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Abstract 

Background:  Deep learning’s automatic feature extraction has proven to give 
superior performance in many sequence classification tasks. However, deep learn-
ing models generally require a massive amount of data to train, which in the case of 
Hemolytic Activity Prediction of Antimicrobial Peptides creates a challenge due to the 
small amount of available data.

Results:  Three different datasets for hemolysis activity prediction of therapeutic and 
antimicrobial peptides are gathered and the AMPDeep pipeline is implemented for 
each. The result demonstrate that AMPDeep outperforms the previous works on all 
three datasets, including works that use physicochemical features to represent the 
peptides or those who solely rely on the sequence and use deep learning to learn rep-
resentation for the peptides. Moreover, a combined dataset is introduced for hemolytic 
activity prediction to address the problem of sequence similarity in this domain. AMP-
Deep fine-tunes a large transformer based model on a small amount of peptides and 
successfully leverages the patterns learned from other protein and peptide databases 
to assist hemolysis activity prediction modeling.

Conclusions:  In this work transfer learning is leveraged to overcome the challenge 
of small data and a deep learning based model is successfully adopted for hemolysis 
activity classification of antimicrobial peptides. This model is first initialized as a protein 
language model which is pre-trained on masked amino acid prediction on many 
unlabeled protein sequences in a self-supervised manner. Having done so, the model 
is fine-tuned on an aggregated dataset of labeled peptides in a supervised manner 
to predict secretion. Through transfer learning, hyper-parameter optimization and 
selective fine-tuning, AMPDeep is able to achieve state-of-the-art performance on 
three hemolysis datasets using only the sequence of the peptides. This work assists 
the adoption of large sequence-based models for peptide classification and modeling 
tasks in a practical manner.

Keywords:  Antimicrobial peptide, Deep learning, Drug discovery, Hemolysis, 
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Background
Historically, natural products have been of the most important candidate drug 
sources in the pharmaceutical industry. Due to millions of years of evolution and 
constant updates, they have been optimized in defending the host microorganism 
against pathogens. One source of natural products is the innate immune system of 
animals, plants, and fungi [1], where peptides have been discovered to have antimi-
crobial and antibacterial properties. These natural products have inspired the discov-
ery and design of Antimicrobial peptides (AMPs), a group of short peptides known 
for their potency against viruses, bacteria, fungi, and transformed cancer cells. High 
specificity and selectivity, low toxicity, and high diversity are their privileges over 
other classes of drugs in spite of their short lifetime and low bio-availability [2, 3]. 
These peptides largely work as immunomodulators, apoptosis stimulators, and pro-
liferation inhibitors [1]. Disrupting the structure of cells or mitochondria membrane 
and inhibiting DNA or Protein synthesis and their interactions are mechanisms that 
have been observed for the effectiveness of AMPs [2, 3]. There are several examples 
of these peptides including Magainin, Pleurocidin, Buforins as membrane disturbers 
and BR2, NGR, Tat-KLA, K6L9, and HNP as intracellular effectors [2, 3]. One advan-
tage of AMPs is their potency among different types of cancers based on their mem-
brane features [3].

However, one main challenge that hinders the adoption of AMPs as therapeutics is 
that AMPs are prone to be hemolytic. Hemolysis happens when the peptide ruptures 
red blood cells, ending the life-time of these cells prematurely. This is an unintended 
side-effect and due to its severity, a hemolytic peptide cannot be an applicable drug 
candidate. As an estimate, it is predicted that 70% of all known AMPs have a high or 
moderate hemolytic activity [4]. Therefore, investigation of hemolysis and prediction of 
hemolytic activity in therapeutic peptides is necessary for the development of AMPs as 
hit candidates.

Fortunately in recent years, multiple efforts have been made to collect databases of 
AMPs, as well as to classify their hemolytic activity through computational methods. 
The dominant approach for classification of AMPs includes extracting physicochemical 
features from the peptide, effectively turning peptides into a feature vector, and classify-
ing them with a machine learning model [5]. The features used and discovered in these 
classification systems include composition, physicochemical properties and structural 
characteristics of amino acids, length of the peptide, net charge, hydrophobic percent-
age, tertiary structure, atom composition, diatom composition, chemical descriptors, 
fingerprints, and binary profiles [4–8]. The methodology of extracting features from the 
input and then classifying the feature vectors is akin to the traditional Machine Learn-
ing approach in many domains such as Electrocardiogram arrhythmia detection [9], 
image classification [10], and even antimicrobial peptide identification [11]. In all of 
these domains, deep learning has shown supremacy in its modeling power via learning 
features during training from the raw data. This combination of feature extraction and 
modeling is enabled via deep learning’s automatic feature extraction capability, where 
useful features are learned for the current training dataset. Deep Learning modeling can 
identify unknown features in data and discover abstract and hidden patterns within the 
input data that are important for the classification task at hand.
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To this end, there are two works in the literature which aim to tackle the problem 
of hemolysis activity prediction using deep learning-based models, both of which fail 
to outperform their feature-based counterparts. First a Recurrent Neural Network 
(RNN) model has been used to learn from raw peptide sequences alone [12] as part 
of a peptide generation pipeline, and then tasked to filter the generated peptides that 
are predicted to be hemolytic. Moreover, ELMO [13], which is a deep learning-based 
bidirectional language model, has been used in another related work [14] to predict 
cytotoxicity and hemolysis activity of peptides given a sequence. However, both of 
these sequence-based and deep learning-based methods were not able to outperform 
the traditional feature-based approaches in certain benchmarks [12, 14]. The main 
reason contributing to this shortcoming in performance is the small amount of avail-
able training data [14], which is intuitive due to the data-hungry nature of the deep 
learning-based models and the high cost of automatic feature extraction.

Given the main challenge of small data, in this work we propose the use of transfer 
learning to alleviate this problem. Transfer learning allows the model to be trained 
at a source task, then transferred to a target task in the form of initialization which 
holds the patterns learned from the source task. With this technique, the cost of auto-
matic feature extraction is partially paid in the source domains and the challenge 
of low data within the target domain is reduced. To this end, AMPDeep thoroughly 
investigates the effects of initializing a transformer-based model from a pre-trained 
protein language model, i.e. Prot-BERT-BFD [15], which has been trained on masked 
amino acid prediction in a self-supervised manner. Having done so, AMPDeep also 
studies “secretion” as another source for transferring knowledge from, since secretion 
is a common and biologically important feature of antimicrobial peptides and hemo-
lytic peptides, and a large number of secretory peptides are available as training data. 
Therefore, transfer learning is leveraged to fine-tune the model on secretory peptide 
classification, to make the training of the model on the hemolytic prediction tasks 
more stable. The training pipeline is tested using three different datasets taken as is 
from external works, as well as a combined datasets compiled from combining the 
three datasets and cleaning redundant sequences. Due to the large size of the model, 
selective fine-tuning is introduced, which lowers the number of parameters available 
for training. The main contributions of this work are as follows:

 Use of a large transformer-based model to learn from peptides in a sequence-wise 
manner.

•	 Use of a pre-trained language model trained on 2 billion protein fragments as ini-
tialization.

•	 Use of transfer learning to transfer learned knowledge from secretion classifica-
tion task to hemolytic activity classification.

•	 Introduction of a novel algorithm, i.e. selective fine-tuning, where in 8 scenarios 
certain parameters of the model are kept frozen during fine-tuning, to facilitate 
training of a large model on a small amount of data.

•	 Addressing the problem of redundant sequences in related works via compiling a 
new hemolytic activity-based dataset.
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•	 Outperforming the state-of-the-art deep learning and feature-based models in 
hemolytic activity classification

Results
AMPDeep pipeline overview

AMPDeep offers a practical pipeline for hemolytic activity classification of AMPs 
through transfer learning. To do so, the data is first gathered and cleaned for hemo-
lytic activity classification as well as secretory peptide classification. Next, a massive 
pre-trained model (Prot-BERT-BFD) [15] is used as initialization for the training. Hav-
ing done so, hyper-parameter optimization and freezing is performed, which makes the 
model ready for classification stages. During classification, first, the model is trained on 
predicting whether a peptide is secretory or not. Then this fine-tuned model is trans-
ferred and used as initialization for training whether a given peptide is hemolytic or not. 
After the model is trained, three external datasets are used to evaluate the performance 
of the model and enable comparison to related works. This training process is imple-
mented for three hemolysis datasets and a combined dataset. The overview of this work 
is shown in Fig. 1.

Data summary

The five datasets used in this work are shown in Table  1. The first three datasets are 
datasets taken as is from related works focusing on hemolysis activity prediction with a 
wide range of modeling approaches applied to them, from feature-based approaches to 
deep learning-based approaches. This selection of diverse datasets allows AMPDeep’s 
performance to be compared to both the traditional methods of classification as well as 
the new sequence-based methods. This work also compiles a dataset from combining 
all three external datasets and properly splitting the train and test splits, to address the 
problem of similar sequences and bias in these datasets. The last dataset was gathered 
in this work using SwissProt [16], from peptides that have secretory keyword, as well as 
those within the cytoplasm that do not have this keyword for non-secretory peptides.

Fig. 1  Overview of AMPDeep’s Classification System. Data is gathered for two tasks, i.e. hemolysis and 
secretion. A pre-trained protein language model is first fine-tuned on secretion detection, then fine-tuned to 
predict hemolysis activity of a given peptide. The model is evaluated on independent test sets
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The amount of available training data for hemolytic activity prediction ranges from 
800 data points to 2000 data points. While the amount of available training data for 
secretion prediction is nearly 30,000 data points. The relatively large amount of data that 
is available for secretory peptides is one of the reasons secretion prediction is chosen as 
the task to transfer from during transfer learning.

Keyword analysis results

Analyzing the keywords acquired from UniProt’s reviewed peptides allows us to view 
the most prevalent properties of antimicrobial peptides as well as hemolytic peptides. To 
do so, all peptides within the SwissProt database that have are antimicrobial or hemo-
lytic are acquired, creating two smaller datasets of antimicrobial peptides and hemo-
lytic peptides respectively. The keywords associated with the peptides for each dataset 
are then counted, to find the most prevalent properties of these peptides. The code for 
extracting the keywords as well as analyzing them are included in the “keyword_analy-
sis” script within the GitHub repository. The results are shown in Fig. 2. Further infor-
mation regarding keywords of interest can be found in Additional File 1.

As it can be seen from Fig. 2, the most prevalent keyword associated with AMPs is 
“Secreted”. This co-occurrence also happens for hemolytic peptides, where a majority 
of the peptides are also secretory. This closeness in relationship was the main motiva-
tion for choosing secretory classification as a source task for transfer learning, justifying 
training on secretion detection data and then transferring the learned knowledge to the 
hemolysis activity prediction task.

Table 1  Summary of all datasets used for training AMPDeep

Dataset Origin Train positive Train negative Test positive Test negative

HLPpred-Fuse Taken as is from [5] 433 423 663 1999

XGBC-Hem Taken as is from [4] 442 442 110 110

RNN-Hem Taken as is from [12] 1030 908 329 290

Combined Compiled from [4, 5, 12] 901 901 50 50

Secretion Aggregated from [16] 13950 14038 186 183

Fig. 2  Top 10 keywords associated with: antimicrobial peptides (a), and hemolytic peptides (b) within the 
SwissProt Database
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The problem of sequence similarity

Analyzing the three acquired external datasets from [4, 5, 12] reveals that many similar 
sequences exist between their respective training sets and independent test sets. Exist-
ence of similar sequences in both train and test splits results in overestimating the per-
formance of the model and creating impractical benchmarks. If a protein sequence has 
40% or more similarity with another protein sequence with known function, then there 
is a high probability, that both proteins perform the same function [17]. The main source 
of this problem is the random splitting performed in these datasets to allocate sequences 
for the training and test splits. The degree of this redundancy in each dataset is shown in 
Fig. 3 calculated via CD-HIT.

As it can be seen from Fig.  3, all three external datasets suffer from a high degree 
of redundancy, which in turn with random splitting results in biased benchmarks for 
hemolytic activity prediction. To address this problem, this works compiles a dataset 
from combining all datasets, then using CD-HIT to remove the redundant sequences 
and removing any similar sequences that overlap between the test and train splits.

Secretion prediction results

To start the training pipeline, transfer learning from a source model is needed. In this 
work, secretion detection is used as the source model. The model is first initialized on 
Prot-BERT-BFD [15], a protein language model trained on nearly 2 billion protein frag-
ments, tasked with predicting amino acids that have been masked within the protein 
sequences. This model is then fine-tuned on secretory data using selective fine-tuning. 
As part of the hyper-parameter optimization, the pooling layer of the model is changed 
from the default BERT pooling to simple “Mean” pooling or “First Token” pooling. The 
results for these models are shown in Table 2.

Fig. 3  The composition of each dataset regarding representative and redundant sequences as calculated via 
CD-HIT with a threshold of 0.4

Table 2  Results of training on the secretory dataset using different pooling mechanisms, validated 
on the secretory test set

Pooler Hidden layer size Accuracy Recall Precision ROC-AUC​ MCC

BERT Pooler None 0.9431 0.9624 0.9275 0.9795 0.8868

Mean Pooling 32 0.9458 0.9731 0.9235 0.9827 0.8929

First Token Pooling 128 0.9566 0.957 0.957 0.9779 0.9133
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As it can be seen from Table 2, the secretion prediction model is robust in regard to 
different hyper-parameters, with all pooling mechanisms resulting in similar perfor-
mance. Having trained different secretory models, multiple transfer models are now 
available to be used as initializations for the next task of hemolytic activity prediction.

Hemolysis prediction and transfer learning results

Different secretory models and architectures are used as initialization for training hemol-
ysis prediction models using selective fine-tuning. Three datasets have been chosen to 
enable comparison of the results to previous works. For each dataset, the model is initial-
ized on the secretion prediction model, then trained on 90% of the training dataset. Early 
stopping with patience of 10 is performed where the Mathews Correlation Coefficient 
(MCC) of the model on the remaining 10% of the training set is monitored, and the epoch 
with the highest MCC on this validation set is chosen as the best training epoch. The 
results are shown in Table 3 for XGBC-Hem dataset, in Table 4 for HLPpred-Fuse data-
set, and in Table 5 for RNN-Hem dataset. All external results (non AMPDeep) in these 
comparisons are taken as reported in their respective works [4, 5, 12, 18, 19]. Following 
related works MCC is used as the main metric of evaluation.

Table 3  Hemolytic activity classification results for the model trained on XGBC-Hem [4] dataset’s 
train set and validated on its test set

Bold values are for the best performing model

First three rows are reported as it was published in [4]

Model Accuracy Recall Precision ROC-AUC​ MCC

GBC [4] 0.904 – 0.865 0.905 0.809

LDA [4] 0.905 – 0.871 0.905 0.809

XGBC + Feature Selec-
tion [4]

0.923 – 0.885 0.923 0.846

AMPDeep 0.9863 0.9727 1 0.9995 0.9731

Table 4  Hemolytic activity classification results for the model trained on HLPpred-Fuse [5] dataset’s 
train set and validated on its test set. First three rows are reported as it was published in [5]

Bold values are for the best performing model

Model Accuracy Recall Precision ROC-AUC​ MCC

HLPpred-Fuse [5] – 0.845 – 0.967 0.823

HemoPI [5, 19] – 0.804 – 0.952 0.754

HemoPred [5, 18] – 0.652 – – 0.34

AMPDeep 0.9369 0.8824 0.8667 0.9716 0.8324

Table 5  Hemolytic activity classification results for the model trained on RNN-Hem [12] dataset’s 
train set and validated on its test set

Bold values are for the best performing model

First three rows are reported as it was published in [12]

Model Accuracy Recall Precision ROC-AUC​ MCC

SVM-Hem [12] 0.73 0.58 0.72 0.69 0.44

RF-Hem [12] 0.77 0.6 0.81 0.8 0.53

RNN-Hem [12] 0.76 0.76 0.7 0.87 0.52

AMPDeep 0.7997 0.8328 0.7988 0.8723 0.5972
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As can be seen from Tables 3 and 4, using a large pre-trained transformer and training 
it on secretory and hemolytic sequences is superior to the state-of-the-art [4, 5], which 
extract physicochemical features from the input and classify it using traditional machine 
learning models. Table 5 further shows that AMPDeep can outperform a deep learning 
and sequence-based model, demonstrating the capabilities of this pipeline in learning 
from raw sequences. The hyper-parameters for all final models can be found in Addi-
tional File 1.

Table 6 also report the performance of the model on the combined dataset. Unfortu-
nately, this performance cannot be compared to related works, since this dataset was 
created from the combination of the external datasets and the test sequences overlap 
with external training sequences. However, the results on this dataset are reported, since 
to the best of authors’ knowledge this is the only hemolytic activity dataset where similar 
sequences between the train and test splits are removed.

Selective fine‑tuning results

Due to the small size of the training datasets (3K data points) compared to the large size 
of the model (400M parameters), restricting the number of parameters that are trainable 
can be beneficial to increase the stability of the training. To this end, this work intro-
duces selective fine-tuning, where 8 different scenarios for freezing different parts of the 
model are considered for each experiment. The scenarios are shown in Table 7.

Each of the scenarios defined in Table 7 was implemented for each of the four hemo-
lytic datasets with hyper-parameter search for each model. The results for each dataset 
as well as an average of all results are demonstrated in Fig. 4.

As it can be seen from 4, scenario 8 is the highest performing scenario on average. 
Therefore, the selective fine-tuning process determined that the best set of param-
eters to leave as unfrozen are the positional embedding parameters, the layer norm 

Table 6  Hemolytic activity classification results for the model trained on the combined dataset and 
validated on its independent test set

Bold values are for the best performing model

Model Accuracy Recall Precision ROC-AUC​ MCC

AMPDeep 0.86 0.8 0.9091 0.8964 0.7252

Table 7  Eight scenarios for selective fine-tuning

Scenario Description

1 Full fine-tuning

2 Feature extraction

3 Pooler fine-tuning

4 Pooler replacement

5 Input embedding fine-tuning

6 Positional embedding fine-tuning

7 Input embedding + layer norm fine-tuning

8 Positional embedding + layer norm fine-tuning
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parameters, the pooler, and the classifier, while freezing the rest of the parameters 
i.e. the self-attention and the feed forward layers within the attention heads, and the 
non-positional embedding. These results are in line with findings from [20], where 
layer norm are left unfrozen during fine-tuning for natural language processing tasks. 
However, we found that freezing the non-positional embedding and swapping the 
pooling layer with mean pooling helps the final performance of the model. An over-
view of the frozen parameters are shown in Fig. 5.

Ablation study–effect of transfer learning and selective fine‑tuning

AMPDeep consists of multiple steps that assist in fine-tuning a large pre-trained 
model on a small number of peptide sequences. These steps include initialization 
on a pre-trained protein language model, modifying the pooling layer, selective fine-
tuning, and transfer learning from secretion prediction. To assess the impact of each 
step on the final performance of the model, an ablation study is performed. During 
this study, the model initialization is compared between BERT [21] (a smaller trans-
former-based model pre-trained for masked token prediction on English text) and 
Prot-BERT-BFD [15]. Moreover, the pooling layer is compared between mean pool-
ing and the default non-linear pooling that BERT offers. Furthermore, the fine-tuning 
procedure is compared between traditional fine-tuning and selective fine-tuning as 

Fig. 4  Model performance on 4 hemolytic datasets for 8 different scenarios of selective fine-tuning, and 
average performance on all 4. Scenario 8 has the highest performance on average for selective fine-tuning

Fig. 5  Overview of frozen (red and striped) and unfrozen (green and solid) parameters from selective 
fine-tuning for the final models
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proposed in this work. Finally, the effect of transfer learning from secretion predic-
tion is studied. All models are trained on the XGBC-Hem benchmark with no hidden 
layer added before the classification layer. The results are shown in Table 8.

As seen in Table  8 changing the pooling layer to be a simple mean pooling greatly 
increases the performance of the model. Moreover, changing the initialization to be 
from a pre-trained protein language model results in a performance similar to the base-
line and adding selective fine-tuning, results in a large boost in this performance. Lastly, 
transfer learning from secretion prediction results in another large jump in MCC and 
the model achieving its final performance.

Discussion
The main findings of AMPDeep are three-fold. Firstly, the techniques offered by AMP-
Deep for fine-tuning a protein language model on a small number of peptides are practi-
cal and result in superior empirical performance. These techniques include initialization 
from masked amino acid prediction, mean pooling, and selective-fine tuning. Secondly, 
bias was detected in three of the main datasets for hemolytic activity prediction and to 
that end, a new dataset was generated with proper data splitting regarding sequence 
similarity. Lastly, AMPDeep finds that transfer learning from secretion prediction of 
peptides is helpful to the task of hemolysis prediction. The similarities between the two 
data distributions of secretory peptides and hemolytic antimicrobial peptides, as seen 
in the keyword analysis section, might be one of the main reasons that transfer learn-
ing is effective. Overall, AMPDeep allows the knowledge learned from 2 billion protein 
fragments from Prot-BERT-BFD and learned from 30 thousand secretory peptides to 
be included in the training on hemolytic peptides. This knowledge is transferred in the 
form of initializations and arguably the patterns learned from masked amino acid pre-
diction or secretory peptide prediction, are useful during training on hemolytic peptides 
and increase the stability of training, resulting in better performance. In the context of 
existing research, AMPDeep is the first deep learning-based model to out-perform the 
previous feature-based methods and this performance is owed mostly to the techniques 
applied during training and the transfer of pre-trained knowledge.

One of the possible limitations of this work is the use of keywords to find a second-
ary distribution to fine-tune the model on, i.e. secretory peptides. While this is intui-
tive, intuition does not necessitate positive transfer learning and the problem of negative 
transfer learning may occur if this method is applied to another task, e.g. peptide func-
tion prediction. This problem is still an active area of research and improvements can be 

Table 8  Ablation results for different steps of the AMPDeep pipeline on the XGBC-Hem dataset

Approach MCC

Baseline 0.846

BERT Init. (Natural Language) + Classification Layer Fine-Tuning 0.6639

BERT Init. (Natural Language) + Mean Pooling + Classification Layer Fine-Tuning 0.8091

Prot-BERT Init. + Mean Pooling + Classification Layer Fine-Tuning 0.8472

Prot-BERT Init. + Mean Pooling + Selective Fine-Tuning 0.9367

Prot-BERT + Mean Pool. + Secretion Transfer Learning + Selective Fine-Tun. (AMPDeep) 0.9731
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done to move away from intuition and use empirical approaches to select initialization 
for transfer learning [22]. The second possible limitation of this study is its plethora of 
steps in order to fine-tune a large model. The number of sequential steps taken in AMP-
Deep to fine-tune the Prot-BERT-BFD model may be discouraging to others who wish 
to follow this work. We have included the scripts that were used for training within the 
Github repository and added simple control panels for them to facilitate the adoption of 
AMPDeep.

Conclusions
In this work a hemolytic activity classification pipeline was implemented which lever-
ages transfer learning from protein language modeling as well as secretory peptide pre-
diction. Due to the prevalent secretory properties of AMPs, the model was first trained 
on secretory peptides then fine-tuned to predict hemolysis activity. The results show 
improved performance compared to the state-of-the-art on three different datasets rang-
ing from feature-based models to deep learning-based models. Moreover, it is shown 
that unsupervised language modeling coupled with transfer learning and selective fine-
tuning enable a large transformer model to be trained on a small amount of data and 
improve the performance on hemolysis prediction. Therefore, AMPDeep enables the 
adoption of large pre-trained protein language models for peptide classification, specifi-
cally hemolysis activity prediction, unlocking the use of many unlabeled data for super-
vised classification of a small number of peptide sequences. The methodology delineated 
in this work can enable fine-tuning large transformer models on small amount of amino 
acid-based sequence, which can impact other proteomic domains and facilitate adoption 
of large protein language models for these domains.

Methods
Data aggregation

In this work, three external hemolysis datasets are taken as is from the related litera-
ture to enable hemolysis prediction as well as comparison to the related works. These 
datasets are chosen from a variety of literature that include therapeutic peptides and 
antimicrobial peptides, and literature that use feature-based and deep learning-based 
methods for classification of hemolytic activity. This diversity in selection of datasets 
has been enforced to generate a fair comparison of AMPDeep’s performance to all types 
of existing approaches. Aside from the hemolysis data, one dataset is gathered for pep-
tide secretion classification. This relatively larger dataset is used for training a source 
model for transfer learning. Overall, the categories of the datasets used in this work are 
as follows:

•	 XGBC-Hem dataset from [4], which in this work is referred to as XGBC-Hem, uses 
hemolysis prediction as part of a peptide generation pipeline. This work uses phys-
icochemical properties to extract features from the data. Moreover, XGBC-Hem per-
forms feature selection to improve the performance of the model. This dataset uses 
HemoPI-1 [19] which is created from experimentally validated peptides taken from 
the Hemolytik database [23], Swiss Prot (non-hemolytic peptides) [16], and Database 
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of Antimicrobial Activity and Structure peptides (DBAASP v.2)[24]. The dataset was 
randomly divided into 80 and 20 percent for training and validation splits respec-
tively.

•	 HLPpred-Fuse HLPpred-Fuse [5] is the current state-of-the-art model in hemolytic 
activity prediction and extracts biological features from the sequence and uses tra-
ditional machine learning models to classify the feature vectors. Similar to XGBC-
Hem, this dataset uses HemoPI-1 as the training dataset. However, for evaluating 
the algorithm HLPpred-Fuse uses independent positive samples collected from 
the Hemolytik database and independent negative samples collected from PEPred-
SUITE (randomly generated sequences) [25].

•	 RNN-Hem the dataset from [12], referred to in this work as RNN-Hem, is selected 
as the third dataset, since this work uses a sequence-based deep learning model to 
predict the hemolytic activity of peptides. This dataset uses the DBAASP database 
for annotations in regard to the activity of the peptide and their hemolytic proper-
ties. The data was further augmented with negative sequences collected from Swiss 
Prot, randomly generated sequences, and sequences created via shuffling the order 
of amino acids in positive sequences. For evaluation, RNN-Hem randomly splits the 
data into 75 and 25 percent splits for training and validation respectively.

•	 Combined the three datasets gathered for hemolytic activity prediction are combined 
to create a diverse dataset as well as to control the degree of sequence similarity 
between the training split and the test split, alleviating the problem of bias that exists 
in the external datasets.

•	 Secretory data the secretory peptides were gathered from UniProt’s reviewed pro-
teins [16] with lengths of 200 and shorter, using the “Secreted” keyword. To acquire 
non-secretory peptides, the reviewed peptides were first narrowed based on their 
location to be in Cytoplasm, then secretory peptides were removed. The remaining 
peptides were randomly sampled to be nearly as many as secretory peptides. This 
data is split into 80%, 10%, and 10% splits for training, validation, and test sets. The 
test set is further refined using CD-HIT to remove all similar sequences to the train-
ing set and to create a fair test set for the secretory task. This problem of similarity is 
further studied in the following subsection.

Data preprocessing and sequence similarity detection

After each peptide sequence is acquired, the duplicate sequences are removed. Moreo-
ver, all of the peptides sequences that exist in both the hemolysis datasets and the secre-
tory dataset, are removed from the secretory dataset to avoid leakage of hemolysis task 
into the transfer task. The peptide sequences are then edited to have one space between 
each amino acid, since this is the input scheme required by the model in later stages. The 
pre-processing used for all hemolytic benchmarks and the secretory data are included in 
the “preprocessing_hemolysis” and “preprocessing_secretion” scripts within the GitHub 
repository, respectively.

A high degree of similarity exists between the sequences in the training set and the 
test set of the hemolytic datasets. To assess this redundancy, first CD-HIT is used to find 
the representative sequences of each dataset and the redundant sequences. To alleviate 
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this problem, in this work a combined dataset is compiled which does not share similar 
sequences between the train and the test splits. First, all hemolytic datasets are com-
bined, and CD-HIT is used to remove all redundant sequences. Afterwards, from the 
remaining non-redundant sequences a test set is formed via taking 50 positive samples 
and 50 negative samples ( 10% of the data). The training set is then constructed from all 
sequences that are now similar to the sequences in the test set. The training set is then 
balanced via randomly removing negative data points. The process of removing similar 
data points is performed on the test set of the secretory data as well. Throughout this 
work CD-HIT was used with a threshold of 0.4 and number of words of 2.

Model initialization

Language modeling and pre‑training

The Prot-BERT-BFD [15] model is a transformer-based model with more than 400 mil-
lion parameters, trained on 2 billion protein fragments. This model is inspired by BERT’s 
architecture [21], a popular transformer-based model in the natural language process-
ing domain which uses the attention mechanism to create inner representations from 
an input sequence. BERT works through masked language modeling, which involves 
masking the a percentage of words in each sequence and predicting what the masked 
words should be. This pre-training strategy only requires sequences and does not require 
labels, and hence is self-supervised. Prot-BERT-BFD follows the same training strategy 
as BERT, however it does so on 2 Billion protein sequences and predicts masked amino 
acids. This unsupervised pre-training gives the model useful knowledge regarding pro-
tein sequences, which can in turn be useful for peptide classification. In this work, this 
large model with knowledge gained through pre-training on many protein sequences is 
adopted as initialization for the later stages. Prot-BERT-BFD was chosen as the initiali-
zation for two main reasons, firstly the size of the pre-training data, which is the largest 
available for all public models of such nature. Secondly, this model is easily available in 
the HuggingFace [26] repository and can be fine-tuned with ease. Aside from Hugging-
Face, the training scripts in this work utilize Python, Scikit-Learn, and PyTorch.

Prot-BERT-BFD is pre-trained as a language model, therefore masked language mod-
eling heads are located at the last layer of the model. These heads are not suitable for 
outputting binary classification labels that are needed for hemolysis activity prediction, 
therefore the last layer of this model is removed and replaced with a fully connected 
neural network to act as the classifier.

Transfer learning from secretion prediction

Transfer learning has become a staple technique in deep learning model development, 
where one model is trained on a source dataset, then transferred to the target domain 
and fine-tuned on the target dataset. The source dataset is often larger than the target 
dataset, allowing the model to learn feature extraction before the transfer, then fine-tun-
ing the learned feature space at the target domain after the transfer. Therefore, transfer 
learning can be viewed as an approach to pay the high data cost of deep learning’s auto-
matic feature extraction at the source domain and stabilizing the training at the target 
domain.
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In this work, transfer learning is applied from a model trained on peptide secretion 
prediction to a model prediction peptide hemolysis. The hope is that due to the similar-
ity between secretory peptides distribution and hemolytic peptide distribution, transfer 
learning would transfer useful patterns learned from secretory peptides to the hemolysis 
classification model. Aside from the data distribution similarity which we study in the 
form of keyword analysis, the data size for the available secretory peptides are much 
larger than hemolytic peptides, making secretory peptide prediction a suitable source 
domain for transfer learning.

Model training

Hyper‑parameter optimization

To optimize the performance of the model and try different architectures, two layers are 
modified within the model. Firstly, the pooling layer is toggled between default BERT-
based pooling layer, mean-pooling layer, and first token pooling layer. Secondly, the fully 
connected network at the end of the model tasked with classification is assessed in term 
of the size of the hidden layer and its number of neurons. To do so, after the model is 
chosen and initialized, a fully connected layer is attached to the last layer of the model to 
prepare it for sequence classification. The size of the fully connected layer, the type of the 
pooling layer, as well as the learning rate for training are determined using a grid search 
hyper-parameter optimization. This optimization can be performed through the control 
panel provided in the script “training” in the GitHub repository. The model architecture 
and the possible variations of it are shown in Fig. 6.

To determine the optimum length of training, early-stopping with patience of 10 
epochs is used. To create a fair monitoring metric, 10% of the training set for each 
benchmark is isolated as the validation set. The model is first trained on the secretory 
task, with early stopping monitoring the secretory validation set’s MCC. After the model 
is trained, the weights are transferred to a new model for training on hemolysis classifi-
cation task. As the weights are transferred, the model is trained similar to last stage, with 
early stopping monitoring the validation set performance. The range of hyper-param-
eters explored during hyper-parameter optimization can be found in Additional File 1.

Selective fine‑tuning and parameter freezing

Since Prot-BERT-BFD is a rather large model with more than 400 million parameters, 
fine-tuning it with datasets as small as 800 data points proved to be challenging. As 
seen in previous related deep learning-based works [12, 14], when a small number of 
hemolytic peptides are used for training a large deep learning-based model, the auto-
matic feature extraction may fail to fully learn useful representation that can outperform 

Fig. 6  Overview of model architecture and its variations. The pooling layer can be swapped between three 
possible pooling mechanism. The classification layer can also be modified to insert a hidden layer
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biological or physicochemical features. In this work, to alleviate this problem two 
techniques are implemented; transferring learned features, and making the effective 
number of parameters in the model smaller. Firstly transfer learning is used to initial-
ize the model with favorable weights and features. Secondly, a novel approach for fine-
tuning the model is introduced, called selective fine-tuning, where many parameters 
of the model are frozen during training and are not changed via the stochastic gradi-
ent descent. Through freezing the parameters, the number of trainable parameters fall, 
resulting in less number of data points needed during training.

AMPDeep first sections the parameters of the model into the following categories: 
positional embedding, non-positional embedding, attention heads, layer norms, pooler, 
and classifier parameters. Each category of the model can either be frozen during train-
ing, or left unfrozen to be changed. This decision (to freeze or not) is treated as a hyper-
parameter and is toggled for each category of parameters during hyper-parameter 
optimization, allowing “selective fine-tuning” to take place. To this end, 8 scenarios are 
defined and investigated as selective fine-tuning:

•	 Scenario 1 Full fine-tuning: the standard method of fine-tuning where all parameters 
of the model are unfrozen and trainable.

•	 Scenario 2 Feature extraction: the typical method of fine-tuning when small amount 
of data is available, where only the classification layers are trainable.

•	 Scenario 3  Pooler fine-tuning: Pooler plays an important role passing on the 
extracted features to the classifier layer. In this scenario pooler is also fine-tuned.

•	 Scenario 4 Pooler replacement: In our experiments through trial and error the pool-
ing layer was found to be highly impactful on the performance of the model. There-
fore, in this work the effect of pooling layer is investigated via swapping the layer 
with simple mean or first token pooling mechanisms. From this scenario onward, 
pooler is always replaced with either mean or first token pooling.

•	 Scenario 5  Input embedding fine-tuning: The input embedding is how the sequence 
is embedded in terms of its context and its order to be passed on to the model. In this 
scenario, all of the embedding vectors are unfrozen and can be fine-tune, allowing 
the model to adapt to the different inputs domain of the data. Mean pooler is used 
and classification layer is also unfrozen.

•	 Scenario 6 Positional embedding fine-tuning: This embedding is in charge of repre-
senting the order of the sequence. In this scenario it is left unfrozen. Mean pooler is 
used and classification layer is also unfrozen.

•	 Scenario 7 Input embedding + layer norm fine-tuning: In this scenario all of the 
embedding vectors as well as the layer norms are fine-tuned. Mean pooler is used 
and classification layer is also unfrozen.

•	 Scenario 8 Positional embedding + layer norm fine-tuning: In this scenario the posi-
tional embedding vector as well as the layer norms are fine-tuned. Mean pooler is 
used and classification layer is also unfrozen.

This type of fine-tuning enables a greater control over the parameters of the model when 
compared to traditional fine-tuning. This process is inspired by the fine-tuning process 
described in [20], where positional embedding layer and the layer norms are unfrozen, 
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while the rest of the parameters are frozen. We further add to this strategy via explor-
ing more freezing scenarios and adding more control over the type of the pooler. The 
different scenarios and their parameters are available on GitHub through the script 
“plot_results”.

Evaluation metric

Following the related works, in this work the Mathews Correlation Coefficient is used 
for evaluating the performance of the models. This metric is a used to measure the 
association between the binary vector of labels and the binary vector of predictions 
and is defined as shown in Eq. (1) where TP, TN, FP, and FN denote True Positive, 
True Negative, False Positive, and False Negative respectively. Higher MCC demon-
strates higher degree of agreement between the ground truth and the predicted labels, 
therefore, the model with highest MCC on the validation set is chosen for inference 
on the test set and final evaluation.
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