice unknown and compared to any particular filtering method the increase in power by
the adaptive filter can be very large. The adaptive filtering method selects the best filter-
ing method (in terms of rejections) without the need to pre-specify a single individual
filtering method and therefore avoids the choice of an inappropriate filter leading to a
large loss in power. We suggest to consider each filtering method with several thresholds
covering a broad range in the adaptive filter. For example, in the simulation study we
included the thresholds given in Table 2.

In this manuscript, we chose the maximum number of rejections R as the criterion for
the adaptive filter. This criterion may be replaced by, e.g., a post-hoc power estimator
[23]. Here, after data analysis for each filter the post-hoc power defined as the propor-
tion of truly rejected null hypotheses is estimated. The filtering method with the highest
post-hoc power is then chosen as the adaptive filter.

To adjust for multiple testing we consider two different approaches, the Ifdr and the
BH method. Our results reveal that for both methods the adaptive filtering strategy is
well applicable. The BH method might have the advantage of higher power values but
less robustness, e.g., when genes are correlated and the p-value distribution does not
follow a uniform distribution under the null hypothesis. Thus we do not recommend a
specific method for multiplicity control but a researcher has to decide individually based
on the experiment which method should be used. The BH and lfdr method are in fact
two different concepts to control for multiplicity when several simultaneous hypothesis
tests are performed. Control of the FDR at significance level « essentially means that
the expected value of the proportion of false rejections under all rejections is equal to
or smaller than «. Control of the FDR is an overall characteristic of the multiple testing
procedure, which does not distinguish between rejected hypotheses. In contrast, Ifdr is
computed for each hypothesis and can be interpreted as the posterior probability that
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the null hypothesis is true, conditional on the observed test statistic or p-value. It has
been shown (e.g., [14] or [24]), that these concepts are related, as the FDR essentially
corresponds to an average of the Ifdrs of rejected hypotheses. Therefore when control-
ling the Ifdr at level o, the FDR is controlled at a level smaller than «. See also the discus-
sions on the concepts and methods to control the lIfdr and FDR in, e.g., [25-27].

For the analysis of RNA-seq data, several approaches have been proposed [28], e.g,
based on the Poisson or the NB distribution, but no “optimal” method has been defined.
Popular methods include, e.g., limma/voom [29], EdgeR [4], Deseq2 [30], or the non-
parametric SAMseq method [31]. Adaptive filtering is equally applicable for all of these
methods. It has, however, been shown [18, 32], that scenarios exist, where some of
the proposed methods might not control the FDR. For our simulations we applied the
limma/voom method, as, e.g., suggested by [18]. The results in Additional file 2: Figs.
S§8-S11, S20, S21 show that in most scenarios the FDR of the adaptive filter is main-
tained at level « for / = 5 or even [ = 0. Still, there exist some scenarios where the FDR
is increased. However, this is not due to the adaptive filtering but due to fact that some
of the individual (non-adaptive) filters do not control the FDR. In these cases the limma/
voom procedure or the method for multiplicity adjustment (Ifdr or BH) might not be
appropriate. If the FDR is increased for one or several individual filters, it consequently
might be increased when many filters are considered for the adaptive filter.

The properties of the filtering methods depend on the distribution of the collected
data and thus on the applied technology. Here, we focus on RNA-seq data; however, the
proposed adaptive filter approach can also be applied for other types of high-dimen-
sional data, such as, e.g. for microarray data.

Conclusions

In RNA-seq studies, filtering is an important processing step; however, there is no con-
sensus on the choice of the filtering process or the threshold values. We investigated dif-
ferent simulation strategies and showed that it is not possible to identify a filter which is
optimal for all simulation scenarios. Depending on the distributional scenario, mean or
max-based filters with adequate thresholds, the Jaccard, or zero-based filters maximise
the number of rejections. In many scenarios, the basic filter alone may be a good choice.
This holds for many NB simulations with distributed parameters and is in line with
the findings of Rau et al. (2013) [2]. However, for simulations, where the dependence
structure between genes and distribution of dispersion and mean parameter is based on
real data, and the real data analyses, a distinct improvement in the number of rejected
hypotheses is observed if more advanced filtering methods are applied.

The proposed adaptive filtering procedure has practically no impact on the FDR in
many simulation scenarios, if the filter leading to the largest number of rejections is
selected and no additional adjustment for multiplicity for the number of considered
filters is performed. If, however, the proposed adaptive procedure rejects only a small
number of hypotheses, the researcher has to stick to a previously defined reference fil-
ter to avoid FDR inflation. For small number of hypotheses m we have no theoretical
proof that FDR control of the procedure can be guaranteed. We show by simulations,
that for finite /, FDR control can be achieved by choosing a larger threshold / if m is
small. Exceptions were observed for some scenarios of the SimSeq, PROPER and NB
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distributed simulations. However, for these, some of the (non-adaptive) filters do not
control the FDR, and thus also the adaptive filter inflates the level (as explained in the
Discussion). Note that choosing a larger threshold / comes at the cost that the procedure
becomes less adaptive, because only filters can be chosen, where more than / hypotheses
are rejected. While we cannot provide analytical formulas to guide the choice of /, we
show by simulations that, in the considered scenarios, for m > 1000 and / = 5, no infla-
tion of the FDR by the adaptive filter is observed, even under the global null hypothesis.
For [ = 3 FDR control is observed in these scenarios when m > 2500.

Methods

We consider an RNA-seq experiment comparing two groups of n independent sam-
ples with m null hypotheses Hy;, i = 1,. .., m. The two groups are of size n; and n3 with
n1 + np = n. The read count for gene i in samplej, j = 1,...,n,and group g, g € {1,2}, is
denoted by Cjjg. We focus on two-sided hypotheses Hy; : p1; = o; versus Hy; : ji1; 7 U2is
where 111; and po; denote the expected counts in groups 1 and 2 of the i-th gene. For all
simulated data sets, the trimmed mean of M-values normalisation method (TMM) was
applied where reads are scaled by weighted log-fold-change values of a reference sam-
ple [13]. For the data analysis, we transformed the count data via the voom function and
applied a linear model for each gene with the limma package in Bioconductor [29, 33].
The voom function converts the discrete read counts to continuous log2-counts per mil-
lion and the estimated variances are used as weights for weighted least square regres-
sion. To adjust for multiple testing, we show results for two different strategies: For one
part of the simulations, the Ifdr is estimated for each gene and all hypotheses with Ifdr
lower than the significance threshold o« = 0.05 are rejected. The Ifdr for hypothesis i is
defined as the posterior probability in a Bayesian mixture model that for hypothesis i the
null hypothesis holds (for detailed explanations, see [15, 34]). For the calculation of the
Ifdrs the R-package fdrtool [35] was applied to the vector of p-values with cutoff method
false non-discovery rate and using a modified Grenander approach for density estimation
[15]. Second, we performed simulations where the BH procedure was applied to adjust
for multiplicity and to control the FDR of the experiment at level &« = 0.05.

The order of data processing (filtering, normalisation and data analysis) is not definite.
Normalisation is performed before the data analysis, yet, there are different approaches
on when to apply the filtering step in the analysis pipeline [2, 28]. In the simulations and
real data applications, we apply the following analysis pipelines: (a) normalise the data,
perform the analysis and then perform the filtering step using the raw or the normalised
data to reduce the set of genes. The multiple testing procedure is performed with the
reduced set of genes after filtering; (b) first filter the raw data, then normalise them and
perform the analysis.

Adaptive filter
We propose a new filtering strategy which combines several filtering methods:

1 First, a set of F different filters, F > 0, is defined, where one of the filtering methods

is specified as reference filter. An integer filter parameter / is specified.
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2 For a given data set, the F filters are applied. Each filter generates a set of candidate
genes of different magnitude and for each set the data analysis is performed (or has
been performed before, if pre-processing order (a) has been chosen). Then, multiple
testing procedures are applied for each of the F sets of p-values and the resulting
numbers of rejected hypotheses Ry, ..., R are calculated. Ry, f =1,...,F, denotes
the number of rejected hypotheses for filtering method f.

3 To determine the definite final analysis, the filtering method k is chosen where the
largest number of hypotheses are rejected,

k = arg maxe_; FRy.

However, if R; < [, only the results of the reference filter may be applied.

The adaptive filter chooses the filtering strategy with the largest number of rejections;
however, the multiple testing procedure - in our case lfdr or BH procedure, adjusts only
for the number of genes but not for the number of filtering strategies. Thus, in principle,
the FDR may be increased when the filtering method leading to the largest number of
rejections is selected. However, we showed in the simulations, that the observed FDR
applying the adaptive filter is below « in many scenarios, as long as the FDR for each
filter individually is below «. Hereafter we give a heuristic, asymptotic argument based
on earlier work on sequential multiple tests controlling the FDR [36, 37], focusing on the
BH procedure (which is more liberal than the lfdr controlling procedure). We assume
that for each filtering method the FDR is controlled and consider two scenarios. First,
assume that for a positive fraction of hypotheses the alternative holds (7o < 1). Then,
if for each filter the selected test statistics are sufficiently independent and additional
technical conditions apply [36], the BH procedure asymptotically controls the false dis-
covery proportion (FDP), defined as the fraction of erroneously rejected hypotheses
among all rejected hypotheses, and not only the FDR, its expected value (see, e.g., [38]).
Thus, as the number of hypotheses increases, the FDPs for each filtering method are
bounded almost surely by «. Consequently, this also holds for the maximum FDP across
all considered filters. Therefore, the level of the multiple test using the adaptive filter
is asymptotically bounded by o (compare Theorem 1 in [36]). In the second scenario,
under the global null hypothesis (w9 = 1), the BH procedure does not control the FDP
(as it is either 0 or 1 in this case) and the above argument cannot be applied. However,
in this case asymptotic FDR control follows because the adaptive filter chooses the ref-
erence filter if none of the filters leads to more than / rejections: Choosing /,,, = gm, for
some g > 0 and assuming that the filtered p-values are independent, it follows, that the
probability that more than [, hypotheses are rejected by the BH procedure, converges to
0. In this case the adaptive filter selects almost surely the reference filter. As the multiple
test based on the reference filter controls the FDR, this follows also for the adaptive filter
(see Theorem 2 in [36]).

It has been shown [18] that for some analysis methods as, e.g., limma/voom, EdgeR, or
Deseq2, scenarios exist, where after adjustment for multiplicity the actual FDR level is
not maintained at the predefined level « for each filter individually. In this case, also the
adaptive filter might not control the FDR at level c.
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Abbreviations

BH Benjamini-Hocberg

CPM counts per million

DE differentially expressed

FDP False discovery proportion

FDR False discovery rate

Ifdr Local false discovery rate

NB Negative binomial

RNA-seq  RNA sequencing

TMM trimmed mean of M-values normalization
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