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Background
As the cost of next-generation sequencing is decreasing, the number of personal 
genomes and associated personal information is rapidly increasing. Starting with the 
initial population-wide genotyping projects such as The HapMap Consortium [1], 
The 1000 Genomes Project [2], Genomics England [3], The Cancer Genome Atlas 
(TCGA) [4], Trans-omics for precision medicine (TOPMed) [5], The Genotype-Tis-
sue Expression (GTEx) Project [6], and the Precision Medicine Initiative [7], there 
are now millions of genomes that are deposited in research, clinical, or recreational 
database. These genomes can provide great insight for developing new therapies and 
drugs for diseases, prenatal genetic testing [8], and more advanced methods for dis-
ease risk prediction [9]. In particular, the high prevalence of genetic data in clinical, 
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recreational, and research areas makes interpretation and management of genomic 
data challenging. Among these, genomic privacy [10–14] has recently become an 
important facet of genomic data sharing because the genetic variants are shown to 
be strong re-identifiers even from de-identified genomic datasets. The sequencing of 
millions of samples provides genetic variants with allele frequencies spanning a very 
large spectrum [5, 15]. This makes it even harder to provide privacy as only a few rare 
variants among millions can easily re-identify an individual [16, 17]. These risks may 
extend to the relatives of the individuals [18]. While there is a strong urge to share 
the data for curing diseases, privacy issues are generally not coherently addressed 
[19]. Recent advances in the usage of DNA as incriminating forensic evidence to solve 
high-profile cases bring many new ethical questions that may cause concerns for 
these individuals [17, 20]. Although there is a great hype for open data sharing, there 
are also policy barriers to sharing datasets, especially from vulnerable and indigenous 
populations and datasets related to stigmatizing conditions.

The size of datasets makes it necessary to outsource the analysis and interpretation of 
genetic variants are often outsourced to 3rd parties such as cloud-based service provid-
ers such as AWS, Azure, and Google Cloud [21]. While these services have practically 
unlimited computational power, data confidentiality is not always guaranteed as cloud 
instance security is very challenging [22]. For instance, the recent breaches of AWS and 
Solarwind demonstrated that hackers can perform technically advanced attacks against 
cloud instances [23]. Industrial standards around “encryption-at-rest” and “encryption-
in-transit” are insufficient to protect against IT service compromise.

The field of genomic privacy has grown substantially in recent years. Numerous stud-
ies have shown that a small number of variants can lead to re-identification attacks [10, 
24, 25] and linking attacks [26–28]. One of the major frameworks that have been suc-
cessfully applied to genomic data analysis is differential privacy [29, 30] (DP). In DP-
based approaches, privacy-enabling data release mechanisms are used to share aggregate 
statistics from the data. Privacy is enabled by the addition of noise such as Laplacian or 
Gaussian noise [31]. DP has been used to release private GWAS statistics (chi-squared 
statistics and minor allele frequencies [29]). A common criticism of DP models is the 
sacrifice of data utility (especially for high dimensional data), which makes it hard to 
apply in large-scale genomics analysis. Currently, the encryption-based approaches rep-
resent the most rigorous route to securely sharing personal genetic information [32]. 
There are, however, challenges to their practicality [33]. Methods such as homomorphic 
encryption [34] provide mathematically provable frameworks for processing encrypted 
data directly without decryption. Recent studies demonstrated that HE is now poten-
tially practical to perform large-scale genomic computations such as GWAS [35] and 
genotype imputation [36]. Multiparty computation (MPC) [37] is an alternative crypto-
graphically secure approach, which shares the data into multiple non-colluding entities. 
The entities communicate intermediate statistics (without leaking any information) with 
one other in the course of analysis. MPC-based systems may not be practical because 
they rely on large communication between entities [38]. Several studies developed bio-
medical data analysis frameworks that combine differential privacy and encryption are 
proposed [39–42]. These studies demonstrate the practicality of the privacy-enabling 
data sharing and analysis methods.
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In this study, we focus on the secure outsourcing of two tasks, namely variant anno-
tation [43] and aggregation [44–49], which are two basic tasks that are performed in 
genetic variant analysis pipelines. Annotation is the process of determining the biologi-
cal impact of mutations that overlap with protein-coding transcripts. Annotation tools 
assign each variant an impact term from a predefined set of terms (e.g. “non-synony-
mous”, “stop gain”) that can be used to select and filter variants for downstream analy-
ses. This is an important task to characterize the impact of a variant on genes. VEP [50] 
and ANNOVAR [51] (and accompanying webservers) perform variant annotation using 
gene annotations and variant lists as input [52]. The second task is the aggregation of 
variants, which is the computation of the variant frequency by counting the existence/
allele counts of variants over a large number of individuals. In addition to the annotated 
impact, the allele frequency provides important insight into a variant’s potential role in 
diseases [48, 53]. It is used extensively in statistical modeling and machine learning mod-
els to estimate the functional impact of variants. For example, NIH’s recently deployed 
allele aggregation tool, ALFA, which is recently deployed, provides variant aggregation 
and AF estimation services [45]. In addition, ExAC [47] and GnomAD [49] provide simi-
lar services. Aggregation is also utilized in genomic beacons that answer queries about 
the existence of variant alleles in different databases. It is, however, not clear how the 
large genotype databases are stored and secured by these tools. From the collaboration 
perspective, privacy becomes a major challenge. Although there are great incentives 
for data sharing and collaboration [54, 55], there is a growing concern around sharing 
personal data, especially among the underrepresented and vulnerable populations [56]. 
New legislations are being enacted to protect personal data including summary-level 
statistics. These may put legal barriers against even simple collaborative analyses that are 
being routinely performed.

Our approach, named SVAT, makes use of post-quantum cryptography techniques 
[57] to encrypt the variant data to ensure provable confidentiality against untrusted enti-
ties. The data always stays encrypted while it is being analyzed, which ensures that the 
cloud service cannot snoop on the data. Also, even if the encrypted data is hacked or 
leaked there are no concerns about privacy. SVAT makes use of a vectorized data rep-
resentation to convert annotations and aggregations into numeric operations, which 
can be efficiently computed using Homomorphic Encryption schemes [58]. Due to its 
efficiency and flexibility, the vectorized representation can be used to build custom 
pipelines using basic operations such as unions, intersections, and genome-wide statis-
tic estimation while data from multiple collaborating sites are securely processed and 
integrated.

Utilizing the vectorized representation, we first implemented secure annotation of 
SNVs and indels. We present a memory/time optimization for indels where the annota-
tion is not explicitly dependent on the variant length. In comparison, SVAT assigns the 
high impact annotations with high concordance when compared to VEP and ANNO-
VAR. For the sample-wide aggregation of variants from multiple databases, SVAT 
utilizes a secure proxy re-encryption approach so that the data can be encrypted as mul-
tiple sources are combined.

Overall, SVAT provides a secure and flexible framework for privacy-aware outsourc-
ing of processing, filtering, annotation, and aggregation of genetic variants. SVAT 



Page 4 of 39Kim et al. BMC Bioinformatics          (2022) 23:409 

requires moderate-to-high memory and storage resources and incurs moderate runtime 
requirements.

Results
We first review the secure annotation and aggregation methods that SVAT implements. 
We next present the comparison with plaintext annotation/aggregation and computa-
tional requirements.

Overview of secure variant annotation and aggregation

We present the approaches for annotation (Fig. 1a) and aggregation (Fig. 1b) tasks.

Variant annotation

Figure 1a illustrates the secure variant annotation process. The variant annotation takes 
the set of target regions (i.e., a BED file), the variant coordinates (e.g., a VCF file), and 
gene annotations as input and annotates each variant with an impact value, e.g., “splice_
acceptor”, or “missense_mutation”. The target regions are used to filter the variants to 
the regions of interest such as protein-coding sequences or exons. The gene annotations 
are input as GFF/GTF files and they are central for variant annotation to describe the 
exact position of the coding sequences so that the untranslated regions (UTRs), start/
end codons, and coding frames can be explicitly identified for each gene and transcript. 
SVAT utilizes GENCODE gene annotations [59] by default. We exclude the transcripts 
that are annotated as nonsense-mediated decay and incomplete coding sequence 
because these transcripts may contain incomplete annotations coming from incomplete 
evidence.

Selection of target regions

The target regions are used to decrease the amount of data that needs to be submitted 
between the researcher and the annotation/aggregation server. SVAT utilizes, by default, 
the protein-coding transcript exons or coding sequences (CDS), which harbor the most 
consequential phenotype-impacting mutations on the genome (Fig.  2a). In addition, 
SVAT extends the ends of each exon by a certain length (10 base pairs by default) to 
include the variants in the introns that may impact splice acceptor/donor motifs. For 
GENCODE v31, we identified 754,713 protein-coding exons for 83,666 protein-coding 
transcripts covering 205,443,663 nucleotides. Further, when we exclude the untrans-
lated regions (UTRs), the target regions (with only coding sequences) cover 113,479,849 
nucleotides. The exclusion of UTRs is reasonable since UTRs contain variants that are 
relatively much lower impactful mutations compared to the coding sequences.

These target regions contain all possible alleles for all transcripts. We thus refer 
to it as “transcript-specific target regions”. We observed that there is a substantial 
number of CDSs in alternatively spliced genes where the frame and start/end coor-
dinates are exactly matching. From a variant annotation point of view, these CDSs 
provide redundant information because any variant that overlaps one of these CDSs 
will have the same impact on all the CDSs. To decrease the redundancy, SVAT 
assesses all the CDSs of each gene and uses the CDSs that are unique when the start/
end position and the coding frame are considered. It should be noted that this list 
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excludes the majority of the untranslated regions (UTRs) since the focus is on CDSs 
(with an end extension of 10 bp by default). This new set of target regions represents 
the targets in a gene-specific manner: For each gene, all the CDSs at every possible 
frame are included. Thus, we refer to these target regions as “gene-specific target 
regions”. The advantage of using gene-specific target regions can decrease the com-
putational requirements. We analyzed the 19,718 protein-coding gene annotations 

Fig. 1  The illustration of annotation, aggregation tasks. a The secure annotation task starts by vectorization 
of the variant loci on the target regions that cover multiple transcripts. The vectorized variant loci signal is 
encrypted by the researcher’s public key and submitted to the annotation server. The server performs secure 
multiplication of the variant loci signal and the impact signals and generates the annotated vector that is 
encrypted. The annotated vector is sent back to the researcher. The researcher decrypts the signal using the 
private key and translates the annotated variants. b The secure aggregation task starts by vectorizing the 
variant loci. Next, the matrices are encrypted by the owners. The encrypted genotype matrices from multiple 
databases are stored at the aggregation server. When an aggregation task is requested by a researcher, the 
server re-encrypts the matrices using re-encryption keys so that it can be decrypted by the researcher’s 
private key. The re-encrypted matrices are pooled and securely aggregated to compute the allele frequency 
at each position on the vectorized positions. The resulting frequency array (encrypted) is sent back the 
researcher and is decrypted by the researcher
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in GENCODE v31 and we identified 259,478 exons that cover 48,041,893 nucleotides 
in the gene-specific target regions. The gene-specific target regions can be used 
when the focus is on identifying the most impactful annotation of a mutation among 
multiple transcripts of a gene, which is the most common way that the mutations are 
summarized among multiple transcripts (Fig. 2b).

As the vectorized loci must represent every position on every transcript, the 
genomic coordinates will be redundantly represented on the vectorized loci. This is 
necessary because we would like to report the impact of any variant on overlapping 
transcripts which share exons.

Fig. 2  Illustration of the variant loci vectorization. a Example of variant locus vectorization over 7 target 
regions of 2 transcripts. 4 mutations are shown as they are mapped on the vectorized coordinates. Two SNVs 
overlap with both transcripts, the corresponding positions on targets 1,2 for 1st SNV and targets 6,7 for 2nd 
SNV are set to “1” for the vector that is corresponding to the alternate alleles of the SNVs. Similarly, 2 base-pair 
deletion is mapped to the vectorized positions impacted by the deletion and 2 consecutive entries in the 
vector are set to “1”. For the insertion, the position corresponding to the insertion is set “1”. b Example of 
transcript-specific (Top) and gene-specific (Bottom) target regions. The gene-specific regions do not contain 
one exon that is redundant in terms of variant annotation. c Illustration of the notations. d Illustration of 
the multiplication between the impact vector (58-bit annotation value vector) and the variant locus vector. 
The multiplication is indicated by the cross and the results vector is shown on the right. Any non-zero entry 
is illustrated by red rectangles. e Example decoding of the junction sequence using the neighborhood 
sequences for a 3-nucleotide deletion. The junction sequence is formed simply by joining the left and right 
neighborhood sequences of the first and last nucleotides of the deletion. f The 58-bit packing of variant 
annotation
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Adversarial model

The privacy and confidentiality of the genetic variants and genotypes are treated as sen-
sitive information. We assume that the variant annotations are not explicitly sensitive, 
and therefore the researcher is not an adversarial entity. In this scenario, the research-
er’s privacy (the privacy of the participants) needs to be protected against the untrusted 
annotation server, which we assume does not act maliciously (does not deviate from the 
protocols and does not collude with other users) but may want to snoop into the con-
tents of the variant and genotype data if they can.

There are two sensitive components for the genetic data: (1) Variant locus and alleles, 
i.e., chromosome, position, and alternate allele, and (2) the genotypes of the variants 
for each participant. For the variant annotation task, we assume the variant genotypes 
are not required and only the variant loci and alleles are necessary. This is reasonable 
since the impact is generally evaluated with respect to only the position and the alternate 
allele of the variants. We, therefore, will assume the annotation task requires protection 
of the variant loci and the alternate allele information.

To protect the variant loci, it is necessary to protect the locations of the variants, for 
example, by encrypting the chromosome and position values. Next, the encrypted loci 
can be annotated using, for example, a private (or secure) set intersection protocol, 
which may induce a high communication cost between the researcher and the annota-
tion server such that the client and the server must be up and responsive to the commu-
nication protocols. SVAT utilizes a framework based on homomorphic encryption (HE), 
which encodes the variants into a vectorized array, then encrypts the sensitive loci and 
genotype data once at the researcher’s computer. The data is encrypted while in transfer 
and while it is being processed at the annotation server. After the annotation is finished, 
the researcher receives the annotated data, decrypts it, and translates the vectorized 
annotation information. We describe these steps below:

Vectorized representation of the variant loci

The vectorization is necessary to protect the variant loci that fall on the target regions. 
The idea is to enumerate the mutations (i.e., SNVs) (All positions on all transcripts and 
all alleles) and use the vectorized array for any annotation task. This way, the untrusted 
entity always receives the encrypted mutational status of all nucleotides (of all alleles) 
on the target regions regardless of whether there is a mutation or not. Thus, it will not 
learn anything about the variant loci. The main advantage of the vectorization is that 
the vector coordinates are not sensitive since they are standardized and do not leak 
any information (Fig. 2c). Also, as practical homomorphic encryption systems such as 
Brakerski-Gentry-Vaikuntanathan (BGV) [60], Brakerski/Fan-Vercauteren (BFV) [61, 
62], Fully Homomorphic Encryption over the Torus (TFHE) [63], and CKKS [64] sup-
port homomorphic operations on encrypted vectors, we only need to use a conventional 
encryption method of the system and no further elaboration is necessary for homomor-
phic computation. Thus, the vectorized mutations can be processed using packing and 
streaming operations to improve performance [33].

We describe the general steps of the vectorization process, which aims at produc-
ing a linearly indexed array (i.e., a vector) from the overlapping target regions on the 
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genome (see Methods for details). SVAT first extracts the start/end coordinates of the 
target regions. Each target region (e.g., a protein-coding exon) is extended (by lext base 
pairs) to include variants that may impact splicing. Next, SVAT sorts the extended tar-
get regions with respect to first to start positions and then the element ids (e.g., gene/
transcript name). Next, the sorted target regions are “stitched” together (i.e., connect the 
leftmost end of each region to the rightmost end of the region before this region) in the 
order that they are sorted (Fig. 1a). After stitching, every position on the target regions 
can be indexed by one index value on the stitched array, which is the final vectorized 
array. As we have discussed above, the vectorized array contains as many positions as 
the total number of nucleotides (which we denote by lT ) covered by the target regions. 
Every position on the vectorized array can be mapped to a unique position on the target 
regions and vice versa.

A position on the genome can map to multiple positions on the vectorized representa-
tion since the genomic position may overlap with multiple target regions, i.e., multiple 
CDSs of a gene. To map a genomic coordinate to the vectorized coordinates, we first 
identify the target regions that overlap with the genomic coordinate. Next, the positions 
on the target regions are mapped to the vector coordinates. Since the target regions are 
sorted with respect to the start position, the searching of genomic coordinates within 
sorted target regions can be efficiently performed (Fig. 2b).

Vectorized mutation Loci

Given the target regions T  , SVAT allocates a vector of length lT (indexed by the vec-
torized coordinates) and stores the variant locus information on the vector. Given a 
variant allele a ( a ∈ {A,C ,G,T , δ, ι} the nucleotides of SNV, and deletion and insertion 
(representing 1-base-pair, i.e., 1-bp, deletion, and 1-bp insertion), an array of lT is allo-
cated, and each array entry whose vectorized position overlaps with a variant is set to 1 
(Fig. 2b,c). All other positions are set to 0 (Fig. 2d):

where �(T )
a (ν) denotes the variant loci array for allele a . The above equation simply 

describes that the position ν on the mutation loci array is set to 1 if there exists a muta-
tion with alternate allele a whose genomic coordinate maps to ν . For deletions, a sepa-
rate variant loci array can be generated for different deletion lengths and set the position 
where the deletion starts as 1 in the array. Alternatively, SVAT makes use of 1-bp dele-
tion arrays such that each deletion is treated as a sequence of 1-bp deletions and �(T )

a (ν) 
is set to 1 for every position that overlaps with a deletion. This is a more efficient repre-
sentation because only one variant loci vector is sufficient. For insertions, each variant 
is described by the position where insertion manifests. The array index that maps to the 
insertion’s coordinate is set to 1.

Encryption of the vectorized variant loci

The researcher (or the data owner) provides the public key for the encryption. Based 
on the encryption parameter setting of an underlying homomorphic encryption 
system, we denote l  to be the maximal length of a plaintext vector. Then, an array 

�(T )
a (ν) =

1; f ν contains alternate allele a
0; Otherwise
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of length lT  is divided into plaintext vectors of size less than l  , each of which is 
encrypted using the public key of the system.

Vectorized annotation information

Similar to the variant locus array, a vector of length lT  stores the annotations of all 
mutations on the target regions (Fig.  2d). This is very similar to the mutation loci 
vector, except that for each position ν , the array stores a 58-bit entry that packs the 
annotation information:

The impact value indicates the impact of the mutation located at vector position ν 
with allele a . The impact information is retrieved from a variant annotation tool, VEP 
[50], by default. SVAT packs the impact information and the nucleotide information 
(Fig. 2e) around the mutation locus. As illustrated in Fig. 2f, the packed impact infor-
mation contains:

1.	 Coding frame (2 bit): This is the coding frame of a mutation that is a value out of the 
set {0,1,2}

2.	 6-base pair nucleotide neighborhood (18 bits in total): SVAT uses 3-bits for each 
nucleotide and extracts an 18-bit value to encode the 6-base pair vicinity of the 
mutation, which is the one-codon neighborhood of each position.

3.	 The assigned impact string identifier assigned by VEP (38 bits): A bitmap (38-bits) 
that describes the impact values of the mutation out of the 38 impact values that VEP 
assigns to each mutation. The bitmap is generated by setting the bits to 1 for the indi-
ces that correspond to the impact strings assigned by VEP. Table 1 shows the impact 
strings that SVAT uses.

In order to generate the vectorized annotation, VEP is run to generate the annota-
tion of the mutations on all nucleotide positions of the target regions and all alleles. 
For deletions, VEP can be either run for multiple deletion lengths, or SVAT can use 
the 1-bp deletion annotations to build the deletion annotation vector. For insertions, 
only the impact values for the 1-bp insertion events are stored. Each entry in the 
annotation vector is allocated and assigned the packed annotation information that 
contains the corresponding coding frame and VEP annotation string from VEP anno-
tations. Nucleotide neighborhood information is extracted from the hg38 genome 
sequence:

The values are concatenated and stored in a 64 bits long data type. This is a flexible 
representation whereby the storage can be extended with more functional information 
such as SIFT/Polyphen [65] scores and interspecies conservation value [65].

I
(T )
a (ν) =

{
Impact of allele a at position ν

0;Otherwise

Impact Value = (VEP Impact Index)
� �� �

38 bits

�
�
�
�
�
�
�

�
Neighborhood

�

� �� �

18 bits

�
�
�
�
�
�
�



Coding Frame
� �� �

2 bits




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Secure SNV variant annotation

In the secure annotation scenario, the researcher generates the vectorized mutation 
array, encrypts it, and sends the encrypted data to the annotation server. The server gen-
erates the vector annotation signal as described above. The annotation of the variants is 
performed by multiplication of the mutation vector and the annotation vector (Fig. 2d). 
In the resulting vector, the entries for which there is an SNV are set to 0, and others are 
set to the annotation value. The server performs the multiplication over encryption and 
sends the results back to the user. For each position on the array that is non-zero, a vari-
ant exists. The client can use streaming operations to decrypt the downloaded data and 
filter out non-zero annotation entries (64-bit packed annotation information), which are 
unpacked according to the bit packing above. The conversion of the vector coordinates 
to genomic coordinates is performed while looping over the vectorized coordinates.

Secure small deletion variant annotation

Annotation of deletion variants is more complex than SNV annotations since deletions 
can have variable lengths. One way to approach this is to annotate all deletions up to 
a certain length and store annotations in a vectorized annotation array for each dele-
tion length. It is straightforward to implement this approach with the current vectorized 
annotation signal framework.

Table 1  VEP Impact terms that impact coding gene regions

 The first column shows the impact term. Each cell with ‘1’ indicates the gene element that is impacted. The full set of impact 
terms is provided in Supplementary Table 1 in Additional file 1

Term CDS Splice
Region

Splice
Acceptor

Splice
Donor

5’
UTR​

3’
UTR​

Start
Codon

Stop
Codon

Intron

intron_variant 0 0 0 0 0 0 0 0 1

3_prime_UTR_variant 0 0 0 0 0 1 0 0 0

5_prime_UTR_variant 0 0 0 0 1 0 0 0 0

coding_sequence_variant 1 0 0 0 0 0 0 0 0

synonymous_variant 1 0 0 0 0 0 0 0 0

stop_retained_variant 0 0 0 0 0 0 0 1 0

start_retained_variant 0 0 0 0 0 0 1 0 0

incomplete_terminal_codon_variant 1 0 0 0 0 0 0 0 0

splice_region_variant 0 1 0 0 0 0 0 0 0

protein_altering_variant 0 0 0 0 0 0 0 0 0

missense_variant 1 0 0 0 0 0 0 0 0

inframe_deletion 1 0 0 0 0 0 0 0 0

inframe_insertion 1 0 0 0 0 0 0 0 0

transcript_amplification 0 0 0 0 0 0 0 0 0

start_lost 1 0 0 0 0 0 1 0 0

stop_lost 1 0 0 0 0 0 0 1 0

frameshift_variant 1 0 0 0 0 0 0 0 0

stop_gained 0 0 0 0 0 0 0 1 0

splice_donor_variant 0 0 0 1 0 0 0 0 0

splice_acceptor_variant 0 0 1 0 0 0 0 0 0
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Rather than keeping the annotation vector for each deletion length, SVAT can also 
make use of the 1-base pair deletion impact signal to build the variant annotation: For 
deletion of nucleotides [a, b] ( a < b ), SVAT loops over all nucleotides and merges the 
impacts of 1-base pair deletion at nucleotide ν in [a, b] . While merging, SVAT keeps 
track of the impact on coding sequence by counting the number of nucleotides that are 
deleted from CDSs. In the case that any 1-bp deletion impacts a start/stop codon, SVAT 
uses the 18-bit nucleotide information (coding frame) and extracts the 6-bp neighbor-
hood to assess start/stop gain/ retainment (Fig. 2f ). This is also done for the splice loss 
events. All retainment and loss events are annotated with the assumption that mRNAs 
are read from 5’ to 3’ while in translation, i.e., the reading frames are disrupted towards 
the 3’ end of the mature mRNA sequence after deletion and insertion events [66]. The 
current framework that SVAT utilizes is flexible enough to accommodate longer neigh-
borhood sizes so regions larger than 1-codon neighborhood can be evaluated while 
annotating deletions.

As in secure SNV annotations, the researcher generates the vectorized 1-base pair 
deletion vector for all the deletion mutations that will be annotated. In this vector, 
any nucleotide that overlaps with deletion is set to 1 and other nucleotides are set to 
0, this way the vector �(T )

δ (ν) represents the deletion state of all nucleotides. These are 
encrypted and sent to the annotation server. The annotation server generates the vector-
ized annotation signal for all the 1-base pair deletions on the target regions. For this, the 
server annotates all the 1-base pair deletions on the target regions using VEP, then packs 
the impact values into the 64-bit impact array. The impact array ( I (T )

Del (ν) ) is then securely 

multiplied with the encrypted 1-base pair deletion vector, i.e., I (T )
δ (ν)×�′δ(T )(ν) . In the 

multiplication, any position that does not overlap with any deletion is set to 0 and other 
positions that overlap with a deletion contain the 64-bit packed annotation value of the 
1-base pair deletion at the position. Upon receipt of the results, the researcher decrypts 
the annotation vector. For every consecutive position with non-zero entries, the server 
tracks the deletion and sets the annotation as described above.

Secure small insertion variant annotation

Unlike a deletion, an insertion occurs at a single location and is described by the 
sequence that is inserted at the location. After receiving the product of the impact vector 
and the encrypted insertion loci vector, I (T )

ι (ν)×�
′
ι(T )(ν) , the array is decrypted. After 

the positions with non-zero entries are mapped back to the insertions. For this, SVAT 
again utilizes the 6-base pair neighborhood sequence and the coding frame at position ν 
and builds the inserted junction sequence at the insertion site. This information is used 
to translate the codons that are inserted and the final impact on CDS, stop/start codons, 
and splice sites are reported.

Genotype aggregation

The genotype aggregation aims to compute the frequencies of the mutations by aggre-
gating over many samples. f (T )

a (ν) =
∑

kG
(T )

a,k (ν) , where nG denotes the number of 

individuals in the genotype matrix, f (T )
a (ν) denotes the frequency of the allele a for the 



Page 12 of 39Kim et al. BMC Bioinformatics          (2022) 23:409 

variant at vector coordinate ν (indexed on the target regions T  ), and G(T )

a,k (ν) indicates 
the genotype of the variant for individual k . The entries in the genotype matrix can hold 
the number of alternate alleles or just the existence of mutations. Aggregation of the 
alternate allele counts provides the allele frequency of a within the sample set, as ExAC 
database provides. Aggregation of variant existence provides the number of samples 
with the mutation, i.e., similar to genomic beacons [67, 68].

While aggregating the genotypes, it is necessary to ensure the confidentiality of the 
genotype matrix G(T )

a,k  from the untrusted aggregation server, which performs the 
computationally heavy task of secure aggregation. To compute the above summation 
securely, the genotype matrix is encrypted, denoted by G

′(T )

a,k  and the summation is eval-
uated using HE-based secure summation. Another important aspect of aggregation is 
to accommodate genotype matrices from multiple databases so that many samples can 
be aggregated together. The server needs to be able to manage multiple datasets that 
are encrypted with different keys. SVAT implements a proxy re-encryption protocol to 
convert the genotype matrices into the same key and perform the aggregation using this 
common key.

SVAT utilizes proxy re-encryption to securely re-code the genotype matrices (or any 
other type of data) so that they can be decrypted with the same secret key [69]. A trusted 
entity (such as NIH) is required who will perform the key management to manage the 
private keys necessary to generate the re-encryption keys. This is a reasonable assump-
tion since the sensitive datasets are generally deployed and protected by entities such as 
NIH (e.g. database of genotypes and phenotypes – dbGAP). When a researcher requests 
the aggregation service by aggregating M genotype matrices, the request is sent to the 
trusted entity, e.g. NIH., The genotypes matrices are all encrypted with different keys (as 
they are from different sources). The trusted entity first generates a public–private key 
pair and a corresponding re-encryption key for each of the matrices. The re-encryption 
keys are sent to the aggregation server, which re-encrypts all of the M genotype matrices 
decryptable with the same private key. Here, the aggregation server uses only the pub-
lic re-encryption keys without any knowledge of the private keys. After the genotype 
matrices are re-encrypted, the aggregation is performed by the secure summation of the 
encrypted genotype matrices at every position on the target regions. The resulting fre-
quency array, which is encrypted with the researcher’s public key, f ′a(T )(ν) , is sent to 
the researcher who can decrypt the frequency array and obtain frequencies.

If genotype matrices of multiple data providers are encrypted under different keys, 
then the server wishes to perform computation on such multi-key ciphertexts. One way 
to approach this is to use multi-key homomorphic encryption [70]. But the framework 
is still computationally intensive, making the system unsuitable for deployment in prac-
tice. Instead, we can alleviate the computational burden by the use of the conventional 
key switching approach of homomorphic encryption. Suppose that the key management 
party generates a switching key from a secret key of the input data to the common secret 
key and the re-encryption key is shared with the server. Then it enables the server to 
convert ciphertexts of genotype matrices to ciphertext decryptable with the secret key 
without decrypting ciphertexts.
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SNV aggregations

The secure aggregation of the SNVs is straightforward as they are located at one position 
on the vectors. In other words, the SNV frequency aggregation can be computed simply 
by marginalizing at every location.

Indel aggregations

Unlike SNVs, the deletions cover must be tracked in each sample and aggregated. As 
with annotation, we make use of the 1-base pair deletions to build the aggregation of 
deletion of multiple nucleotides. Given a position ν , and the 1-base pair deletion gen-
otype matrix, G(T )

δ,k (ν) ; the indel of length lδ is aggregated by counting the individuals 
k that satisfy the following: The deletion state of all base pairs in [ν, ν + lδ] are set to 1 
and that the entries at (ν − 1) and (ν + lδ + 1) are set to 0. This way, we make sure that 
the deletion spans exactly the coordinates in [ν, ν + lδ] . This procedure can effectively 
aggregate all the deletions that are engulfed in the target regions.

The aggregation of insertions requires explicit matching of the inserted nucleotides. 
This requires enumeration of all possible insertions. SVAT currently does not explic-
itly support aggregation of short insertion variants. However, the position at which 
the insertion happens can be aggregated (just by simple aggregation as for SNVs) to 
compute the frequency of insertion at each position.

Simplifications and extensions  It should be noted that as NIH is trusted, the research-
er’s keys can be generated by the NIH, too, which would minimize the computational 
load on the researcher, who can receive the data directly from the aggregation server. 
Secondly, the aggregation server does not have to store the encrypted genotype matri-
ces. They can be discarded after the frequency vector is generated once for all the 
alleles and deletion lengths of interest. The above aggregation formulations can be 
expanded to incorporate the variant call qualities as it is done in GnomAD [49].

Comparisons with VEP annotations

To compare SVAT’s secure annotations with the plaintext VEP annotations, we simu-
lated mutations on protein-coding genes. For this, we focused on the 10 megabase 
region on chromosome 1 (40mbase-50mbase) of hg38 assembly and simulated the 3 
types of variants (SNVs, deletions, insertions). This region contains 6,996 exons of the 
1,152 transcripts, which are used as the target regions after 100 base pair extensions. 
We excluded the transcripts that are tagged with “incomplete_terminal_codon_vari-
ant” and “NMD_transcript” tags. In total, the target regions cover 3,409,574 nucleo-
tides. For all variant types, we used a 25% probability of introducing a mutation.

Comparison of SNV annotations

SNVs are simulated by replacing the reference nucleotide with another nucleotide 
such that each non-reference allele is selected randomly with equal probability, i.e., 
palt =

1
3 . With a per-position SNV probability of 0.25, we generated 853,756 SNVs. 

Each mutation is annotated with VEP to generate the baseline annotations. We next 
annotated the simulated SNVs using SVAT. We finally compared the annotations in 
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terms of matches between assigned impact strings for each variant. As expected, VEP 
and SVAT have yielded the same annotations.

Comparison of deletions

We described 2 approaches by which deletions can be annotated. The first approach 
is using deletion-length specific annotation vectors (and corresponding mutation vec-
tors). Similar to SNV annotations, this approach will enable us to exactly replicate the 
VEP annotations as it explicitly encodes the impact strings into the annotation vector 
for deletions of every length.

The second approach uses the 1-bp deletion annotation vector and 1-bp deletion vari-
ant loci vectors. As described earlier, the impact of each deletion whose length is greater 
than 1-bp needs to be translated using the 1-bp deletion annotations. The impact val-
ues assigned by SVAT may, therefore, not perfectly match VEP annotations. To evalu-
ate the mismatches systematically, we simulated 853,145 deletion variants whose lengths 
are randomly selected (uniformly distributed with [1, 10] ). The simulated deletions are 
annotated using VEP. Then we simulated the secure annotation by SVAT where the 
1-bp deletion annotation signal is multiplied with the 1-bp variant loci vector and the 
product vector (i.e., annotated vector) is translated to generate the annotation for all the 
deletions.

While comparing the annotations, we first focused on the 6 impact values that are 
assigned by VEP whose impact strings are classified with the HIGH impact category. 
These are (1) frameshift_variant, (2) splice_acceptor_variant, (3) splice_donor_variant, 
(4) stop_gained, (5) stop_lost, (6) start_lost. Next, we compared the high-impact annota-
tions that are assigned to the variants by VEP and by SVAT. For each high-impact anno-
tation assigned by SVAT (VEP), we counted the frequency of mismatching annotations 
assigned by VEP (SVAT).

Mismatch of HIGH impact category

We first counted the number of mismatches in the HIGH impact category where we 
found the number of annotations where SVAT and VEP did not assign a high impact 
annotation. We found that out of 2.7 million matching annotations (Per variant and 
transcript), 2,068 (Less than 0.1%) annotations contain a mismatch where SVAT or VEP 
assigned one of the HIGH impact annotations while the other did not. We next analyzed 
the mismatches for each HIGH impact category. Figure 3 shows the comparison of high-
impacting terms. We describe the mismatching annotations and justify the annotations 
assigned by SVAT. We believe this comparison is reasonable since annotation of indels is 
not definitive and different methods annotate indels differently [71].

SVAT Specific frameshift annotations (missing in VEP annotations)

The most frequent mismatch in annotations are variants that are annotated as splice_
acceptor or splice_donor by VEP whereas SVAT assigns them as frameshift mutation, in 
addition to splice_acceptor or splice_donor. Upon inspection, we found that VEP’s anno-
tations are disjoint for these classes, i.e., splice_acceptor and splice_donor annotations 
do not overlap with frameshift annotations.
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The stop and start loss are the two other mismatching VEP annotations where SVAT 
additionally assigns frameshift annotations. These mutations are also annotated with 
stop and start loss impacts by SVAT, in addition to frameshift. We also observed that 
VEP annotates start and stop losses as frameshift only when the deletion is exclusively in 
the coding sequence and impacts a start or a stop codon by 1 or 2 nucleotides (Fig. 3a). 
Thus, SVAT performs a more complete annotation of these mutation classes.

Similarly, numerous mutations SVAT annotates with frameshift and stop_retained are 
annotated only as stop_retained by VEP. We inspected several of these mutations and 
found that Annovar annotates these mutations as frameshift as well. A small fraction 
of these mutations is found to be downstream stop codons that VEP traces. For these 
mutations, SVAT does not assign stop_retained impact. This is because SVAT analyzes 
only one codon that the deletion impacts. This is one of the current limitations of the 

Fig. 3  Examples of mismatches between SVAT and VEP while annotating deletions. a Two examples of 
deletions that impact CAP1 gene as they are annotated by VEP. 9-bp deletion that engulfs the stop-codon 
(shown in red) are annotated by VEP. This variant is annotated by VEP only as “stop_lost”. On the other hand, 
the 4-bp deletion that deletes only 1 base pair from the stop-codon is annotated as “frame_shift, stop_lost”. 
b Similar to (a), the start-codon impacting variants are annotated by VEP as “start_lost” for an 8-bp deletion 
(top) and as “start_lost, frameshift” for a 9-bp deletion (bottom). VEP does not assign “frame_shift” term when 
the start-codon is engulfed in the variant. In both of these cases, SVAT assigns both frame_shift and start_lost 
terms. c Examples of two deletions that are discordantly annotated by SVAT and VEP. For both deletions, SVAT 
annotates by “frameshift_variant, stop_gain” whereas VEP annotates the 2-bp deletion (left) as frameshift 
and the 5-bp deletion (right) as “frameshift_variant, stop_gain”. 2-bp deletion (left) also causes a stop-gain at 
the junction where frame contains a “TGA” stop-codon. This is detected by SVAT while VEP does not report 
the stop-gain. It should, however, be noted that these deletions are both in HIGH impact class and would 
be picked up as candidates in downstream analyses. d An example of a stop_gain that is detected by VEP 
and missed by SVAT. The deletion that ends right at the splice junction site creates a junction with a stop 
codon. Both mutations are in HIGH impact class as this is also a frameshift mutation. e Another example of a 
downstream stop-codon that is missed by SVAT and picked up by VEP. The 8-bp deletion engulfs stop-codon 
and creates a new frame such that a downstream stop-codon (“TGA” stop codons as shown in figure) is 
created within the new coding frame. This mutation is marked as HIGH-impact by VEP and by SVAT
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default parameters of SVAT that uses a three-base pair neighborhood sequence and can 
be mediated by increasing the neighborhood size.

We also would like to highlight the cases of start_retained and start_lost impact 
classes. VEP annotates some of start_lost mutations with start_retained. We chose to 
exclude the start_retained variants exclusively because the start codon is surrounded 
upstream by conserved binding motifs that are used for translation initiation, such as 
the Kozak motifs [72]. This does not apply to stop_retained class since stop codons do 
not require surrounding sequence motifs to terminate translation, unlike start codons 
(Fig. 3b).

SVAT‑specific stop‑gain annotations

We next focused on SVAT-specific stop-gain annotations. Among these, most of 
them are annotated as frameshift by VEP. All of these mutations are also annotated as 
frameshift with SVAT. While we inspected numerous cases, we could not identify a spe-
cific reason why VEP chooses not to annotate these variants as stop-gain (Fig. 3c). We 
also found that VEP does not assign stop-gain to some of the inframe deletion mutations 
that seem to introduce early stop-gains in the coding sequence. Previous studies have 
pointed out the discrepancies among annotation tools regarding the assignment of stop-
gain mutations [71].

SVAT‑specific stop‑lost annotations

We observed that majority of the mutations that are annotated as stop-lost only by SVAT 
are annotated as stop-retained by VEP. These are annotated as stop-retained by SVAT as 
well (in addition to stop-lost). Upon inspection, we found that the main reason for this 
discrepancy is that VEP assigns stop-lost and stop-retained annotations disjointly.

VEP‑specific stop‑gain annotations

Some mutations manifest at the splice sites such that the deletions at the end of CDS cre-
ate a stop-codon on the processed mRNA sequence after splicing. This case is currently 
not handled by SVAT yet and represents another limitation (in addition to the tracking 
of the downstream stop-gains) of SVAT (Fig. 3d,e). This case can be handled by keeping 
track of the neighborhood coding sequence, in addition to the genomic neighborhood.

Comparison of insertions

For comparison of insertions, we performed a simulation with a 25% chance of having 
an insertion at any position. For any insertion, the length is selected uniformly between 
1 and 10 base pairs, and inserted sequence is generated as a random string of {A, C, G, 
T} nucleotides. We generated 854,639 variants on the target and annotated them with 
SVAT and VEP. It should be noted that the translation phase of insertions only requires 
translating the inserted sequence and computing the frame. Out of the 2,352,611 anno-
tations that are matching in variant and transcript among VEP and SVAT, we identified 
only 246 annotations exhibit a mismatch in the high impact category, i.e., either one of 
the methods provides a HIGH impact annotation. When we analyzed each impact string 
(as for deletions), we observed a similar pattern where SVAT-specific stop-gain and 
stop-loss annotations are matched by frameshift and stop-retained annotations that are 
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assigned by VEP, as with deletion cases. The stop-gain that manifests by the insertions at 
the ends of exons is again missed by SVAT (as expected) (Fig. 3d,e).

Overall, these results indicate that SVAT has comparable and more exclusive anno-
tations compared to VEP. We do not provide these results as SVAT performing more 
accurately than VEP because SVAT is based on VEP annotations. In addition, the default 
parameters of SVAT may exhibit several limitations for a small number of events, namely 
(1) downstream stop-codons and (2) indels at the end of CDSs.

Comparison with ANNOVAR annotations

We next compared the variant annotations from SVAT with ANNOVAR [51], one of the 
most popular tools for variant annotation. ANNOVAR generates annotations for each 
variant at the gene-level, where each variant is assigned a single annotation term over 
multiple transcripts. The reported annotation corresponds to the most damaging impact 
over all transcripts of the gene. This is different from the transcript-level reporting strat-
egy of SVAT (and VEP) where each transcript is independently annotated in a separate 
line in the output. Because many transcripts share exons at the same coding frame, 
this creates redundancy in the final report, but it is also systematically more complete 
because each transcript can be easily extracted from the output with the impact string.

Because of these differences, we focused on a gene-level comparison of SVAT and 
ANNOVAR rather than an annotation-level comparison that we performed with VEP. 
For each variant, we pooled the annotation terms (e.g. “inframe_deletion, missense_vari-
ant”) assigned by SVAT to all of the transcripts. Next, we overlapped the variants by 
their identifiers between SVAT and ANNOVAR outputs and evaluated the high-impact 
annotations that are exclusively assigned by SVAT and ANNOVAR. Below we summa-
rize these differences. It is worth noting that previous studies have performed compari-
sons of VEP and ANNOVAR and these methods have been found to produce slightly 
discordant results [73].

Comparison of terms assigned by SVAT and ANNOVAR

SVAT and ANNOVAR use different annotation terms for reporting variant impact. It 
should also be noted that SVAT (similar to VEP) provides more granular annotation 
information. For example, SVAT separates splice variants into acceptor/donor variants 
and also variants that are close to splicing motifs as “splice_region” (within 1–3 bases of 

Table 2  The matching between the impact terms between ANNOVAR and SVAT

 Each row shows the matching terms that best correspond to the impact implied by the corresponding method

ANNOVAR impact term SVAT impact term

Frameshift insertion/frameshift deletion frameshift_variant

Nonframeshift insertion/nonframeshift deletion inframe_insertion / inframe_deletion

Splicing splice_acceptor_variant, splice_donor_variant

Startloss start_lost

Stopgain stop_gained

Stoploss stop_lost

Nonsynonymous SNV missense_variant

Synonymous SNV synonymous_variant
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the exon or 3–8 bases of the intron). However, ANNOVAR did not make a distinction 
between splice acceptor and donor sites. For each annotation by ANNOVAR, we con-
catenated the terms assigned to the splicing (column 6) and protein sequence (column 9) 
terms to build the collective list of impact strings assigned by ANNOVAR. To match the 
assigned terms, we assessed each impact term assigned by ANNOVAR and identified 
the best matching term assigned by SVAT. The matching terms of SVAT and ANNOVAR 
are shown in Table 2.

Single nucleotide variants

We used the simulated SNVs from our previous comparison and compared their variant-
level annotations as described above. Out of 853,756 simulated SNVs, we found differ-
ences in annotations of 429 variants on 3 genes. When we studied these in further detail, 
we found that the discordant annotations are caused by differences in the annotations of 
these genes. Overall, this comparison indicates a very high concordance between SNV 
annotations of SVAT and ANNOVAR.

Deletions

We next compared the annotations of simulated deletions between SVAT and ANNO-
VAR. Over the 853,146 simulated deletions, we found 148 variants were annotated 
with a high-impact term exclusively by one method. These variants are predominantly 
located on genes whose annotations are changed between the annotations used by SVAT 
and ANNOVAR. The assignment of high-impact annotations of SVAT and ANNOVAR 
exhibit very high concordance for deletions.

We next compared the more detailed annotation differences between ANNOVAR and 
SVAT among the high-impact variant annotations. For this, we focused on the high-
impact terms that were discordantly annotated by the two methods.

Deletions annotated with  “frameshift_variant” by  SVAT, and  “stop‑gain” by  ANNO‑
VAR  The most frequent difference was 2,924 deletions assigned as frameshift deletions 
by SVAT and stop-gain by ANNOVAR. Assessing these further, we observed that these 
deletions are generated by a gain of a stop-codon that is downstream of a frameshift dele-
tion (Fig. 4a). Thus, both methods are correct by assigning a high-impact annotation, and 
ANNOVAR provides more information by reporting a downstream stop-codon.

Deletions annotated as “splice_donor_variant” by SVAT exclusively  We found that 475 
deletions were exclusively annotated as splice donor impacting deletions by SVAT and 
were not annotated by ANNOVAR by a high impact annotation term. These deletions 
reside in the spliced 5’ or 3’ UTRs without any impact on the coding sequences of the 
transcripts (Fig. 4b). It is not clear if these mutations should be classified as high-impact 
mutations because there is no impact on the coding sequence. However, it is known that 
UTRs harbor regulatory sequences, and changes in the appropriate splicing patterns may 
regulate, for example, RNA processing [74]. Notably, VEP assigns HIGH_IMPACT to 
these deletions. The appropriate classification of these variants requires further research 
into their prevalence and potential association with gene expression or phenotypes.
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Deletions annotated with  “frameshift_variant, splice_donor_variant” by  SVAT 
and “stop‑gain” by ANNOVAR  We found 184 deletions that were annotated in this cat-
egory. Similar to the previous case, we observed that these mutations are frame-shift 
mutations that create a downstream stop-codon right after the deletion. In addition, 
these deletions impact the splice donor site. ANNOVAR did not report a splicing annota-
tion for these deletions (Fig. 4c).

Deletions annotated as “frameshift_variant;stop_lost;stop_retained” by SVAT and “non‑
frameshift” by ANNOVAR  We found 160 deletions where a deletion impacted the stop 
codon and this codon was compensated by the downstream sequence in the 3’ UTR or 
intergenic region. These deletions were annotated as non-frameshift by ANNOVAR. We 
believe that the description of SVAT is more informative as it describes the loss of the 
original stop codon and retention of the new stop codon albeit with redundancy (Fig. 4d).

Deletions annotated with “splice_acceptor_variant” exclusively by SVAT.
We found 103 deletions that impacted the splice acceptor sites in UTR without impact 

on coding sequences. Similar to the case of splice donor variants, these deletions impact 
the non-coding UTR region of the genes.

Fig. 4  a 8-bp deletion annotated as frameshift SVAT and stop-gain by ANNOVAR b 9-bp deletion annotated 
as splice-donor by exclusively by SVAT c Example of 9-bp deletion annotated as splice-donor and frameshift 
by SVAT and stop-gain by ANNOVAR d Example of a 1-bp deleltion annotated as frameshift and stop_
retained by SVAT and nonframeshift by ANNOVAR
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Insertions

We next compared the high-impact terms assigned to 854,639 simulated insertion vari-
ants by SVAT and ANNOVAR using the variant-level comparison.

Insertions annotated with “frameshift_variant;splice_region_variant” by SVAT and “splic‑
ing” by  ANNOVAR  The most common mismatches among annotations of insertion 
variants are in this class (1,250 insertions). These insertions are found to be right at the 
splice junction of the coding exons between the canonical splicing motif and the coding 
sequence. These would therefore not impact the splicing motif (Fig. 4e). We expect that 
they would only extend the coding sequence by the length of the insertion. The lengths 
of the insertions in this category were not a multiple of 3-base pairs, which indicates that 
they will likely cause a frameshift in the translation. We, therefore, conclude that SVAT’s 
(and VEP’s) frameshift is a slightly more appropriate annotation for these mutations com-
pared to a splicing annotation. It should, however, be noted that there can be unknown 
motifs within the exon that regulates the splicing, and therefore splicing may be impacted 
by these insertions. We, therefore, refrain from indicating that ANNOVAR incorrectly 
annotated these variants.

Insertions annotated with “inframe_insertion;splice_region_variant” by SVAT and “splic‑
ing” by ANNOVAR  Similar to the frameshift insertion above, we found 480 insertions 
whose lengths are exact multiples of 3-base pairs were annotated as primarily by splicing 
by ANNOVAR.

Insertions annotated with  “frameshift_variant” by  SVAT and  “stopgain” by  ANNO‑
VAR  367 insertions were found to cause a frameshift coupled with the manifestation 
of a downstream stop codon in the new coding frame. While SVAT does not report the 
stopgain for these insertions, the high-impact annotation is reported which can provide 
be used to select these variants in the downstream analyses.

Insertions annotated with  “frameshift_variant” by  SVAT and  “stoploss” by  ANNO‑
VAR  We found 349 CDS overlapping insertions, whose lengths were not multiple of 
3-base pairs causing frame shift in translation. ANNOVAR assigned these variants exclu-
sively to stoploss annotation. In general, a frameshift should be expected to create a loss 
of stop codon and both methods imply a similar annotation on the effect.

Insertions annotated with "inframe_insertion" by SVAT and “stoploss” by ANNOVAR  145 
insertions whose lengths were multiple of 3 base pairs were found to be right before the 
stop codons and were annotated differently by SVAT and ANNOVAR (Fig. 4f ). As such, 
these insertions would only extend the transcript by a multiple of 3 base pairs and should 
not impact the stop codons. It is viable that the motifs around the stop codons may be 
disrupted by the insertions [75] and impact the stop-codon signal.

Insertions annotated with "frameshift_variant;stop_lost;stop_retained" by SVAT and "non‑
frameshift insertion" by ANNOVAR  We found 108 insertions that disrupt a stop-codon. 
These insertions also compensated for the disruption by introducing a downstream stop 
codon right after the insertion. As we described above, a similar case was observed for 
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deletions. SVAT provides a detailed impact of the loss of the original stop codon and 
retention of the new downstream stop codon. In comparison, ANNOVAR annotates these 
variants as “nonframeshift”. This should not impact downstream analysis because these 
insertions are not impactful on the mRNA, processing, and the final protein sequence.

The remaining differences in the assigned high-impact annotations are generally sub-
classes of the above cases and a small portion is caused by differences in gene annota-
tions used by ANNOVAR and SVAT. In summary, SVAT and ANNOVAR agree on the 
overwhelming majority of the high-impactful annotations. A small fraction of the dif-
ferences that we discuss above stem from differences in interpretation and precedence 
order of reported annotations by ANNOVAR.

Resource requirements for transcriptome‑wide annotation of variants

We test the resource requirements of annotation using the variants identified by the 
1000 Genomes Project.

Annotation vector generation (server)

The first step of annotation is the generation of the annotation vector at the server. We 
extracted the protein-coding transcripts annotated in the GENCODE’s version 31. We 
used the 1,135,699 exons over 152,597 transcripts that cover 297,541,678 nucleotides, 
which is the length of the vectors for annotation and variant vectors. We have enumer-
ated all possible single nucleotide variants (3 alleles per position) and 1-bp insertions/
deletions within the target regions (exons extended by 5-base pairs), which yields a total 
of approximately 1.5 billion mutations. SVAT relies on the annotation of these mutations 
to build the annotation vector. These mutations were annotated using XCVATR [76], 
a lightweight and efficient tool for the annotation of variants on protein-coding genes. 
Although SVAT utilizes VEP’s annotations by default, we used XCVATR for its compu-
tational efficiency compared to VEP. Also, our main goal here is to estimate the resource 
requirements and the choice of variant annotator does not impact the estimates of time 
and memory. Given the time and computational resources, VEP can be used to annotate 
the enumerated variants as well. This is a reasonable expectation because the variant 
annotation vector generation is performed only once on the server-side and it does not 
incur additional cost for new annotation tasks.

We measured the time, memory, and disk space requirements of annotation vec-
tor generation for SNV, and indel signals, which are shown in Table  3. Excluding the 

Table 3  Resource requirements of annotation vector generation

Annotation vector step Time (Sec) Peak memory usage 
(GB)

Disk space (GB)

1. Region extraction 22.85 0.26 0.052

2. Region separation 4.49 0.29

3. Variant enumeration 99.75 6.58 6.98

4. Enumerated variant annotation 66,558.10 357.28 34.23

5. Vectorization 3401.69 2.79 2.49
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enumerated variant annotation step, variant vectorization step takes the longest time 
for parsing approximately 1.1 billion per transcript annotations assigned to the 1.5 bil-
lion variants. Enumeration step requires the largest memory. The maximum disk usage 
is around 41.1 gigabytes (Sum of 6.98 Gb and 34.23 Gb from steps 3 and 4 in Table 3) 
for storing the annotations of enumerated variants and variants themselves, which are 
intermediate data. The final annotation vectors occupy 2.5 gigabytes of disk space. These 
steps are executed over 24 autosomal chromosomes in parallel (other than enumerated 
variant annotation). Of note, the requirements will scale linearly with the number of var-
iants and the total number of annotations.

Secure variant annotation steps (client and server)

We downloaded the coordinates for genetic variants from The 1000 Genomes Project on 
the hg38 assembly, which contains 78,229,218 variants (Data and Materials). We sepa-
rated SNVs (73,257,632), small insertions (3,509,416), and small deletions (1,462,170) 
(Step 1 in Table 4). We next generated the vectorized loci for all variants, using a 1-bp 
indel encoding approach. In this step, 2,971,174 variants were encoded on at least one 
of the target regions described in the previous step. The vectors are then encoded and 
encrypted (Steps 2 and 3 in Table 4). The encrypted variants occupy approximately 22.4 
gigabytes of hard disk space. After upload the encrypted variant vectors, the variants are 
annotated using the annotation vector (Step 4) and downloaded by the client, decrypted 
(Step 5), and finally translated (Step 6). The final translation yielded 8,216,281 annota-
tions on the protein-coding genes. Overall, the whole annotation process takes 780 s on 
the client and 27 s on the server. There is moderate-to-high memory requirement, which 
is around 123 gigabytes on the client and 108 gigabytes on the server. The disk usage of 
encrypted data is approximately 22.4 gigabytes on the client and server.

Non‑coding and regulatory element annotations

VEP can also annotate the impact of variants on non-coding elements (non-coding 
RNAs, regulatory regions, and transcription factor binding sites). VEP makes use of the 
ENSEMBL Regulatory Build [77] as the default non-coding element annotation. The 
non-coding annotation of variants that overlap with non-coding RNAs and regulatory 
elements consists of 3 types of consequences:

Table 4  Resource requirements of the variant annotation

Secure annotation step Site (client/server) Time (Sec) Peak memory usage (GB) Disk space (GB)

1. Separate VCF Client 120.79 0.001 0.50

2. Vectorization Client 238.67 0.69 0.17

3. Encoding and Encryption Client 34.44 58.03 22.45

4. Secure annotation Server 26.46 108.13 22.45

5. Decryption Client 82.53 122.97 22.45

6. Translation Client 303.26 0.93 0.72

7. Cumulative usage Client/server 779.68/26.46 122.97/108.13 22.45/22.45
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(1)	 Variants overlapping with the non-coding RNA exons (“non_coding_transcript_
exon_variant”)

(2)	 Variants overlapping with splicing sites of multi-exonic long non-coding RNAs 
(“splice_region_variant”, “splice_acceptor_variant”, “splice_donor_variant”)

(3)	 Variants overlapping with regulatory elements including transcription factor bind-
ing sites and peaks (“regulatory_region_variant”)

The non-coding annotation terms can be assigned to variants by overlapping them 
with the non-coding genes and cis-regulatory elements. This information can be stored 
using an element-level vectorized representation where each entry corresponds to 
a non-coding element and the value indicates the existence of a variant that overlaps 
with the respective element. The vectorized non-coding variant representation can be 
encrypted (similar to variant vector for coding genes) to provide data confidentiality and 
secure downstream analysis in a collaborative setting at an outsourcing server.

Here we estimate the resource requirements for secure analysis of the non-coding 
annotation vectors. For this, we downloaded the motif dataset from ENSEMBL Regu-
latory Build, the ChIP-Seq peaks from the ENCODE Project, and also used the long 
non-coding RNA exon annotations from The GENCODE Project. Overall, we focused 
on the 11,552,160 motifs with experimental evidence from ENSEMBL Regulatory Build. 
We identified 302,364 non-coding exons from GENCODE annotation. We included the 
splicing sites for each exon by extracting the 2-basepair vicinity at the ends of each exon, 
which results in 604,728 non-coding splice sites. Finally, we pooled all the ChIP-Seq 
peaks from the ENCODE project and identified 33,154,766 peaks, which were used as 
the peak annotations. We finally pooled all of the elements and build the non-coding 
variant annotation regions that comprise 45,614,018 elements.

The resource requirements of secure processing steps (starting from encryption 
in Table  4) scale linearly with the length of vectorized representation. By extrapolat-
ing from Table  4, we deduced that the resource requirement for secure processing of 
the non-coding representation (45 million elements) would be approximately 5 times 
smaller than the processing of the vectorized representations of protein-coding genes 
(297 million elements). This estimate does not include the resource requirement of the 
non-coding variant vectorization step (Step 2 in Table 4), which is performed at the cli-
ent. To estimate the resource requirement of this step, we vectorized the SNV and small 
indel variants (around 78 million variants) that are cataloged by The 1000 Genomes Pro-
ject. Out of the 78 million variants, 43,906,437 variants (56%) were encoded into one of 
the non-coding elements. We report the resource requirements in Table 5.

Overall, our results indicate that the current annotation framework can be utilized 
with moderate time, memory, and disk space requirements for annotation of the pro-
tein-coding variants and also annotation of non-coding variants at the element level.

Table 5  Resource usage by element-level vectorization of non-coding variants cataloged by The 
1000 Genomes Project

Variant vector step Time (Sec) Peak memory usage (GB) Disk space (GB)

Non-coding SNV Indel vectorization 989.35 9.31 1.73
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Estimation of impact on TF binding affinity

VEP can optionally assign changes induced on TF binding affinity by the mutations that 
overlap with motifs. The vectorized representation we describe above does not specify 
the position of the variant within the motifs (or the allele) and therefore must be modi-
fied for assigning the motif impact scores, which would require larger resources. Our 
current approach can be used to handle this by building a motif impact annotation vec-
tor that contains the impact of every allele at each position of the TF motifs. It would 
also be necessary to store the position of the variant within the motif and the alternate 
allele, which can be encoded into the variant vector.

Resource requirements of genotype aggregation and re‑encryption

Genotype aggregation for SNVs is performed by marginalization (i.e. sum) over the rows 
of the genotype matrix. To evaluate the time/memory and disk space requirements, 
we focused on the aggregation of the alternative allele frequencies over 1000 individu-
als using the genotype data from the phase3 of the 1000 Genomes Project [2]. As the 
target regions, we focused on the exons of 1000 genes on chromosome 1 that covered 
6.6 megabases of nucleotides. We divided the aggregation task into 3 different steps and 
report resource requirements for each step: (1) Encryption, (2) Aggregation, and (3) 
Decryption. For the aggregation task, SVAT aggregates the genotypes allele-by-allele 
(i.e., the genotype matrices corresponding to allele A, C, G, T), which can help decrease 
memory usage. Table 6 shows the resource requirements for genotype aggregation for 
each allele. The time and memory requirements are measured using 24 threads. The 
longest time for the aggregation task is spent in encryption: 96 s are spent encrypting the 
6.6 million-by-1000 genotype matrix for one allele. The disk space usage for one allele 
is around 83 gigabytes (approximately 13 bytes/position/sample). Aggregation takes 
around 2.56 s and uses 107 gigabytes of memory. Finally, the decryption takes around 
0.2 s and decrypts the 6.6 million long aggregated counts of the alleles at each position 
using 0.34 gigabytes of memory.

Our results indicate that the aggregation task can be fairly computationally intensive 
compared to the annotation task. This is reasonable since the genotypic data used in 
the aggregation task is much larger than the variant locus information that is used for 
annotation tasks. Our results also provide evidence that the vectorized representation 
can enable large optimizations and increased speed in the secure annotation and aggre-
gation tasks; these are enabled by the streaming operations that the new HE schemes 
take advantage of such as data packing and vectorization operations [33]. There is, how-
ever, an accompanying bottleneck on the disk space and memory usage of the vectorized 
representations.

Table 6  The resource requirements for aggregation of 6.6 megabases-by-1000 individuals genotype 
matrix for one allele

Time (Sec) Memory (GB) Disk space (GB)

Encryption (Client) 96.26 17.94 83.01

Secure aggregation 2.56 106.98 –

Decryption (Client) 0.17 – 0.34
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We finally evaluated the resource requirements of the re-encryption-based pooled 
aggregation of genotype matrices, which enables aggregating genotype matrices that are 
obtained from different sources (different private keys, Fig.  1). For this, we tested the 
pooling of two genotype matrices where the first matrix ( M1 ), contains the genotypes 
at 6.6 million vectorized positions for 500 samples and the second matrix ( M2 ) contains 
the genotypes for 1000 samples, i.e., pooling of 1500 samples from two databases. We 
evaluated the 4 steps: (1) Encryption of each matrix in their own keys, (2) Re-encryption 
into the same private key and pooling of the matrices, (3) Aggregation of the pooled 
matrix, (4) Decryption of the results. Table 7 shows the time requirements of these oper-
ations for the pooling of the two datasets using 24 threads.

The most time-consuming step is encryption, which took slightly more than 116 s for 
M2 . The re-encryption operation takes less than 1 s for both matrices. This is reason-
able since the encryption can be performed once at the trusted entity of the owner and 
re-encryption can be performed many times on the aggregation server. The aggregation 
operation takes less than 10 s and finally, the decryption operation takes less than 1 s. 
Disk space usage is moderate with 83 gigabytes of data that needs to be stored for the 
full genotype matrix. It is, however, not necessary to store the genotype data for aggre-
gation operations. The server can generate the encrypted aggregations for each matrix, 
then store the encrypted vector containing the aggregated allele counts, which takes 
much smaller space than the genotype matrices.

Utilization of vectorized representations in collaborative settings

The main utility of SVAT and underlying vectorized representation is clearer when we 
consider a collaborative analysis scenario: For example, assume that multiple institutions 
would like to compare and process the variants that they have generated from patients 
or participants (for example in a rare disease study) but they cannot directly share 
genetic variants. Each institute encodes its variants into vectorized representations, 
encrypts the data, and submits it to the analysis server, which can be an untrusted server 
on the cloud. This is reasonable because numerous legislative regulations regarding per-
sonal data privacy (such as GDPR) treat encrypted data as safe to store and share [78]. 
The server can perform the variant overlap via element-wise multiplication of the vec-
tors (similar to the secure annotation operation in Fig. 2d). The entries in the resulting 

Table 7  The resource requirements of aggregation tasks

 Encryption is performed by the owner or the trusted entity, i.e., (NIH). The encrypted data is sent to the aggregation server. 
After the client requests the aggregation, the trusted entity generates the re-encryption key and sends it to the server. The 
genotype matrices are re-encrypted and aggregated by the server

Time (Sec) Peak memory (GB) Disk space (GB)

Encryption (NIH/Owner)

M1 54.4605 168.332 41.50772095

M2 107.5746 83.01544189

Re-encryp. (Server)

M1 20.4396 –

M2 39.5913 –

Aggregation (Server) 4.7757 –

Decryption (Client) 0.1867 – 0.34
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variant-overlap-vector that are non-zero indicate the variants that exist in all the sites. 
Compared to other protocols that perform secure set intersection based on secure mul-
tiparty computations, this operation is much faster without the need for online opera-
tions. We also believe it fits better in bioinformatics pipelines which are currently not 
geared to integrate online operations where multiple rounds of communication are nec-
essary between parties. The variant-overlap-vector can then be annotated at the server 
using the same annotation database and sent back to the sites for further decryption and 
translation. This approach enables not only data protection but also the annotation is 
performed once by the server rather than performing it at each site separately.

Similarly, the server can compute the union of the variants by simply summing the 
vectors elementwise to generate an encrypted variant-union-vector. After this, the gene-
level, and gene-set-level mutational burden can be securely computed by summing the 
corresponding positions on the variant-union-vector. These statistics can be processed 
at the server to estimate further enrichment statistics using, for example, variant allele 
frequencies as aggregated by SVAT. Within these pipelines, secure variant annotation 
can be integrated as an intermediate filtering step to exclude variants with respect to 
their impacts. We believe these are several applications that SVAT can be used for cus-
tomized and secure variant analysis other than annotation and aggregation operations.

Discussion
We presented SVAT, a method for secure annotation of variants and secure aggregation 
of genotypes from multiple databases. The increasing number of genomes frequently 
makes it necessary to perform batch annotation and aggregation of variants by out-
sourcing these operations with programmatic or through user interfaces on web servers. 
SVAT makes use of homomorphic encryption to provide confidentiality to the genotype 
data and variant loci. The proposed framework makes use of a novel vectorized repre-
sentation of the variant loci to protect the variant loci information. This new representa-
tion is utilized commonly for annotation and aggregation tasks. This can enable building 
more complex variant analysis pipelines with allele frequency and variant impact filters. 
An alternative method that is similar in flavor is “private-set-intersection” (PSI) [79, 80], 
where two entities can securely intersect their confidential datasets without revealing 
any information other than only the intersecting elements. In particular, our approach is 
similar to the PSI implemented in Chen et al. [81] albeit not in the genomic data analy-
sis context. Chen et al. the authors design a multiplication statistic that is computed for 
each data point in the query dataset (i.e., researcher’s variant dataset) to compare every 
data point in the server’s dataset using HE-based secure subtraction and multiplication 
operations. This encrypted data is returned to the client who decrypts and identifies the 
0 entries in the returned vector, which points to intersecting elements. As Chen et al. 
describe, this approach works with small query datasets. Our approach limits the search 
space by using target regions and similarly enumerates all possible mutations and vec-
torizes the operations. A simple PSI query must be combined with the extra information 
so that annotation information is returned, which, we believe, is not a simple task. On 
the other hand, we assume that the server’s annotation dataset is not confidential, which 
is a strict condition that is satisfied with a PSI search. In addition, the statistic used by 
Chen et al. can be modified to accommodate plaintext server data.
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There are alternative approaches that can enable the confidentiality of genetic data. 
For example, just for the annotation task, the client can download the vectorized anno-
tation data and perform annotation locally without ever having to upload the data. This 
would be similar to the “share models, keep data” approach [82], where the researchers 
can download the annotation vector and extract annotation information for their vari-
ants without ever sending the variants from their studies. This is, however, a different 
paradigm than what is undertaken in this study. SVAT aims to enable a data sharing 
paradigm where the encrypted data stays with the untrusted entity and can be re-used 
by other HE-enabled pipelines. The resharing can be enabled by the proxy-re-encryp-
tion module of SVAT. We acknowledge that there is more work to be done to render the 
framework more practical so that it can be run on the whole genome-scale. While the 
computational framework can accommodate any annotation and aggregation task, there 
are several limitations of SVAT that are used to bound the computational and memory 
cost. First, the target regions are used to decrease the vectorized data size. To focus on 
the most impactful mutations, SVAT uses the protein-coding exons and surrounding 
regions as the targets. Second, SVAT can decrease the time and memory usage for the 
annotation of deletions by making use of an annotation vector that contains the 1-bp 
deletions and making use of this to translate the impact of deletions that span multi-
ple nucleotides. This approach is exact for the highest impact that is assigned to each 
deletion.

Conclusions
Variant annotation and genotype aggregation are two integral components of genomic 
data analysis pipelines. For instance, the software pipelines that perform variant associa-
tion tests use variant annotations to classify variants based on their impact. Similarly, 
genotype aggregation is used for classifying and filtering genetic variants with respect 
to population-level allele frequencies. This is an integral step in estimating the selection 
pressure and detecting potentially disease-causing variants. SVAT can be integrated into 
these analysis pipelines to securely store and analyze datasets. The presented framework 
can be used in other contexts and potentially has an overarching impact on other pro-
spective privacy-aware method development efforts.

Methods
We present the details of the annotation and aggregation workflows.

Variant annotation

Target regions are provided as a BED file with name and strand entries. The default tar-
get regions comprising the extended CDS coordinates are included with SVAT for the 
hg38 genome and Gencode v31 annotations [59]. The target regions can be modified 
using a GFF/GTF formatted gene annotation file with exon, CDS, and UTR entries 
present. The users can also specify the length of extension of each element, i.e. lext , to 
include the functional elements around exons/CDSs using “transcript-specific” and 
“gene-specific” target regions as described in the previous section. The input variant 
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coordinates to be annotated are taken as a VCF file by default. SVAT processes VCF files 
to generate the vectorized variant loci signals.

Vectorized representation of the variant loci

The vectorization enables the protection of variants that fall on the target regions. The 
exon start/end coordinates are extracted for the protein-coding transcripts. Each CDS 
is extended by lext to include variants that may impact splicing. The target regions are 
described with pairs of coordinates:

where T  denotes the sorted list of target regions, si and ei denote the genomic coordi-
nates for the start and end, respectively, of the ith target region, and CDSi,1 and CDSi,2 
denote the start and end coordinates of the i th CDS. Each target region corresponds 
to a CDS and is assigned to an element, whose id is known, e.g. transcript/gene name. 
T  is a sorted list and the sorting cannot be changed in the course of annotation for the 
mapping from genomic to vector coordinates is used multiple times. While the actual 
sorting of the regions does not have any specific importance, position-based sorting will 
make the conversion of genomic coordinates to target regions efficient using optimized 
searching algorithms. By default, SVAT first sorts the target regions by start position, 
then sorts with respect to the element identifier, i.e., transcript/gene identifier. To denote 
the i th target region, we use Ti , i.e., Ti = (si, ei) . Also, we denote the total nucleotides 
covered by target regions by lT :

Next, the sorted target regions list is used to build the vectorized signals. For this, SVAT 
allocates an array of lengths that is equal to the coverage of the target regions T :

where S(T ) denotes the vectorized signal, whose coordinates correspond to the target 
regions T  . Every position on S(T ) holds a value that corresponds to a position in the tar-
get regions. The mapping between the position on the vectorized signal and the sorted 
target regions list is done by tracking the target regions. It is necessary to identify the 
target region index, and then a position index on the target region so that we define 
exactly where the vector position maps to on the genomic coordinates. First, we identify 
the leftmost sorted target region whose cumulative coverage is smaller than ν:

where ν<i indicates the total cumulative number of nucleotides that are covered by the 
target regions T1,T2, . . . ,Ti , and i(T )(ν) indicates the target region index ( i(T )(ν) < |T |) 
that the vectorized position ν corresponds to. The above formula, although complex 
looking, simply states that we start from the leftmost target region and track the total 

T = [(si, ei)|si < ei; si = CDSi,1 − lext; ei = CDSi,2 + lext ]

lT =
∑

i

(ei − si + 1)

S(T ) =
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s(T )
ν
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, 1 ≤ ν ≤ lT

i(T )(ν) = argmax
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(ei − si + 1)
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
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number of nucleotides that are covered by the sorted target regions list. The largest 
region’s index such that ν<k < ν < ν<(k+1) where k = i(T )(ν) . This can be performed by 
a binary search over the sorted target regions list. After the target region index is identi-
fied, we identify the position that corresponds to the target region as:

where c(T )(ν) indicates the genomic coordinate of the vectorized position ν when it is 
mapped onto the target regions T  . The mapping of the target coordinates onto the vec-
tor coordinates can be performed similarly: ν(T )(i, c) = ν<i + (c − si) . It should be noted 
that we can only map the coordinates of the targets to vectors in a 1–1 fashion. The 
genomic coordinates can be mapped to multiple target regions (and to multiple corre-
sponding vectorized positions). To identify all vector coordinates that map to a genomic 
coordinate ( pos ), we identify all the target regions that overlap with this position:

where N(T )(pos) denotes the set of vector coordinates that map to genomic coor-
dinatepos . To implement the above search, target regions whose genomic coor 
c(T )(ν) = sk + (ν − ν<k); k = i(T )(ν) dinates overlap with pos can be identified then the 
formula for ν(T )(i, c) can be used for each overlapping target region.

Vectorized mutation loci

An array of length lT that is indexed by the vectorized coordinates (with respect to a 
sorted target region list) is used to store the variant locus information. Given a variant 
allele a ( a ∈ {A,C ,G,T , δ, ι} (the alternate alleles of an SNV, 1-bp deletion, and 1-bp 
insertion), variant loci are mapped onto the vectorized coordinates as described previ-
ously. Next, for each allele, an array of lT is allocated and each array entry whose vector-
ized position overlaps with a variant is set to 1. All other positions are set to 0 (Fig. 2d):

where �(T )
a (ν) denotes the variant loci array for allele a , µ denotes the set of the genomic 

coordinates of the mutations. The above equation simply describes that the position ν on 
the mutation loci array is set to 1 if there exists a mutation with allele a whose genomic 
coordinate maps to ν , i.e. ν ∈ N (T )(c) . For the deletions, every position on the deletion is 
set to 1:

where � denotes the list of start–end coordinates for the deletions and δ1 , δ2 denote 
the coordinates of the first and last nucleotides that are deleted in the deletion. To set 
the array, we can simply iterate over all deletions in � , then for every genomic position 
δ1 ≤ c ≤ δ2 , find the mapping vector coordinates and set the vectorized deletion loci sig-
nal to 1.

c(T )(ν) = sk + (ν − ν<k); k = i(T )(ν)

N(T )(pos) =
{

ν|c(T )(ν) = pos
}

�(T )
a (ν) =

{

1; ∃c ∈ µ|ν ∈ N (T )(c)
0; Otherwise

, a ∈ {A,C ,G,T , ι}

�
(T )
δ (ν) =

{

1; ∃(δ1, δ2) ∈ �|δ1 ≤ c ≤ δ2, ν ∈ N (T )(c)
0; Otherwise
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Encryption of the vectorized variant loci

For simplicity, we assume that lT is divisible by the plaintext length bound l . Then an 
array of length lT is divided into plaintext vectors of size l , each of which is encrypted 
using the public key of the cryptosystem. Otherwise, an input array is divided in a way 
that as many sub-vectors as possible have the maximal size l and the only last vector is 
chosen to have a smaller size than the others. To be specific, the encryption procedure 
results in ⌈lT /l⌉ ciphertexts.

Vectorized annotation information

SVAT uses an array of length lT  to hold the annotations of all mutations on the target 
regions. This is very similar to the mutation loci vector, except that for each position 
ν , the array stores a 64-bit entry that packs the annotation information.

The impact value indicates the impact of the mutation located at vector position ν 
with allele a , and µ denotes the set of genomic coordinates (i.e., indices) for all muta-
tions. The impact information is retrieved from Variant Effect Predictor, VEP, by 
default. SVAT packs the impact information and the nucleotide information around 
the mutation locus. The packed impact information contains:

1.	 Coding frame (2 bits): This is the coding frame of a mutation that is a value in {0,1,2}: 
The frame is converted to a 2-bit value and used as-is.

2.	 6-base pair nucleotide neighborhood (18 bits): SVAT assigns 3-bits values (A: 000, C: 
001, G: 010, T:011, N:100) to each nucleotide and codes the surrounding nucleotide 
sequence into 18 bits. The sequence of bits is concatenated and used as the neighbor-
hood sequence information.

3.	 The assigned impact string identifier assigned by VEP (38 bits): The bitmap that 
describes the impact values of the mutation out of the 38 different impact values that 
VEP assigns to each mutation. The bitmap is generated by setting the impact values 
to 1 for every impact string assigned by VEP. For every annotation, the index of the 
impact string in the bitmap is set to 1.

The annotation server generates the vectorized annotation signal. In order to gen-
erate the vectorized annotation information, VEP is run to generate the annotation 
of all the nucleotides (and all alleles) of the mutations on the target regions. This 
is performed for 4 alleles of SNVs, 1-bp deletions, and 1-bp insertions on all posi-
tions on the target regions. The output of VEP can be directly piped into SVAT to 
convert the VEP annotations into the vectorized annotation signal. SVAT first maps 
the position to the vectorized coordinates. Next, the coding frame information and 
the 38-bit impact bitmap are updated using the assigned frame and the list of impact 
strings. SVAT finally extracts the 6-bp neighboring nucleotides from the genome 
sequence (by default, hg38 genome sequence) and builds the 58-bit annotation vec-
tor value. The annotation value is assigned to all of the vector coordinates that map 

I
(T )
a (ν) =

{

Impact of allelea; ∃c ∈ µ|ν ∈ N (T )(c)
0; Otherwise
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to the mutation’s genomic coordinates. The packed impact value can be formulated 
as:

The whole operation for building the vectorized annotation signal is a compute-
intensive task. However, this needs to be performed at the annotation server. We 
assume that the annotation server has large computational resources and can per-
form this operation. In addition, the annotations need to be vectorized once for 
every gene annotation.

Secure SNV variant annotation

After the variant loci and the annotations are vectorized, the annotated variants vector 
is computed as the multiplication of the variant loci vector and the annotation vector 
(Fig. 2d). The result from this product is a vector of length lT :

In this vector, the entries for which there is no variant are set to 0 (since �(T )
a (ν) = 0 

when no mutation maps to ν ) and others are set to the annotation value at the position.
Suppose that for j = 1, 2, . . . , ⌈lk/l⌉, a plaintext vector zj = (I

(T )
a

(

ν(j−1)·l+1

)

,
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a
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)

, . . . , I
(T )
a

(
νj·l

)
) is encrypted into a single ciphertext ctj . The server per-

forms the constant-ciphertext multiplication with the ciphertext of the annotation vec-
tor and the corresponding variant loci vector as follows:

Then the results are sent back to the user. For each position on the array that is 
non-zero, a variant exists. Streaming operations are used by the client to decrypt the 
downloaded data and filter out non-zero annotation entries (64-bit packed annotation 
information), which are unpacked according to the bit packing above. The conversion 
of the vector coordinates to genomic coordinates (i.e., from ν to (i, c) ) are performed 
while looping over the vectorized coordinates, i.e., the client can decrypt and decode the 
annotation values as they are received from the annotation server in a streaming fashion.

For SNVs, the client performs the following steps:

1.	 Receive and decrypt data
2.	 For each non-zero value on the annotated vector at position ν,
3.	 Translate ν : Compute i(T )(ν) and c(T )(ν)

4.	 Extract the 38-bit impact bitmap from the annotated value
5.	 For every bit that is set to 1, use the lookup table and concatenate the variant annota-

tion.

Packed Impact Value =
((
(VEP Impact Index)<<18+

(
Neighborhood

))
<<2

)
+

(
coding frame

)

I(T )
a (ν)×�(T )

a (ν)∀a ∈ {A,C ,G,T }, ν ∈ [1, lT ]

ctj ·
(

�(T )
a

(

ν(j−1)·l+1

)

,�(T )
a

(

ν(j−1)·l+2

)

, . . . ,�(T )
a

(
vj·l

))

.
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Secure small deletion variant annotation

Annotation of deletion variants needs to account for the variable lengths of the variants. 
The server can provide all the vectorized annotation signals for deletions that are shorter 
than a certain value, e.g., I(T )

|δ|=l_δ(ν), lδ < 20 . Similarly, the researcher can generate the 
encrypted variant loci vectors for deletions of each length. After this, the annotation can 
be performed as it is performed for SNVs annotations by first secure multiplication of 
the variant loci vector and annotation vector for each deletion length, then decoding the 
38-bit annotation impact bitmap for each non-zero entry in the product vector for each 
length.

SVAT also implements an alternative approach for the annotation of deletions. SVAT 
uses the 1-base pair deletion impact signal to track the impact of consecutively deleted 
nucleotides: For a deletion of nucleotides [a, b] ( a < b ), SVAT traces the nucleotides and 
merges the impacts of consecutive 1-base pair deletions, at every nucleotide ν in [a, b] , 
i.e., I (T )

δ (ν) . To merge the 1-base pair deletion annotations and to generate the impact of 
a deletion at [a, b] , SVAT makes use of the coding frame information and the neighbor-
hood sequence.

Coding frame impact

SVAT traces the impact values of all nucleotides between [a, b] , and counts the number 
of coding nucleotides that are affected by the deletion. If the number of coding nucleo-
tides is a multiple of 3, the deletion is marked as an in-frame deletion. Otherwise, the 
deletion is marked as a frameshift deletion.

Start/stop loss

If any of the nucleotides in [a, b] have an impact on the start or stop codons, the deletion 
is marked with a start/stop loss.

Splice donor/acceptor loss

If any of the nucleotides have an impact on the splice donor/acceptor sites, the deletion 
is marked with splice donor/acceptor.

Stop gain/retain

SVAT utilizes the neighborhood and the coding frame to identify the coding frame 
around the deletion breakpoint. This way, SVAT computes the new codon (using a 
lookup table) that is introduced by the deletion. If the new codon is one of the three 
stop codons, i.e., “TAG”, “TAA”, “TGA”, SVAT assigns the stop gain impact. If the deletion 
impacts a stop codon and generates a new one around the breakpoint, “Stop Retained” 
impact is added to the aggregate impact value of the variant.

Secure small insertion variant annotation

Insertions are short sequences that are inserted with respect to the reference genome. 
Unlike a deletion, an insertion occurs at a single location and is described by the 
sequence that is inserted at the location. The annotation of insertions is carried out the 
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same way as deletions by first identifying the position of the insertion and then translat-
ing the coding nucleotides that are inserted to assign the impact.

Coding frame impact

SVAT traces the number of coding nucleotides that are inserted into a CDS and assigns 
in-frame or frameshift annotation.

Sstart/stop loss/gain/retainment

For an insert that overlaps with a start or a stop codon, the neighborhood nucleotide 
and the coding frame is used to identify the inserted codons and set whether a stop/start 
codon is lost/gained or retained.

The scenario of secure insertion annotation is the same as secure deletion annotation, 
where a 1-base pair insertion annotation vector ( I (T )

Ins (ν) ) is multiplied by the encrypted 
1-base pair insertion mutation vector ( �′Ins(T )(ν) ). The multiplied encrypted vector is 
sent back to the researcher, which is decrypted and processed.

Genotype aggregation

The genotype aggregation aims as computing the frequencies of the mutations by aggre-
gating over many samples:

where nG denotes the number of individuals in the genotype matrix, f (T )
a (ν) denotes 

the frequency of the allele a for the variant at vector coordinate ν (indexed on the tar-
get regions T  ), and G(T )

a,k (ν) indicates the genotype of the variant for individual k : 
G

(T )

a,k (ν) ∈ {0, 1, 2} , where the entry indicates the number of alternate alleles equal to a . 
The genotypes can also be encoded with 2-level encoding [39] to indicate the existence 
of the allele at the location: G(T )

a,k (ν) ∈ {0, 1}.
While aggregating the genotype matrix, it is necessary to ensure the confidentiality 

of the genotype matrix G(T )

a,k  from the untrusted aggregation server, which performs the 
computationally heavy task of secure aggregation. To compute the above summation 
securely, the genotype matrix is encrypted, denoted by G’a, k(T ) and the summation is 
evaluated using HE-based secure summation.

As practical homomorphic encryption systems support computation on encrypted 
vectors, we encrypt the whole genotype matrix G’a, k(T ) by taking entries in row-major 
order and generating plaintext vectors. In other words, each row vector is divided into 
sub-vectors of length l , each of which is encrypted using the public key. This vectoriza-
tion makes it possible to use SIMD instructions that operate the aggregation on vec-
tors (i.e., with support for entry-wise addition). To be specific, suppose that for each 
k = 1, 2, . . . , nG , a plaintext vector zk = (G

(T )

a,k (ν1),G
(T )

a,k (ν2), . . . ,G
(T )

a,k (νl)) is encrypted 
into a single ciphertext ctk . Then we perform an aggregation over ciphertexts: 

∑nG
k=1ctk . 

By the homomorphic property, we have

f (T )
a (ν) =

∑

1≤k≤nG

G
(T )

a,k (ν)
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which is an encryption of the frequency vector (f (T )
a (ν1), f

(T )
a (ν2), . . . , f

(T )
a (νl)) . The 

ciphertext packing technique enables us to encrypt l different messages into a single 
ciphertext and perform l operations at a time over encryption.

Another important aspect of aggregation is to accommodate genotype matrices from 
multiple databases so that many samples can be aggregated together. The server needs to 
be able to manage multiple datasets that are encrypted with different keys. SVAT imple-
ments a proxy re-encryption protocol to convert the genotype matrices into the same 
key and perform the aggregation using this common key.

Proxy re‑encryption protocol

The proxy re-encryption aims at converting the genotype matrices (or any other type 
of data) to the same encryption key [70]. For this, a trusted entity is required who will 
perform the key management and who holds the private keys necessary to generate 
the re-encryption keys. This is a reasonable assumption since the sensitive datasets 
are generally deployed and protected by entities such as NIH (e.g., dbGAP).

We assume that there are M genotype matrices (on the same vectorized coordi-
nates system, i.e., common sorted target regions T  ), such that mth matrix is encrypted 
with the public key denoted by pk(G)

m (m ≤ M) . The corresponding private keys, sk(G)
m

(m ≤ M) , are stored by the trusted entity such as NIH, and mth matrix can be decrypt-
able only with the private key skm(G) . The data is stored at the untrusted server in an 
encrypted format. When a researcher asks for the aggregation service, the researcher 
provides the public key, pk(R) (Researcher public-key) and a corresponding private 
key sk(R) . It is necessary to re-encrypt the encrypted genotype matrices G′a, k(T )(ν) so 
that they can be decrypted with the private key sk(R) . The researcher sends the pub-
lic and private keys to NIH, which generates the re-encryption key for the data, i.e. 
swkm = swksk(G)

m , sk(R) foreachm ≤ M where skwm denotes the re-encryption key. The 
aggregation server receives skwm for all genotype matrices and re-encrypts so that 
they can be decrypted by the same key as the user sk(R).

Traditional homomorphic encryption systems can convert a ciphertext decryptable 
with a secret key sk1 to a new ciphertext with a secret key sk2 , which is called the key-
switching operation. To be specific, if the switching key swk = swk(sk1, sk2) is gener-
ated, then the key-switching operation takes as input a ciphertext ct with the secret 
key sk1 and perform the key-switching operation.
ct ′′ ← KeySwitch(ct, swk).
Then the resulting ciphertext ct

′′

 is decryptable with the secret key sk2 . In our case, 
the secret keys are set as sk1 = sk(G)

m  and sk2 = sk(R) , and the aggregation server per-
forms the key-switching operations on the encrypted genotype matrices using the 
public switching key swkm without knowing any information about the secret keys. 
The aggregation service then securely aggregates the frequency counts at every posi-
tion on the T  . The resulting frequency array, which is encrypted with the researcher’s 

nG�

1≤k≤nG

ctk = Enc





nG�

1≤k≤nG

G
(T )

a,k (ν1),

nG�

1≤k≤nG

G
(T )

a,k (ν2), . . . ,

nG�

1≤k≤nG

G
(T )

a,k (νl)


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public key, f ’
′(T )
a (ν) , is sent to the researcher who can decrypt the frequency array 

and obtain frequencies.

SNV aggregations

The secure aggregation of the SNVs is straightforward as they are located at one posi-
tion on the vectors. In other words, the SNV frequency aggregation can be computed 
simply by marginalizing at every location.

Indel aggregations

Unlike SNVs, the deletions must be tracked in each sample and aggregated. As with 
the annotation task, we make use of the 1-base pair deletions to build the aggregation 
of deletion variants that span longer than 1 bp. Given a position ν , and the 1-base pair 
deletion genotype matrix, G(T )

δ,k (ν) ; the indel of length lδ is aggregated by tracing the 
deleted nucleotides:

where f
′(T )

δ(lδ)
(ν) indicates the frequency of the lδ-deletion at vector position ν , and 

α(·) is an indicator function, i.e., it returns 1 if the arguments are true and 0 other-
wise. In the formula above, the summation aggregates the individuals for which, the 
1-base pair deletion genotype matrix contains a deletion state for all positions in 
{ ν, ν + 1, ν + 2, . . . , ν + lδ }. In addition, the deletion state is unset (i.e., G(T )

δ,k (ν − 1) = 0 ) 
for the individual k at positions { ν − 1, ν + lδ + 1 }. This ensures that the deletion is set 
exactly over the deleted interval we would like to aggregation, i.e., [ν, ν + lδ] and also the 
positions right out of the deleted interval are set to undeleted. It should be noted that 
for any aggregation of deletions, the aggregation can be performed for multiple deletion 
lengths (i.e., lδ < lmax ) and stored at the aggregation server.

The aggregation of insertions requires explicit matching of the inserted nucleotides 
and requires enumeration of all possible insertions. SVAT currently does not explic-
itly support aggregation of short insertion variants. However, the position at which the 
insertion happens can be aggregated (just by simple aggregation as for SNVs) to com-
pute the frequency of insertion at each position.

Parallelization of computations

There are several options for parallelization of different steps:

Chromosome and ciphertext‑level parallelization

The most natural parallelization is to separate the variant data with respect to chromo-
somes. The computations can then be performed on different instances on the cloud 
or the server such that each instance processes one chromosome. It may however be 
more efficient to divide the target regions with equal coverage such that the number of 

f
′(T )

δ(lδ)
(ν) =

∑

kα′

(

G
(T )

δ,k (ν − 1) = 0, G
(T )

δ,k (ν + lδ + 1) = 0,

∀l ∈ [0, lδ]; G
(T )

δ,k (ν + l) = 1

)
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ciphertexts is similar when distributed among the compute instances so that the load is 
balanced among instances while performing annotation or aggregations.

Annotation‑level parallelization

Another parallelization option is to parallelize different types of annotations among dif-
ferent compute instances and storage buckets. The coding and non-coding annotations 
can be managed by different buckets and instances on the server side and could also be 
uploaded by different computers on the client side. Uploading the data to different buck-
ets from different clients also enable a faster upload speed for the large datasets such 
that the total bandwidth from multiple computers is utilized simultaneously, assuming 
that there is no other bottleneck at the network level (e.g., gateways, firewalls, etc.).
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