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Introduction
Recent research has found circular RNAs (circRNAs) to be broadly expressed in eukary-
otes in tissue- and species-specific manner [1]. Some circRNAs have already been shown 
to regulate gene expression and potentially relate to diseases [2–4]. Due to their stability, 
circRNAs can also be used as biomarkers for diagnosis [2, 5, 6]. However, the function of 
most circRNAs remains unknown.

Functional annotation aims to attach biological information to genomic elements. 
The traditional functional annotation stems from sequential similarity with anno-
tated sequences. Statistically significant similarity often reflects common ancestry and 
then also a common function [7]. This reasoning applies mostly to genes and proteins. 
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CircRNAs are known to regulate gene expression by influencing the transcription, the 
mRNA turnover, and translation by sponging RNA-binding proteins and microRNAs 
[8]. Their annotation databases often include basic information on their tissue-specific-
ity, disease associations, and miRNA interactions [9]. Furthermore, advanced circRNA 
annotations could be obtained from the knowledge of their interaction with miRNAs 
and all other interactions of these miRNAs [10]. At the same time, the circRNA annota-
tions may stem from the known annotations of their host genes [11].

In this paper, we propose an algorithm that allows for annotating circRNAs with anno-
tation terms as, for example, gene-ontology terms, phenotype terms, or diseases. The 
algorithm implements an integrative approach which firstly constructs an interaction 
network for a target circRNA, and secondly, spreads the information from the network 
nodes with the known function to the root circRNA node. The algorithm employs the 
simple principle that a circRNA should be annotated with a term that is over-repre-
sented in the set of its interacting nodes. The most common solution is to quantify this 
over-representation in terms of p-value through stochastic algorithms [6, 12–15]. An 
analogical principle has also been implemented in protein function annotation [16]. The 
main disadvantage of these algorithms is their randomness and low sampling efficiency. 
They can be computationally intensive, especially when estimating low p-values in mul-
tiple testing settings frequent in genetics [17]. The low p-values need to be estimated 
accurately in order to identify and possibly sort the most interesting terms for the cir-
cRNA under examination; moreover, the p-values must be estimated with high accuracy 
to control the family-wise error rate. There have been numerous past efforts to reduce 
the computational burden of stochastic algorithms. Those which are universally applica-
ble [18, 19] rely on stopping early when the p-value is obviously large. The efficiency of 
these approaches depends on the frequency of low p-values (truly interesting annotation 
terms in our case), acceleration in the order of tens is typically reported. More efficient 
algorithms are often dedicated to specific tasks such as mean comparison in two-sample 
tests where the individual runs could be partitioned with p-values showing a predictable 
trend across the partitions [17]. For example, these methods can be used for the identifi-
cation of differentially expressed genes. To conclude, bulk annotation of multiple circR-
NAs remains computationally challenging for stochastic algorithms.

Our main contribution lies in the proposal of an efficient and exact procedure that 
is based on the principle of probability-generating functions [20]. For this reason, we 
named our algorithm circGPA (circRNA generating-polynomial annotator). The algo-
rithm has four steps. First, an interaction network for a circRNA is constructed. Second, 
a statistic that quantifies the size of the neighborhood of the circRNA that is annotated 
with a term of certain cardinality is introduced. Third, the probability mass function of 
the statistic, which is a discrete random variable, is represented as a power series (the 
generating function). Fourth, the coefficients of the power series serve to calculate the 
p-value for the pair of circRNA and annotation term efficiently and exactly.

We show that circGPA is both more effective and efficient than the commonly used 
stochastic sampling approach; in particular, circGPA calculates all the p-values exactly, 
and it is at least two orders of magnitude faster than stochastic sampling. This fea-
ture enables the summary annotation of large circRNA files, including their reannota-
tion after periodical interaction network updates, for example. In the supplement, we 
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provide a summary annotation of a current circRNA database as one of our outputs. The 
annotation contains around 3000 circRNAs available in the CircInteractome database 
and about 10,000 annotation terms taken from the C5 category of MSigDB database 
(ontology gene sets consisting of the gene-ontology terms and the human phenotype 
ontology). To illustrate the practical significance of the new algorithm, the summary 
annotation was processed in 20 months of CPU time1, with the stochastic approach this 
would be technically unreachable. circGPA, together with the code used to generate 
the figures in this paper, is publicly available on https://​github.​com/​petrr​ysavy/​circg​pa-​
paper. The outputs of our code can be downloaded from https://​ida.​fel.​cvut.​cz/​~rysavy/​
circg​pa/. The proposed algorithm could be generalized in a straightforward manner 
towards different types of RNA that could be characterized with interaction graphs of 
similar properties that we show in this paper.

The rest of our paper is organized as follows. The "Problem statement" section defines 
the problem to be solved as root node classification in tripartite circRNA interac-
tion graph. The "Proposed statistic"  section introduces the key interaction statistic 
for a paired circRNA and annotation term. The statistic is easy to compute; however, 
its p-value estimation is more time-consuming. For this reason, the "p-value calcu-
lation"  section introduces an exact p-value calculation algorithm based on generating 
functions. The "Implementation" section gives the algorithm pseudocode as well as fur-
ther details on interaction network construction. The basic concepts are summarized in 
an all-in-one example in the "All in one example" section. The "Results" section experi-
mentally evaluates the new algorithm and compares it with the Monte Carlo algorithm. 
The "Conclusion" section concludes the paper and outlines future work.

Materials and methods
Problem statement

This paper aims to devise an algorithm to annotate circRNA molecules with annota-
tion terms. To do so, we exploit the interaction graph between circRNA–miRNA and 
miRNA–mRNA molecules. As we assume that the annotations of circRNAs are inde-
pendent, we can process the individual circRNAs sequentially and restrict ourselves to 
a single circRNA molecule in our description. Assume a fixed ordering on miRNA and 
mRNA molecules. Assume that the count of mRNAs (miRNAs) is |m| ( |µ|).

Formally, we can define the interaction graph between the selected circRNA and 
miRNAs using a vector aµ,c ∈ {0, 1}|µ| where each field represents whether a particu-
lar miRNA interacts with the circRNA. Interactions between miRNAs and mRNAs 
are represented by an adjacency matrix Am,µ ∈ {0, 1}|m|×|µ| where each row is a vector 
indicating which miRNAs interact with a particular mRNA.2 We assume that the graph 
edges are directed only from circRNA to miRNA and from miRNA to mRNA, so that 
a directed path cannot connect two molecules of the same type. A simple network is 
shown in Fig. 1.

1  Additional graphical outputs took another 10 months of CPU time.
2  We define aµ,c as a binary vector, and Am,µ as a binary matrix. However, the approach can be easily generalized to the 
situation when aµ,c and Am,µ contain natural numbers which might capture, for example, the strength of the interactions 
or alternatively situations when a miRNA has two binding spots on a circRNA. The fields higher than 1 can be repre-
sented as parallel edges in the interaction graph which becomes a multigraph in this case.

https://github.com/petrrysavy/circgpa-paper
https://github.com/petrrysavy/circgpa-paper
https://ida.fel.cvut.cz/%7erysavy/circgpa/
https://ida.fel.cvut.cz/%7erysavy/circgpa/
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In our notation, an annotation term will be defined by a set of mRNAs and miRNAs 
it annotates. The membership of mRNAs (miRNAs respectively) is formalized using 
binary vectors gm ∈ {0, 1}|m| ( gµ ∈ {0, 1}|µ| respectively). As a shorthand notation, we 
will use the symbol g to denote the tuple of the latter, i.e., g = (gm, gµ) . Having these 
definitions on hand, we can define the problem to be solved in this paper.

Definition 1  (CircRNA annotation problem) For a circular RNA, let Am,µ , aµ,c be 
its interaction graph. Decide whether the circRNA should be annotated with a term 
g = (gm, gµ).

Proposed statistic

To solve the problem, we will develop a simple yet powerful statistic to annotate a cir-
cRNA. The concept is based on the ”guilt by association” principle [16, 21]. The circRNA 
should be annotated with a term if and only if this molecule frequently interacts with 
miRNAs (and through them indirectly with mRNAs) annotated with the term. We will 
capture this frequency in statistic s. This statistic will quantify the size of the neighbor-
hood of the circRNA that is annotated with the term. As the complete tripartite graph is 
only a unification of two bipartite graphs and remains fixed for the circRNA, we might 
calculate this number precisely:

The first addend shows how many paths of length one end in a miRNA annotated with 
the term. The term Am,µaµ,c shows how many paths go from c to each mRNA. The sec-
ond addend in Formula (1) calculates how many paths of length two terminate in an 
mRNA that is annotated with the term.

However, the frequency represented by s is hard to explain without knowing the entire 
neighborhood. Larger neighborhoods, as well as more abundant gene terms, tend to 
generate a larger frequency. The importance of the term could better be captured by a 
relative frequency. Assume that we start a random walk in circRNA c . We might cal-
culate the probability that this random walk ends in an RNA annotated with the term 
g . For a fixed circRNA, the size of the neighborhood is fixed. Therefore, the aforemen-
tioned probability is equal to s(c, g) but for a normalization factor.

(1)s(c, g) = (aµ,c)Tgµ + (Am,µaµ,c)Tgm.

Fig. 1  An example of a network. The grey nodes are part of the annotation term. The circRNA of interest 
interacts with all three miRNAs, out of which two are annotated with the term of interest. There are five 
mRNAs, three of them annotated with the term. In the graph, we might find three paths from the circRNA 
to a miRNA and nine paths from the circRNA to a mRNA. Out of those, 2+ 6 terminate in an annotated mi/
mRNA, resulting in s(c, g) = 8
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We will continue to use the number of paths represented in s(c, g) , knowing that they 
are only linearly scaled, preserving the ordering of the above-mentioned probabilities. 
To increase interpretability, we will further develop a normalized s as well as the p-value 
for the statistic so that standard statistical reasoning is applicable. In this work, we will 
avoid random Monte-Carlo sampling (used among others in [6, 12–15]) and simulating 
the random walk and claim its low efficiency in our setting for the p-value calculation.

Normalization

As the value of statistic s grows by definition with the size of annotation term and the 
size of the interaction graph (it gives the number of distinct paths to mRNAs and miR-
NAs annotated with the term), we present the user with a more explainable output. We 
normalize the statistic (1) by its expected value

where 1 = (1, 1, . . . , 1)T is the vector of ones and � · �1 denotes the L1-norm. The 
expected value gives the expected number of random walks that end in an RNA anno-
tated with the term if the annotations were assigned randomly. The user is then pre-
sented with the ratio of the statistic and its expected value

This ratio represents the normalized statistic. The value above 1 then stands for terms 
that tend to interact with the circRNA under observation more than expected as can be 
seen in Table 1.

Influence of individual RNAs

Once circGPA predicts that a circRNA should be annotated with a term, users might 
be interested in which miRNAs and mRNAs back up this annotation. In other words, 
knowledge of which RNAs connect the circRNA to the annotation term is important. 
Fortunately, it is possible to split s(c, g) among individual molecules. A natural method 
of explaining how much the RNA adds to the statistic is to remove this RNA with all its 
incoming and outcoming edges from the graph. On such a modified graph, we recalcu-
late the score and calculate the difference in the score value. We can calculate this dif-
ference for all miRNAs and mRNAs at once using linear algebra. We denote the vector 
of those differences �m ( �µ ) for mRNAs (miRNAs). For a vector v , let diag(v) denote a 
diagonal matrix with elements of v on its diagonal. Then we derive that

One can notice that the L1 norm of �µ is equal to s(c, g) . We use values �µ,�m to sort 
mi/mRNAs in a report that shows the influence of individual RNAs. An example output 
will be seen in the "Results" section.

(2)E s(c, g) =
�gµ�1

|µ|
(aµ,c)T1+

�gm�1

|m|
(Am,µaµ,c)T1

(3)
s(c, g)

E
(

s(c, g)
) .

(4)�µ = diag(aµ,c)
(

gµ + (Am,µ)Tgm
)

,

(5)�m = diag(Am,µaµ,c)gm.
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p‑value calculation

To understand and compare the values of statistic s among different circRNAs and annota-
tion terms, we need to calculate its p-value. The p-value cannot stem solely from s itself as 
other circular RNAs have a different number of connections to the remaining RNAs. In 
addition, more frequent annotation terms will reach higher scores. Formally, statistic s(c, g) 
is an outcome of the statistical test, whose null hypothesis is that the given c, g pair is not 
related. In other words, the null hypothesis is that circRNA c has no preference in interac-
tions with miRNAs (or mediated interactions with mRNAs) annotated with term g . The 
alternative hypothesis states that c should be annotated with g as g is overrepresented in the 
neighborhood of c.

The p-value, in our case, represents the probability that a random annotation term of 
the same size in the same interaction graph reaches the same statistic s or higher. The 
literal implementation of the null distribution simulation would thus be empirical ran-
dom sampling with replacement [22]. In our case, this Monte-Carlo approach would be 
based on enumerating the random subsets of m/miRNAs of the same size as the evalu-
ated annotation term and calculating the statistic value based on Formula (1).

This paper proposes an exact approach that does not depend on random trials but 
uses generating polynomials instead to compute the p-value. We should first reformulate 
the problem so that we can easily describe its mathematical solution. Denote ‖gµ‖1 the 
number of miRNA molecules annotated by the term. Formally, ‖gµ‖1 is the L1-norm of 
the gµ vector. Define ‖gm‖1 similarly. For each miRNA, there is a fixed number denoting 
its weight in the statistic (1). This weight is 1 if and only if the circRNA of interest is con-
nected to the miRNA, zero otherwise. The weight is stored in the respective field of aµ,c . 
Out of all miRNAs, we select ‖gµ‖1 . For mRNA, the weight can be seen in the respective 
field of Am,µaµ,c . Out of all interacting mRNAs, ‖gm‖1 mRNAs are selected.

To calculate the p-value, the molecules of mRNA and miRNA are selected randomly 
given the weights and the fact that ‖gµ‖1 and ‖gm‖1 need to be preserved. For now, we 
consider only miRNAs. Imagine a bag full of balls with numbers written on them. Each 
number is a field in aµ,c (one field equals one ball). Now we randomly select ‖gµ‖1 balls 
from the bag and sum the numbers written on them. By repeating this procedure many 
times, we get the null distribution for the first part of the statistic (1). If we include a 
second bag with numbers taken from Am,µaµ,c , we get the null distribution for the whole 
statistic.

Having built an informal intuition, we can proceed to introduce the generating poly-
nomials by which we denote a polynomial which is a multiple of the well-established 
probability-generating functions [20]. Consider an mRNA that is connected by five paths 
to the circRNA. The weight of this mRNA is 5. In a random annotation term, this mRNA 
is either included or not. This gives two possibilities. We can formulate the generating 
polynomial for this mRNA as

The variable x keeps track of weights, y keeps track of the number of selected mRNAs. 
Having a simple graph with only one mRNA, we have two options for building a random 
mRNA set: either we use zero mRNAs, and the sum of weights is zero (the term 1, which 

(6)1+ x5y1.
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equals x0y0 ), or we use one, and the sum is 5 (the term x5y1 ). If we also consider a new 
mRNA with weight 3, the resulting polynomial that represents the extended graph is

We immediately see that if we select no mRNAs, we can only get the sum of weights 0; 
by selecting one, the weights will be either 3 or 5, and by selecting two, the sum of the 
weights will be eight. The coefficients by terms with y1 show a single possibility of get-
ting a weight of three or five. Another helpful view on the formula above might be as on 
a dynamic programming algorithm in a 2D array where the power of x denotes a row, 
the power of y denotes a column, and the coefficient is the number at the particular posi-
tion of the table. Now, we can define the generating polynomial for a weight vector.

Definition 2  (Generating polynomial) Let w be a vector of weights (of mRNA or 
miRNA). Then the generating polynomial is

Next, we define an operator that restricts the polynomial only on a selected power of 
one or more variables. We will denote the operator | xn and use it to denote only terms 
that contain xn . For example, for the polynomial (7), operator | y1 will return x3 + x5 . The 
following theorem allows us to calculate the null distribution of the statistic (1).

Theorem 1  Consider statistic s for a fixed circRNA c , interaction graph aµ,c , Am,µ and 
annotation term sizes ‖gµ‖1 , ‖gm‖1 . Then coefficients of the polynomial

are the null distribution of statistic s up to a normalization factor.

Proof  From what precedes, it can be seen that the first multiplicand coefficients are 
the number of ways to reach a particular value of the miRNA part of the statistic (1) by 
selecting a particular number of miRNAs. The restriction to the y‖gµ‖1 ensures that the 
number of miRNAs in the annotation term is preserved. The same holds for the second 
multiplicand and mRNAs.

After multiplying the polynomials, the polynomial coefficients will hold the number of 
unique ways the value of the statistic can be achieved. The normalization to 1 then fin-
ishes the calculation of the null distribution. �

Once the null distribution is calculated, the p-value is then obtained by a standard 
approach in which we sum probabilities of all statistic values greater than s(c, g).

(7)(1+ x5y1) · (1+ x3y1) = 1+ x3y1 + x5y1 + x8y2.

(8)genpolyw(x, y) =
∏

w∈w

(1+ xwy).

(9)
(

genpolyaµ,c (x, y) | y
�gµ�1

)(

genpolyAm,µaµ,c (x, y) | y
�gm�1

)
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Computational complexity

If we focus on the computational complexity of circGPA, most of the work is done in the 
Generating-Polynomial function. The two inner loops depend on variables maxx 
and maxy, where maxx is, in the worst case, linearly dependent on the L1-norm of vec-
tor w ; maxy is equal to the number of RNAs annotated with the terms. Their product, 
therefore, is linearly dependent on the product of ‖w‖1 times the size of the annotation 
term. The two outer loops in function Generating-Polynomial do at most n opera-
tions for each unique non-zero entry in the vector of weights of count n. Sum of the 
fields of weight vector w is, therefore, the same as the number of evaluations of the two 
outer loops. The computational complexity of the two outer loops is in the worst case 
equal to ‖w‖1 . We may conclude that one call to the Generating-Polynomial func-
tion is in O(�w�2 ·maxy) . Other terms in function AnnotateCircRNA are asymptoti-
cally smaller than the runtime of the Generating-Polynomial function. The overall 
runtime is, therefore, in

Referential approach

A standard approach for p-value calculation would be to enumerate subsets of miRNAs/
mRNAs as random annotation terms. The size of the term is preserved, and we count 
how many times the score is higher than s(c, g) . This sampling Monte-Carlo approach 
then allows estimation of the p-value using the biased estimator r+1

n+1 , where r is the num-
ber of trials with a high enough score and n is the number of all trials [23].

(10)O

(

(�aµ,c�1)
2�gµ�1 + (�Am,µaµ,c�1)

2�gm�1

)

.

Fig. 2  An illustration of the whole pipeline. The input graph is used for multiple annotation terms to 
calculate the statistic and its p-value. Later, the p-values are adjusted and used for annotation
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Implementation

Using a naive implementation, we need at most 2|m| · 2|µ| multiplications to evaluate 
polynomial (9). This number is the theoretically possible maximum number of terms in 
polynomial (7). The real number is, however, much smaller. As polynomial exponents 
repeat, the bound can be tightened. The power of x goes from 0 to ‖aµ,c‖1 in the case of 
miRNAs, and from 0 to ‖Am,µaµ,c‖1 in the case of mRNAs. The y variable goes from 0 
to |µ| (0 to |m| in case of mRNA); however, relevant fields are only up to ‖gµ‖1 ( ‖gm‖1 ). 
The x variable can be trimmed similarly using the fact that only ‖gµ‖1 (or ‖gm‖1 ) highest 
terms of aµ,c (or Am,µaµ,c ) may be used.

If the weight of a mi/mRNA occurs more than once, we can exploit the binomial 
expansion instead of term-by-term multiplication in the Equation (8). The multiplica-
tion could be implemented using the dynamic programming approach and pointers. A 
similar approach was used for the fast p-value calculation of the unweighted GSEA [24]. 
Details can be seen in Algorithm 1. The whole pipeline is illustrated in Fig. 2.
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Input data and used libraries

Our implementation combines R code and C++ code for the critical p-value calcula-
tion. To connect the C++ code and R code, we use the Rcpp package [25].

To construct the graph, we exploit several databases and R packages. The circRNA–
miRNA interactions are downloaded from the CircInteractome [26] database that uses 
the TargetScan [27] interaction prediction algorithm. The miRNA–mRNA interactions 
are downloaded from the TarBase [28], miRecords [29], and miRTarBase [30] databases 
via the multiMiR package [31]. In the case of miRNA–mRNA interactions, we used 
verified interactions only.

The GO annotation for the miRNAs is downloaded using the miRBase [32] and ENA 
Quick GO [33] databases. Annotation of mRNAs is done via the org.Hs.eg.db R 
package. The annotation terms are obtained from the MSigDB database [34] C5 category 
using the msigdbr R package.

Other R packages used include miRBaseConverter, GO.db, biomaRt,stringr, 
httr, openxlsx, geometry, tictoc, ggnet, network and polynom.

The graph constructed in the presented way can annotate 3, 009 circRNAs. There are 
1,761 miRNAs connected by 81, 391 edges. This means that one circRNA interacts with 
29 miRNAs on average. One miRNA interacts with 50 circRNAs on average. The cir-
cRNA that interacts most with other molecules is hsa_circ_0000005 with 307 inter-
actions. The miRNA with the most frequent interactions is hsa-miR-942, with 799.

The graph contains 19, 375 mRNAs with 465, 741 known interactions with miRNAs. 
Therefore, one mRNA interacts with 24 miRNAs on average, while one miRNA interacts 
with 264 mRNAs on average. The most frequent miRNA is hsa-miR-1-3p with 7491 
interactions, the most frequent mRNA is NUFIP2 with 331 interactions.

We work with 10,  189 annotation terms. The average size of those is 82 mRNA or 
miRNA molecules. If we exclude annotation terms which are too narrow or too broad 
(see Sect. Results for details), we end up with 7075 annotation terms with 89 molecules 
on average. One RNA is annotated with 43 terms on average.

All in one example

Consider the interaction network depicted in Fig. 1. In this figure, we have a circRNA of 
interest connected with 3 miRNAs that connect to 5 mRNAs. The edges in the graph can 
then be described by a vector and a matrix.

The annotation term contains 2 miRNAs and 3 mRNAs. It is formalized as

The weights of the miRNAs and mRNAs are

aµ,c = (1, 1, 1)T , Am,µ =











1 1 0
1 1 1
1 0 0
0 0 1
0 1 1











.

gµ = (1, 1, 0)T , gm = (1, 1, 1, 0, 0)T .
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Which gives a statistic of

The first addend is for miRNAs, the second for mRNAs. The expected value of the sta-
tistic is

The normalized statistic is, therefore, 87.4 ∼= 1.08 . The generating polynomial for miRNAs 
is

As we have two miRNAs that are annotated with the terms, we immediately see that 
there are three options for achieving two paths from the circRNA that end in an anno-
tated miRNA (see term 3x2y2 – variable y stands for the number of miRNAs, variable x 
stands for the number of paths). For mRNA, the generating polynomial is

The relevant terms contain the variable y to the power of three – the term annotates 
three mRNAs. And the corresponding terms show that there are two options for select-
ing mRNAs such that there are 4 paths that go from the circRNA to an annotated 
mRNA. Those two options are illustrated in Fig. 3. Similarly, we can see that there are 
four options so that six paths end in an annotated mRNA and so on.

The generating polynomial for the whole statistic is, therefore,

From the polynomial, we see that there are 12 ways to obtain a statistic value equal to 8. 
One of these is the situation depicted in Fig. 1 and solved in this example. The p-value 
is equal to the ratio of the number of combinations that reach a statistic value greater or 
equal to 8 to the number of all possible combinations. These can be seen from the poly-
nomial or calculated as 

(3
2

)(5
3

)

= 30 . Hence, the p-value is 12+3
6+9+12+3.

We can also see that the expected value is the same if calculated from the null 
distribution. There are six ways to get statistic equal to six, nine ways to get statistic 
equal to seven and so forth, i.e., the expected value is 6·6+9·7+12·8+3·9

6+9+12+3 = 222
30 = 7.4.

Results
We ran circGPA on a graph constructed on the human genome as explained in the 
"Implementation" section. For presentation purposes, we filtered the annotation 
terms based on their sizes. We excluded annotation terms which are too broad or too 
narrow. The narrow terms are difficult to evaluate statistically, the general terms suf-
fer from low interestingness to domain experts. Reimand et al [35] argue that: ...we 

aµ,c = (1, 1, 1)T , Am,µaµ,c = (2, 3, 1, 1, 2)T .

s(c, g) = 2+ 6 = 8.

E
(

s(c, g)
)

=
2

3
(1+ 1+ 1)+

3

5
(2+ 3+ 1+ 1+ 2) = 7.4.

(1+ x1y)3 = 1+ 3xy+ 3x2y2 + x3y3.

(1+ x1y)2(1+ x2y)2(1+ x3y) = · · · + (2x4 + 3x5 + 4x6 + x7)y3 + · · · .

3x2(2x4 + 3x5 + 4x6 + x7) = 6x6 + 9x7 + 12x8 + 3x9.
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often recommend excluding pathway GO terms with < 10− 15 genes and > 200− 500 
genes, although upper bounds of 200− 2,000 genes can be found in the literature. We 
decided to stick with the bounds researched by the authors and exclude by default 
terms smaller than 10 genes and larger than 1, 000 genes.

Outputs of circGPA

For each circular RNA, circGPA generates a table with the statistic (1), the normalized 
statistic (as described in Sect.  Normalization), and the p-values. Since we deal with 
many annotation terms in parallel, we have to adjust p-values for multiple comparison. 
We provide both FWER (Bonferroni [36]) and FDR (Holm [37]) adjusted p-values. The 
runtime of the p-value calculation is measured. An example output is shown in Table 1.

For a visual presentation of the provided results, circGPA is able to generate an output 
in a form that can be processed by the EnrichmentMap plugin [38] of the Cytoscape 
program [39]. This tool visualizes multiple annotation terms found relevant for a single 
circRNA in a graph. The vertices correspond to the terms; their size corresponds to the 
number of genes in the term and the color is calculated from the p-value as in a heat-
map. The edges are constructed so that their width represents the Jaccard index of the 
connected annotation terms – a wider line means a bigger overlap between the terms. 
An example of a produced output is presented in Fig. 4. Therefore, the graph for a cir-
cRNA shows predicted annotations in the context of the other annotation terms. As a 
result, the user is presented with information about the term-term overlap and cluster-
ing of the predicted annotation. Figure  5 shows an example of the circGPA report in 
which miRNAs and mRNAs back up annotation.

"To further test our method of p-value calculation, we implemented the usual sam-
pling approach mentioned in the "p-value calculation" section. circGPA is deterministic 
and guarantees the exact p-values. The sampling approach is burdened with a random 
noise caused by the randomness in the selection of the subsets. Therefore, the p-values 
are not the same. At the very beginning, we thus configured the stochastic algorithm to 
approach the exact p-values. We worked with all the annotation terms relevant to hsa_
circ_0000228. We found out that p-values closely match for 106 and more random 
trials. We follow recommendations of [23] and estimated the p-values as r+1

n+1 , where r is 
the number of positive Monte-Carlo trials out of n = 106 . The Spearman’s ρ for the two 
p-value vectors were equal to 0.99991. We also calculated the relative difference with a 
mean equal to 0.015 (i.e., on average, the p-values differ by less than 2% ), standard devia-
tion equal to 0.041, the maximum deviation equal to 0.82, and median equal to 0.006. If 

Fig. 3  The generating polynomial of the mRNAs in this graph is equal to 2x4 + 3x5 + 4x6 + x
7 . We see that 

there are two ways to annotate 3 mRNAs, so that there are 4 paths that end in an annotated mRNA. These 
two cases are illustrated in the figure, the paths are marked by bold gray
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we eliminate the first 20 annotation terms with a p-value 1.6 · 10−5 and smaller, the mean 
of the relative p-value difference is 0.014, standard deviation 0.027, maximum deviation 
0.372, and median 0.006.

Runtime

Then, we compared the circGPA runtime with the sampling approach using 106 trials. 
The sampling was configured to allow for Monte-Carlo p-values to approach the exact 
deterministic ones calculated with generating polynomials. The comparison of runt-
imes is summarized in Fig.  6. In those experiments, we used the sample of circRNAs 
summarized in Table 2. It is obvious that circGPA overcomes the stochastic algorithm 
for all the tested annotation terms with speedups that vary from 0.16 to 48,  670. The 
average speedup per single p-value calculation proved to be 3, 150. If we compare the 
overall runtime requirements of 59 hours needed to calculate the p-values exactly on 
the testing circRNAs (see Table 2) and 1967 hours using the sampling approach, we can 
see that our approach is 33 times faster as a whole. Extrapolating this number means 
that our approach to calculating the p-values can save 65 years of CPU-time to annotate 
all circRNAs in our database (compared to approximately two years needed to calculate 
the p-values using the exact approach). However, the results of circGPA are worse on 
densely connected circRNAs that are over-represented in our dataset (see Table 2). The 
real measurements have shown that the circGPA requires 20 months to annotate all cir-
cRNAs in the database, including graph construction and disk access.

Further insights into the speedups provided by the algorithm are in Fig. 7, which dem-
onstrates the runtime complexity of Algorithm 1. If we eliminate all terms that are con-
stant for a given circular RNA from Formula (10) and re-evaluate the runtime of the 
two outer loops, the computational complexity is square of the size of the gene ontology 
term. As we see from Fig. 7, the runtime measurements are almost a line. The slope of 
the line is circRNA-dependent. For more connected circular RNAs, the slope is higher.

Figure  9 demonstrates that the decreasing number of trials in the sampling 
approach leads to a decrease in the accuracy of p-value estimation. It is impossible to 

Table 1  A sample circGPA output

The table shows ten annotation terms with the smallest p-value that were obtained by annotating circRNA hsa_
circ_0000228

Set id Size s(c, g) s(c,g)

E(s(c,g))
time (s) p-value Bonferroni FDR

HP_SOFT_TISSUE_SARCOMA 115 38 3.61 0.04 1.40E-08 1.40E-04 1.39E-04

GOMF_MRNA_BINDING 287 64 2.44 0.16 2.78E-08 2.78E-04 1.39E-04

HP_GENITAL_NEOPLASM 142 41 3.16 0.05 5.78E-08 5.78E-04 1.93E-04

HP_SARCOMA 165 44 2.91 0.06 1.03E-07 1.03E-03 2.57E-04

HP_NEOPLASM_BY_HISTOLOGY 320 66 2.25 0.19 1.60E-07 1.60E-03 3.21E-04

HP_THIN_VERMILION_BORDER 329 66 2.19 0.20 3.48E-07 3.48E-03 5.80E-04

HP_THIN_UPPER_LIP_VERMILION 234 52 2.43 0.11 5.82E-07 5.82E-03 8.32E-04

GOMF_UBIQUITIN_LIKE_PROTEIN_LIGASE_
BINDING

309 62 2.19 0.18 7.74E-07 7.75E-03 9.69E-04

HP_URINARY_TRACT_NEOPLASM 133 36 2.96 0.04 1.10E-06 1.10E-02 1.22E-03

GOBP_REGULATION_OF_MRNA_META-
BOLIC_PROCESS

334 64 2.09 0.22 1.75E-06 1.76E-02 1.63E-03
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straightforwardly decrease the number of trials and still approach the exact p-values. To 
reach runtimes observed in circGPA, the sampling algorithm would need to work with 
no more than 350 trials. However, the p-values then do not match the exact ones. We 
consider hsa_circ_0000228 with 352 sampling trials to illustrate the gap. The Spear-
man’s ρ of the p-value vectors that capture those annotation terms that pass the 0.05 
p-value significance threshold (the most likely to be truly relevant) is equal only to 0.93. 
The average relative difference between those is equal to 19, with a standard deviation of 
178. The maximum relative difference is 2793, and the median 0.33. Excluding the first 
20 terms with the lowest p-value decreases the maximum deviation to 176, the mean to 
2.6, the standard deviation to 11.2, and the median stays 0.32. It needs to be said, how-
ever, that we followed the recommendation of [23] to use biased estimates.

The p‑values distribution

The applicability of calculated p-values is demonstrated in Fig. 8. The histograms shown 
are mostly bimodal. The peak close to 0 p-values represents the cases where alterna-
tive hypotheses truly apply. The peak close to 1 p-value represents the cases where the 
network size and interactivity are not sufficient. Clearly, this peak is large, especially 
for the low-interacting circRNAs (see Table 2). We can notice that the most interacting 

Fig. 4  An example of a graph produced by the EnrichmentMap plugin of the Cytoscape program using the 
40 most likely annotations of hsa_circ_0000228. The labels were moved manually so that they do not 
overlap. Several red circles that correspond to annotation terms with lower p-values can be noticed. Besides 
that, there are several clusters of terms that share genes. The biggest is located in the top left corner showing 
a set of terms connected with the reproductive and urinary systems. This indicates that the circular RNA 
might be connected with those systems. According to circBase [40], the sequence of hsa_circ_0000228 
is located on the ZEB1 gene. According to the NCBI summary of publication [41], the ZEB1 gene shows 
the highest expression in the endometrium (out of 27 tissues presented) and is also highly expressed in the 
urinary bladder, placenta and prostatic tissues. Also, a recent publication has shown a connection between 
hsa_circ_0000228 and cervical cancer [42]. circGPA predicts a link of the circRNA to cancer as well, 
given the fact that HP_SOFT_TISSUE_SARCOMA is the term with the lowest p-value
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circRNAs tend to attract more low-p-value annotation terms. On the contrary, for circR-
NAs with few interactions, there are only a few annotation terms with low p-values. This 
is actually the desired behavior as circRNAs that interact a lot may influence many other 
genes and pathways; however, circRNAs that have only a few interactions influence only 
a specific part of the cellular machinery. This situation is common in nature and can be 
explained by the well-known “80-20 rule” [43].

Discussion and related work
The previous section clearly shows that circGPA is an efficient tool for circRNA func-
tional annotation. Let us compare it conceptually with similar existing tools. The closest 
tool is Cerina [10] which also employs the circRNA–miRNA–mRNA interaction net-
work for circRNA functional annotation, including GO terms. Their stochastic approach 
is based on permuting the connections between a given circRNA and its interacting 
miRNAs/mRNAs. To reduce the size of the interaction network, Cerina binds the inter-
action and expression data and uses the Pareto-front-based algorithm for their integra-
tive analysis. This step increases the efficiency of the stochastic algorithm and gives a 

Fig. 5  A network of miRNAs and mRNAs that back up annotation of hsa_circ_0000228 by the term 
with the lowest p-value - term HP_SOFT_TISSUE_SARCOMA. The size and color of each RNA shows how 
much the statistic (equal to 38) drops if the RNA is excluded from the graph together with all incident edges, 
i.e., the �µ and �m values. See the "Influence of individual RNAs" section for details
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chance to work with tissue-specific interactions only. We mention the possibilities of 
circGPA for integrative analysis in the "Conclusion" section.

The utilization of random-walk algorithms for functional annotation is wide. One of 
its early applications was the EnrichNet tool [14] for integrative analysis and gene anno-
tation. Another usage is in [15], where the authors use random walks and circRNA 
similarity to predict circRNA-disease association. A similar approach utilized random 
walk for drug association prediction [44, 45]. The circRNA-disease association predic-
tion problem was tackled using random walk with restarts [12, 46]. Fang et al. used ran-
dom walks to predict miRNA-circRNA associations [13]. Close to the random walk with 
restarts algorithm is the PageRank algorithm [47] that has been developed for internet 
hyperlinks. If applied to the presented graph with circRNA–miRNA–mRNA interac-
tions, both random walk with restarts and PageRank algorithms would lead to the same 
results as there is only a single source circRNA.

From the methodological point of view, the circRNA-disease association predic-
tion is very similar to the problem solved by circGPA. The main condition for circGPA 

Fig. 6  A histogram of the relative speedup of the p-value calculation using the generating polynomials 
compared to the sampling approach with the sample size 106 . The speedup is shown only for the case when 
the p-value is not equal to 1 (i.e., when s(c, g) = 0 ). CircRNA hsa_circ_0004624 is excluded from the 
plot as all p-values are equal to 1, meaning that the circRNA is not connected with any term
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application in this task is the knowledge of miRNA/mRNA-disease annotations in the 
circRNA interaction network. These annotation databases exist. The miRNA-disease 
association databases include miR2Disease [48] with 3, 273 associations, and HMDDv3 
[49], which contains 35,  547 manually collected miRNA-disease associations. Those 
associations were collected from 19, 280 scientific papers. For gene-disease associations, 
we can mention the DisGeNET database [50]. The accuracy of prediction could be veri-
fied against the known circRNA disease annotations. The CircR2Cancer [51] provides 
a list of 1,  439 manually curated entries. The Circ2Disease [52] is the most extensive 
database and contains 5, 368 manually curated entries. The CircR2Disease database [53] 
contains 725 associations.

One of the early papers from the circRNA-disease association prediction field is the 
Circ2Traits database [54]. The authors worked with two data sources to predict the asso-
ciations. Firstly, it was a miRNA-circRNA interaction graph together with statistical 
tests. Secondly, the algorithm incorporates knowledge about single nucleotide polymor-
phisms. Recent tools for circRNA-disease association prediction usually take advantage 
of similarities between the circRNA pairs and disease pairs to predict the associations. 
For example, a tool named PWCDA developed in [55] constructs three graphs. The first 
graph represents circRNA similarity; the second graph represents disease similarity. 
Those two graphs are used to form a disease-circRNA association graph, out of which 

Fig. 7  A plot of the time needed to calculate the p-value on ‖gm‖21 . The plot was generated under the same 
conditions as Fig. 6
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association scores are calculated. A similar approach was used in [56], where a Gauss-
ian interacting profile is used to evaluate the similarities. There were frequent machine 
learning applications to circRNA-disease association prediction too. The work of Lei 
et al. [57] employs recommender systems to overcome the sparsity of validated annota-
tions. The authors of [58] used convolutionary networks on the k-mer representation of 
the circRNA sequences. The disease similarities are captured using the disease ontol-
ogy terms. The iGRLCDA tool [59] uses Gaussian interacting profiles, convolutional net-
works, and graph factorization. The authors of this paper developed a similar tool for 
drug-disease association prediction named HINGRL [60] too. The tool DWNCPCDA 
[61] uses DeepWalk. DWNCPCDA is based on the work by a similar set of authors - the 
NCPCDA tool [62] based on network consistency projection. This brief overview is far 
from complete. Other tools include, among others, [63–66].

Fig. 8  Histograms of the p-values before multiple hypothesis testing correction. The y axis is trimmed to 
1, 000 annotation terms
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A clear advantage of circGPA compared to the aforementioned circRNA-disease pre-
diction algorithms is the existence of a p-value that allows filtering the predictions in a 
more advanced manner than selecting top k predictions. The runtime requirements of 
circGPA allow us to bulk annotate all known circRNAs with gene-ontology terms and 
provide the annotated results on https://​ida.​fel.​cvut.​cz/​~rysavy/​circg​pa/.

Conclusion
In this paper, we proposed an annotation algorithm circGPA that identifies prospective 
links between circRNAs and annotation terms. The algorithm is deterministic and based 
on generating polynomials. We show that this approach is both more effective and effi-
cient than the alternative stochastic approach frequently applied in a similar context.

Our approach could easily be generalized for related tasks. Besides circRNAs, the long 
non-coding RNAs can act as miRNA sponges, and their annotation could be predicted 
too. As a whole, the approach is generalizable on any interactions which can be rep-
resented by a directed acyclic graph where leaves are annotated with binary concepts 

Fig. 9  Dependence of Spearman’s correlation between the p-values calculated by Algorithm 1 and the 
sampling approach. The correlation is calculated for the annotation terms with p-value smaller than 0.05 (i.e., 
those that are likely to be checked manually). The plot excludes hsa_circ_0004624 as all p-values for 
this circRNA were equal to 1

Table 2  CircRNAs used in the experiments, along with the reason we included them

As the p-value calculation using the sampling approach takes up to two weeks on a single circRNA, we limited the 
experiments only to those circRNAs

circRNA Interacting miRNAs Paths to mRNAs Reason to include

hsa_circ_0000005 307 34043 Top-interacting

hsa_circ_0002816 305 34113 Top-interacting

hsa_circ_0000006 295 33470 Top-interacting

hsa_circ_0001897 2 302 Least-interacting

hsa_circ_0004624 2 0 Least-interacting

hsa_circ_0024604 2 325 Least-interacting

hsa_circ_0000228 26 1771 Used in development

hsa_circ_0001540 22 5037 Random choice

hsa_circ_0044708 11 1837 Random choice

hsa_circ_0003583 12 1234 Random choice

https://ida.fel.cvut.cz/%7erysavy/circgpa/
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(annotation terms). Our goal is to decide upon the annotation of the roots of the graph 
(ncRNAs whose annotation is unknown). There are, however, computational limits to 
our approach. The p-value calculation is limited by the fact that we need to fit a poten-
tially large table into the memory. The size of the table is the number of paths from the 
vertex of interest multiplied by the size of the annotation term.

When we compared circGPA with the sampling approach, we set the number of sam-
pling trials as a constant. The only optimization we did was when the p-value was equal 
to 1. However, for high p-values annotation terms, it would be possible to stop the sam-
pling earlier, knowing that the p-value will not be smaller than a threshold with a high-
enough probability. Such approaches were proposed in [18, 19] and used in simctest 
R package. Similar ideas could apply to circGPA. We might use the generating polyno-
mial to say that the p-value will not be smaller than a threshold without evaluating all 
polynomial coefficients. In the same manner, the weights in the loop of the Genera-
tion-Polynomial function could be sorted so that a bound on the p-value could be 
provided in the middle of computation.

In future work, we will look at the integrative analysis that deals with additional data 
modalities. So far, we have only examined interaction graphs. In the future, the anno-
tation should stem from sequential data too in order not to rely on binary interaction 
records only. Also, tissue-specific expression data can help to minimize the impact of 
false-positive interactions with negligible expression and focus our analysis. The hierar-
chy of annotation terms could serve to regularize the eventual annotation records.
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