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Abstract 

Background:  Cancers are genetically heterogeneous, so anticancer drugs show vary-
ing degrees of effectiveness on patients due to their differing genetic profiles. Knowing 
patient’s responses to numerous cancer drugs are needed for personalized treatment 
for cancer. By using molecular profiles of cancer cell lines available from Cancer Cell 
Line Encyclopedia (CCLE) and anticancer drug responses available in the Genomics 
of Drug Sensitivity in Cancer (GDSC), we will build computational models to predict 
anticancer drug responses from molecular features.

Results:  We propose a novel deep neural network model that integrates multi-omics 
data available as gene expressions, copy number variations, gene mutations, reverse 
phase protein array expressions, and metabolomics expressions, in order to predict 
cellular responses to known anti-cancer drugs. We employ a novel graph embedding 
layer that incorporates interactome data as prior information for prediction. Moreover, 
we propose a novel attention layer that effectively combines different omics features, 
taking their interactions into account. The network outperformed feedforward neural 
networks and reported 0.90 for R2 values for prediction of drug responses from cancer 
cell lines data available in CCLE and GDSC.

Conclusion:  The outstanding results of our experiments demonstrate that the 
proposed method is capable of capturing the interactions of genes and proteins, and 
integrating multi-omics features effectively. Furthermore, both the results of ablation 
studies and the investigations of the attention layer imply that gene mutation has a 
greater influence on the prediction of drug responses than other omics data types. 
Therefore, we conclude that our approach can not only predict the anti-cancer drug 
response precisely but also provides insights into reaction mechanisms of cancer cell 
lines and drugs as well.
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Background
Inherent complexity and heterogeneity of cancers make patients with same diagnosis 
respond differently to anticancer drugs, making cancer treatment difficult and intrac-
table. In order to personalize cancer treatment, it is crucial to know drug responses of 
cancer patients, based on their molecular and clinical profiles. To address this, exten-
sive patient drug screening is required to discover specific patterns of drug responses. 
Infeasibility of treating large populations of cancer patients has motivated researchers 
to collect large scale drug screening data on cancer cell lines. For example, Cancer Cell 
Line Encyclopedia (CCLE) [1] contains various types of molecular profiling data and the 
Genomics of Drug Sensitivity in Cancer (GDSC) project [2] contains a comprehensive 
selection of pan-cancer cell line ( ∼ 1000 ) drug sensitivity responses to a wide list of anti-
cancer drugs ( ∼ 200 ). The main mission of these projects is to facilitate development of 
integrated computational models and tools that enable prediction of drug-target inter-
actions and pharmacological responses from cell molecular profiles and drug chemical 
features.

There are mainly two types of methods for predicting drug responses in silico from 
cancer cell lines: machine learning based approaches and network-based approaches. 
Machine learning approaches first extract features from multiple molecular measures 
(gene expression, protein expression, mutation, etc.) and then use classifiers or regres-
sors such as support vector machines [3, 4], elastic-net regression [5], and random forest 
[6] to make predictions. Recently, deep neural networks have gained popularity in pre-
dicting drug responses from cell lines by using molecular descriptors [7, 8]. Network-
based methods either build drug-target interaction networks or similarity networks 
between cell lines and between drug descriptors and then use different network analy-
sis techniques to predict drug responses [9, 10]. However, network-based methods are 
based on the assumptions that similar molecular profiles and similar drug chemical pro-
files lead to similar drug responses.

Deep learning methods such as neural networks have the ability to build complex and 
accurate models by learning from training data and been successful in many applica-
tion domains [11]. Lately, applications of deep learning have emerged in pharmaceuti-
cal research and drug discovery [12]. Liu et al. used two convolutional neural networks, 
one for processing genomic features of cell lines and another for processing molecular 
descriptors of drugs, and combined their outputs to predict drug responses [7]. Chiu 
et  al. proposed two deep neural networks, one to process gene expression data and 
one to process gene mutation data, and then combined two networks to predict drug 
responses [8]. However, these approaches use multiple neural networks to process dif-
ferent omics data types and then use simple concatenation of features to integrate differ-
ent networks. There are several challenges when deep neural networks are employed for 
drug response prediction: (i) huge dimensionality of inputs, (ii) heterogeneity of inputs 
as data come from different omics platform, (iii) limited number of samples, and (iv) 
large number of network parameters. In this paper, we present a deep neural network 
model that addresses some of these issues and is capable of integrating multiple cellular 
attributes effectively.

CCLE cell lines initially characterized by expression and genomic data have now been 
expanded to include genetic, RNA splicing, DNA methylation, histone modification, and 
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mRNA expression data [13]. Integration of different molecular or multi-omics features 
realizing full potential of biological insights from biomolecular interactions pose a huge 
algorithmic challenge [14]. Due to highly complex nature of mechanisms of cancer, it is 
difficult to achieve accurate prediction based on a single facet such as genomics solely. 
Multi-omics techniques where multiple types of omics data such as genomics, prot-
eomics, transcriptomics, and metabolomics have been popular in recent years as they 
provide more holistic molecular perspective of studied biological systems compared to 
traditional approaches [15]. Deep learning approaches for integration of multi-omics 
data are beginning to emerge [16, 17]. Zhang et al. used an autoencoder and k-means 
clustering to combine gene expression and copy-number variation data to predict sub-
types of neuroblastoma [16]. Huang et al. used two neural networks to process mRNA 
expression and miRNA expression data and combined their outputs to predict survival 
of breast cancer patients [17]. However, these approaches combine only two types of 
omics data and use simple mechanisms for integrating omics data. In this work, we pro-
pose a neural network that gives a general framework for efficient integration of multiple 
omics types.

One of the contributions in our work is the integration of the interactome data while 
processing genomic features. The interactome provides prior knowledge of gene/pro-
teins regulatory and physical interactions. Inspired by [18], we introduce a graph embed-
ding layer for networks processing gene expressions, Copy Number Variation (CNV), 
mutations and reverse phase protein array (RPPA) data, which incorporates prior infor-
mation from the interactome, and demonstrate an improvement of performance. Fur-
thermore, in order to obtain insights into the influences of different omics types, we 
employ an attention layer to efficiently combine network features processing different 
omics data. By analysing the attention weights, we demonstrate that gene mutation and 
RPPA data have a stronger impact over the other omics on anti-cancer drug response 
prediction.

Results
mRNA expression, mutations, CNV, RPPA expression, and metabolite expressions 
were used as input to the deep neural network (DNN). Data standardization and noise 
removal were performed to optimize the training process. For mRNA expression, RPPA 
and metabolite expressions, if certain expression had zero values across over 95% of the 
cell lines, it was removed from the dataset. Similarly, for gene mutations and CNV, if 
certain mutation type had no effect on over 95% of cell lines, it was also eliminated. For 
omics data using graph embeddings, the embedding layer size was same as that of the 
input layer. The size of the dense embedding layer for metabolites was 200. For mRNA 
expression and metabolomics datasets, the dense layer had size 64. For gene mutation 
and CNV datasets, the hidden sizes were 32. As for RPPA dataset, the hidden size was 
128. The attention layer dimension was 110 and output layer dimension was 22. The layer 
sizes were empirically determined for best performance. We used Adams optimizer [19] 
to minimize the means square error loss at a learning rate of 0.001. The dropouts were 
also used: dropout rate was 0.2 for mRNA expressions, mutations, and metabolites, and 
0.4 for CNV and RPPA. These hyperparameters were tuned to reduce the complexity of 
our model in the aim of avoiding overfitting. The simulations were performed on Google 
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Colab’s cloud machine with 32GHz CPU with GPU capabilities. When graph embed-
ding layer was used, the convergence was faster in about 200 epochs but with dense 
embedding layers, the convergence took about 1000 epochs. Three-fold cross-validation 
was implemented for all the experiments and the results shown in Table 1 and Table 2 
are in format of mean± standard deviation obtained over various random splitting of 
cross-validation.

Experiments on single omics data

We first experimented with individual omics datasets and processed them in feedfor-
ward DNN. Table 1 shows results of drug response prediction with both mean squared 
error (MSE) and coefficient of determination R2 [20]. MSE is used as our loss function 
for measuring the differences between predicted values and the true values. Let i and nc 
denote the index and the number of cell lines, and j and nd denote the index and number 
of drugs. MSE is calculated by

where ŷij refers to the predicted drug response value of cell line i and drug j, and yij refers 
to the corresponding true value of their response. A model generally provides better pre-
dictive power when its MSE is smaller, and approaches perfect prediction when MSE is 
zero. However, MSE has no upper limits.

MSE is a straightforward metrics for regression model evaluation, whereas its assess-
ment can be significantly influenced by the scale of the target value which is drug 
response level measured by log IC50 in our experiments. In order to evaluate our models 
more fairly, we also used coefficient of determination R2 which measures the proportion 

(1)MSE(y, ŷ) =
1

nc × nd

nd

j=1

nc

i=1

(yij − ŷij)
2

Table 1  Mean square error (MSE) and coefficient of determination R2 values for drug response 
prediction with single omics data

Dataset Embedding MSE R
2

mRNA expression Dense 7.69 ± 4.05 −1.94 ± 1.76

Graph 2.37 ± 0.16 0.24 ± 0.02

Mutations Dense 11.41 ± 1.86 −3.42 ± 0.93

Graph 3.25 ± 0.13 −0.02 ± 0.01

CNV Dense 13.32 ± 2.23 −4.23 ± 0.93

Graph 3.32 ± 0.14 −0.04 ± 0.03

RPPA expression Dense 3.11 ± 0.19 −0.02 ± 0.05

metabolites Dense 2.97 ± 0.13 0.07 ± 0.01

Table 2  Results of drug response prediction with multi-omics data

Model MSE R
2

Multi-omics without attention layer 2.42 ± 0.22 0.65 ± 0.02

Multi-omics with attention layer 0.28 ± 0.01 0.90 ± 0.01
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of output variables (i.e., drug responses) that is interpretable from the independent vari-
ables in the model [20]. R2 is computed by

where ȳj represents the average of response level of drug j across all cell lines. R2 has a 
range of [−∞, 1] on the testing set. Unlike MSE, higher R2 indicates better model per-
formance, and perfect prediction is achieved when R2 equals to one. When the model 
predicts all the outputs to be the average of true labels indiscriminately, R2 is zero. More-
over, it could also be negative occasionally, when the model performs even worse than 
producing averages all the time.

For mRNA expression, mutations, and CNV data, we compared the results with graph 
embeddings and dense embeddings. Graph embeddings allow the use of functional rela-
tionships of biomolecules from interactome data as prior information. As seen from the 
table, use of graph embedding clearly improved the MSE and R2 values of drug response 
prediction from individual omics types. mRNA expressions gave the highest R2 of 0.24 
for drug response prediction.

Experiments on multi‑omics data

After measuring the individual models, we trained the models on whole dataset consist-
ing of multi-omics types. During training the integrated model, the parameters in the 
embedding layer and dense layer were remained invariable, and only the attention layer’s 
parameters were learned. After removing the missing data points and keeping only the 
cell lines possessing all the omics features, our input dataset involved 522 cell lines in 
total. A three-fold cross-validation was implemented and the results of drug response 
prediction with fusion of all five-omics data are shown in Table 2. Individual omics types 
were processed by parallel DNN and combined using an attention layer. Attention layer 
improved both MSE and R2 of prediction. The attention layer weighs omics layer embed-
dings learnt by DNN in a manner to improve prediction.

To further explore the effectiveness of integrating different omics data, we performed 
ablation experiments by testing the performance of integrating all possible omics com-
binations. The results are displayed in Table  3, ranking in order of performance from 
better to worse. In the table, ’exp’, ’mut’, ’cnv’, ’rppa’ and ’metabolites’ refer to gene expres-
sion, gene mutations, CNV, RPPA and metabolites, respectively. It is shown that com-
binations of gene mutations and RPPA data achieved the highest performance. And 
apparently, when gene mutations are involved, the MSE is lower than 0.3 and R2 is over 
0.9 (as shown in the first 15 rows of Table  3). When Gene mutations are absent, but 
RPPA is still included, MSE rises to over 0.66 and R2 decreases to around 0.78 (from row 
16 to 22 of Table 3). If both gene mutations and RPPA are excluded, the performances 
become the worst as shown in the rest rows of Table 3.

Additionally, we preserved and analysed the attention weights of our models to 
demonstrate our findings above. Initially, the attention weights are in format of 
(nf ×m)× ndrug , where m denotes the number of omics and nf  denotes the hidden size 
of output layer of sub-models regarding individual omics. Then the weights are summed 

(2)R2(y, ŷ) =
1

nd

nd∑

j=1

(
1−

∑nc
i=1

(yij − ŷij)
2

∑nc
i=1

(yij − ȳj)2

)
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across nf  to be in format of m× ndrug , representing the attention scores on each omics of 
all the drugs. We observed that when gene mutations data are involved, it always obtains 
a score around 0.9 over all the drugs, which means that it contributed about 90% of drug 
response prediction. And when gene mutation is excluded and RPPA is included, RPPA 
gains about 0.9 attention score of all drugs. An overall attention score heatmap is shown 
in Figure  1. Consequently, our analysis of attention weights is in accordance with the 
performances of ablation experiments, both of which illustrate that gene mutation and 
RPPA provide a greater predictive power towards drug responses than other omics.

Prediction of top drugs

Table 4 shows the top 22 drugs ranked according to the MSE of prediction by the DNN, 
along with their targets and mechanism of action. As seen, the MSE differs largely between 
different drugs and can be used as network’s efficacy of response prediction. For some 
drugs like LGK974 and EPZ004777, our network was able to consistently predict relatively 
accurate drug responses whereas drugs like Trametinib and Camptothecin were predicted 
less accurately. Variable prediction accuracy may be attributed to different functional roles 
of drug targets and different biological mechanisms and efficacy through which drugs act.

Table 3  Results of ablation experiments

Omics combination MSE R
2

mut-rppa 0.26 ± 0.01 0.91 ± 0.01

exp-mut-rppa 0.27 ± 0.01 0.90 ± 0.01

exp-mut 0.27 ± 0.01 0.90 ± 0.01

mut-cnv-rppa 0.28 ± 0.01 0.90 ± 0.01

exp-mut-cnv-rppa 0.28 ± 0.01 0.90 ± 0.01

mut-rppa-metabolites 0.28 ± 0.01 0.90 ± 0.01

mut-cnv 0.28 ± 0.01 0.90 ± 0.01

exp-mut-rppa-metabolites 0.28 ± 0.01 0.90 ± 0.01

exp-mut-cnv 0.28 ± 0.01 0.90 ± 0.01

exp-mut-metabolites 0.28 ± 0.01 0.90 ± 0.01

exp-mut-cnv-rppa-metabolites 0.28 ± 0.01 0.90 ± 0.01

mut-metabolites 0.28 ± 0.01 0.90 ± 0.01

mut-cnv-rppa-metabolites 0.28 ± 0.01 0.90 ± 0.01

exp-mut-cnv-metabolites 0.28 ± 0.01 0.90 ± 0.01

mut-cnv-metabolites 0.28 ± 0.01 0.90 ± 0.01

exp-rppa 0.66 ± 0.04 0.78 ± 0.02

exp-cnv-rppa 0.67 ± 0.04 0.78 ± 0.02

cnv-rppa 0.67 ± 0.04 0.78 ± 0.02

exp-rppa-metabolites 0.67 ± 0.04 0.78 ± 0.02

exp-cnv-rppa-metabolites 0.67 ± 0.04 0.78 ± 0.02

rppa-metabolites 0.67 ± 0.04 0.78 ± 0.02

cnv-rppa-metabolites 0.67 ± 0.04 0.78 ± 0.02

exp-cnv 1.08 ± 0.05 0.65 ± 0.02

exp-cnv-metabolites 1.08 ± 0.05 0.65 ± 0.02

exp-metabolites 1.08 ± 0.05 0.65 ± 0.02

cnv-metabolites 1.84 ± 0.05 0.44 ± 0.03
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Fig. 1  Attention scores on multi-omics of all the drugs. Gene mutation data obtain the highest attention 
score of around 0.9 over all drugs, and RPPA data obtain the second highest attention score of over 0.03. This 
observation conforms the findings of our ablation experiments, where Gene mutations and RPPA lead to 
better performances

Table 4  Drugs ordered according to the accuracy (MSE) of prediction

MSE Drug name Putative target Pathway name

1.1 LGK974 PORCN WNT signalling

1.2 EPZ004777 DOT1L Chromatin histone methylation

1.4 EPZ5676 DOT1L Chromatin histone methylation

1.4 GSK1904529A IGF1R, IR IGF1R signalling

1.5 MK-1775 WEE1, PLK1 Cell cycle

2.1 Palbociclib CDK4, CDK6 Cell cycle

2.2 Afatinib ERBB2, EGFR EGFR signalling

2.3 PD0325901 MEK1, MEK2 ERK MAPK signalling

2.4 Linsitinib IGF1R IGF1R signalling

2.5 Oxaliplatin DNA alkylating agent DNA replication

2.6 Sapatinib EGFR, ERBB2, ERBB3 EGFR signalling

2.6 PLX-4720 BRAF ERK MAPK signalling

2.6 Alpelisib PI3Kalpha PI3K/MTOR signalling

2.7 SCH772984 ERK1, ERK2 ERK MAPK signalling

2.8 MK-2206 AKT1, AKT2 PI3K/MTOR signalling

2.8 Nutlin-3a (-) MDM2 p53 pathway

3.2 5-Fluorouracil Antimetabolite (DNA & RNA) Other

3.7 Taselisib PI3K (beta sparing) PI3K/MTOR signalling

3.8 Irinotecan TOP1 DNA replication

4.0 Luminespib HSP90 Protein stability and degradation

4.1 Trametinib MEK1, MEK2 ERK MAPK signalling

4.8 Camptothecin TOP1 DNA replication
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In order to evaluate the accuracy of our network further, we computed the rate at 
which the most effective drug predicted by our model in terms that the predicted drug 
response was in fact the recommended drug for that cancer cell type. To this end, we 
defined Top-1 and Top-3 candidates of drug predictions as the rates at which the true 
drug was predicted by our method as the topmost drug and within the top 3 drugs, 
respectively. Top-1 and Top-3 drug prediction accuracies of the network are given in 
Table 5. Since there are a total 22 drugs whose IC50 values were predicted, the chance 
of randomly choosing a drug that turns out to be the most effective drug is less than 5%. 
The best Top-1 accuracy of our single omics model is 50% achieved by gene expression 
and RPPA. And the best Top-3 accuracy is 91% achieved by RPPA. Compared to that, 
our multi-omics model performed quite well, increasing the chance of predicting the 
most effective drug up to 91%. The chance that the network predicted drug was among 
the actual top 3 most effective drug predicted drug improved close to 98%.

Comparison with existing methods

To demonstrate the effectiveness of our approach, we compared it with Bayesian mul-
titask multi-kernel learning (BEMKL), proposed by Ali et  al. [21]. BEMKL was the 
winning method on DREAM 7 challenge in 2014 [22], and in 2018 the authors further 
extended this method to adapt multi-omics data input. The major idea of this approach is 
to estimate kernels for each omics and integrate the kernels via multi-view learning. This 
method originally takes Gene expression, Gene mutations, CNV, Mass Spectrometry, 
and miRNA expression as inputs. To compare with our approach on the same dataset, 
Mass Spectrometry and miRNA expression were replaced by RPPA and Metabolomics 
data. As shown in Table 6, although MSE and R2 are approximate on single omics’ condi-
tion, our method significantly outperforms BEMKL in the case of multi-omics.

We compared our approach with DeepDR [8], a deep learning approach proposed for 
drug response prediction. DeepDR utilizes an auto-encoder to learn latent representa-
tions from gene expressions and gene mutation data and then merges the learnt fea-
tures together for prediction. Our work is similar to DeepDR from the perspective of 
two-stage training and latent features learning whereas our work is capable of integrat-
ing multiple types of omics data and leveraging an attention mechanism to weigh their 
influences efficiently. The hyper-parameters of DeepDR model followed the same way 
as in [8] since they were also tuned on the same CCLE dataset. As seen in Table 7, our 

Table 5  Top-1 and Top-3 accuracies of prediction the desired drug

Omics type Top-1 accuracy (%) Top-3 
accuracy 
(%)

Gene expression 50 89

Gene mutation 39 84

Gene CNV 39 84

Metabolomics 49 86

RPPA 50 91

Multi-omics (without attention) 51 87

Multi-omics (with attention) 91 98
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method achieves a lower MSE and a higher R2 . These comparisons illustrate that, with 
the attention layer, our model is capable of integrating multi-omics data effectively con-
sidering their distinct interactions in various drugs.

Discussion
In this work, we investigated prediction of cancer cell lines’ responses to already avail-
able anti-cancer drugs by integrating deep learning and multi-omics approaches. The 
ability to predict drug response of a drug from a patient’s omics data enable drug repur-
posing and personalized treatment against cancer. We developed a DNN model capable 
of handling large and complex multi-omics data and integrate heterogeneous multi-
omics information for drug response prediction. Our model was able to integrate het-
erogeneous multiple omics data effectively and to predict the most effective drugs and 
their activity against the patient’s specific cancer. Using our DNN model, we were able to 
achieve an R2 value of drug response prediction and 98% accuracy of Top-3 drug predic-
tion accuracy.

There are numerous challenges in the implementation of DNN for drug response pre-
diction. These include huge dimensionality of inputs, heterogeneity of inputs as data 
come from different omics platform, limited number of samples, and a requirement for 
large number of network parameters. This culminates in a need for a large number of 
samples for adequate training of deep neural networks. Previous attempts with DNN 
were limited to only two types of omics data and our model offer a general strategy to 
integrate any number of omics data types. In order to handle high dimensionality of 
omics data types, we proposed two embedding strategies - graph embedding and dense 
embedding. Furthermore, we demonstrated how graph embeddings enabled incorpora-
tion of interactome data. The attention layer offered an efficient mechanism for combin-
ing information from different omics data type. We employed attention mechanism only 
at the final layer. One can explore how attention mechanism can be employed at hidden 

Table 6  Performance comparison with Bayesian multi-task multi-kernel learning (BEMKL) method

Dataset Our method BEKML

MSE R
2 MSE R

2

Gene expression 2.37 0.24 2.37 0.31

Gene mutations 3.25 −0.02 3.31 0.02

CNV 3.32 −0.04 4.51 −0.22

RPPA 3.11 −0.02 2.52 0.33

Metabolites 2.97 0.07 3.25 0.10

Multi-omics 0.46 0.84 2.32 0.34

Table 7  Performance comparison with DeepDR

MSE R
2

Our work 0.28 ± 0.01 0.90 ± 0.01

DeepDR 3.02 ± 0.17 0.10 ± 0.02
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layers as well. It is also noteworthy to explore how the number of trainable parameters 
can be further reduced. With decreasing cost of collecting omics data, there is need 
for novel computational techniques that can effectively integrate multi-omics data for 
downstream tasks such as personalized diagnosis and treatment.

In a recent survey done to compare methods for drug prediction in cancer line few 
deep neural networks were featured in the comparative study [23]. In this review the 
CDRscan a deep neural network method that was used did not perform as well as Bayes-
ian methods or Matrix factorization methods, therefore it was concluded that the imple-
mentation of deep learning neural networks was non-trivial and requires extensive 
optimisation. Therefore, in the above investigation we seek to optimize the implemen-
tation of deep learning neural networks so that their performance in drug prediction 
improves and surpass other machine learning methodology.

Conclusion
There were two novelties of our DNN model: (i) incorporation of functional interac-
tions for processing mRNA expressions, gene mutations and CNV data, and (ii) use of 
an attention layer for combining embedding learned by networks of individual omics 
data. Our experiments show that the interactome data in the form of protein-protein 
interactions (PPI) improves drug response predictions. PPI data represents prior infor-
mation among genes/proteins and explicit embedding of PPI significantly improves drug 
response prediction. The attention mechanism learns the weights for different omics 
data and improves the prediction accuracy. Our network outperforms feedforward neu-
ral networks without using graph embeddings or the attention layer.

In addition, the observations from the ablation experiments and the attention score 
distribution reveal that, among the multi-omics data, Gene mutation data distinctly con-
tributes more to the prediction of drug responses than other omics data. When Gene 
mutation is excluded, RPPA dominates the weight of prediction. Therefore, our proposed 
approach provides a great predictive power of anti-cancer drug responses, together with 
an insight of the potential reactions between cell lines and drugs.

Methods
Datasets

We downloaded mRNA expressions, genomic mutations, reverse phase protein array 
(RPPA) expressions, and metabolomics data from CCLE, and copy number variations 
(CNV) and half maximal inhibitory concentration (IC50) of drug responses from GDSC, 
and interactome data from HINT1 (High-quality INTeractomes) database. The details of 
the datasets used in the experiments are summarized in Table 8.

•	 mRNA expressions: mRNA expression profiles in cells are measured by RNA 
sequencing technique in transcripts per million (TPM), which indicate how 
many genes actively transcribed in the cell. Earlier, analysis of RNA-seq data has 
revealed a comprehensive portrait of gene expressions in these cell lines [24] and 
contributions of deviations of expression level from the norm for certain genes to 

1  http://​hint.​yulab.​org/http://​hint.​yulab.​org/

http://hint.yulab.org/
http://hint.yulab.org/
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cancer, for example, see [25] for neuroblastoma. In this research, RNA-seq data of 
1,210 cell lines and 19,145 genes were downloaded from CCLE.

•	 Gene mutations: Gene mutations involve numerous variations, such as silent, mis-
sense, nonsense, deletion, insertion, splice site, nonstop, etc. Cancer development 
usually involves the accumulation of multiple gene mutations [26]. For example, 
somatic mutations which fare relatively stable lead to initiation and progression of 
breast cancer [27]. We downloaded Gene mutation data including mutation posi-
tion and variation for 1,656 cell lines and for 18,789 genes from CCLE.

•	 Copy number variations (CNV): Copy Number Variation (CNV) records the num-
ber of copies of a gene in a cell and are structurally variant regions in which copy 
number differences have been observed between two or more genes, which are 
highly characteristics of cancer [28]. CNV have been believed to be highly cor-
related to differential gene expressions [29]. CNV data for 25,638 genes in 987 cell 
lines were downloaded from GDSC.

•	 RPPA data: Reverse Phase Protein Array (RPPA) is a high-throughput proteomics 
method that, comparing to mass spectrometry proteomics, has higher sensitivity for 
low-abundance proteins [30] and provides the expression data for a prespecified set 
of proteins. RPPA captures the state of key signal transduction pathways in cells and 
provides insights to the cancer mechanisms [31]. RPPA data that consists of protein 
expression level of 215 proteins in 899 cell lines were downloaded from CCLE.

•	 Metabolomics data: Metabolomics involves study of small-molecule biochemi-
cals (metabolites) within a biologic system [32]. Certain metabolites have been 
validated as cancer biomarkers in various patient samples including blood, urine, 
and prostatic secretions [32]. Metabolomics directly reflect the underlying bio-
chemical activities of the cells and are therefore very useful in cancer research. We 
downloaded the expression level of 227 metabolites in 928 cell lines from CCLE.

•	 Interactome data: Interactome data such as protein-protein interaction (PPI) lend us 
an overview of interactions among biological processes. HINT database [33] con-
sists of a curated compilation of high-quality protein interactions from 8 interac-
tome resources: BioGRID, MINT, iRefWeb, DIP, IntAct, HPRD, MIPS and the PDB. 
We downloaded interactome data with 62,345 binary protein pair interactions from 
HINT. The values in the PPI matrix were binary: 1 for an interaction, or 0 otherwise.

•	 Drug response data: In the experiments of this research, IC50 values (the half 
maximal inhibitory concentration) were adopted to evaluate drug response lev-

Table 8  Details of omics datasets used

Source Dataset Size

CCLE mRNA expressions 1210 cell lines, 19,145 genes

gene mutations 1656 cell lines, 18,789 genes,1,239,235 mutations

RPPA expressions 899 cell lines, 215 proteins

metabolomics data 928 cell lines, 227 metabolites

GDSC CNV data 987 cell lines, 25,638 genes

IC50 responses 810 cell lines, 175 drugs

HINT Interactome 62,345 binary protein pair interaction
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els. IC50 values were measured in uM and represented in log scale where lower 
the IC50 value, more effective the drug [34]. We downloaded IC50 values meas-
uring drug response from 810 cell lines against 175 anticancer drugs, and top 22 
drugs were chosen because they were the most commonly used drugs and tested 
on more than 95% of the cell lines.

Neural network architecture

Figure  2 illustrates the deep neural network (DNN) architecture combining different 
omics data. The input to the network consists of 5 omics data types: mRNA expres-
sion, mutations, CNV, RPPA expressions, and metabolomics. Let the network input 
x = {xm}

M
m=1 be a set of M omics datasets and xm = (xmi)

nm
i  denote the mth omics data 

consisting of nm features. The network consists of 3 hidden layers: an embedding layer 
( l = 1 ), a dense layer 2 ( l = 2 ), and an attention layer ( l = 3 ). Let yl = {ylm} denote the lth 
hidden layer output and for ylm denote the output due to mth omics data.

In order to incorporate the prior information from the interactome, embedding layer 
for mRNA expressions, mutations, CNV, and RPPA expressions used graph embedding 
while the metabolomics data goes through a dense embedding. The output of dense 
embedding layer is given by

Fig. 2  Deep neural network architecture combining different omics data. Gene expressions, CNV, and Gene 
mutations data are fed into a graph embedding layer, respectively, whereas RPPA and metabolomics data are 
fed into a dense embedding layer, respectively. In a graph embedding layer, information about interactions 
among genes obtained from HINT database is incorporated, and only genes with mutual interactions 
are distilled. Then a dense layer is applied for further learning the latent features of each omics dataset. 
Eventually, an attention layer is adapted to predict the final drug responses with distinct attention to different 
omics features



Page 13 of 15Wang et al. BMC Bioinformatics          (2021) 22:632 	

and the output of graph embedding layer [18] is given by

where A denotes the affinity matrix of the protein-protein interaction network and 
· denotes element-wise product. W 1

m and b1m denote the weight matrix and bias vector 
of the embedding layer for mth omics data. The bias vector of this layer is initialized as 
zeros and learned during the training process.

The graph embedding layer allows incorporating prior information about interactions 
among genes/proteins, underlying fundamental biological mechanisms of cancer [18]. 
From the HINT database, we obtained the binary interactome dataset which records 
pairwise protein-protein interactions. The graph embedding layer acts as a feature filter 
that prevents information from proteins/genes that do not have biological interactions 
with others from being fed into its corresponding hidden neurons, therefore achiev-
ing our goal of a sparse connection. Since the interactions between metabolites are 
unknown, we used dense embedding for metabolomics data.

The embedding layer is followed by one dense layer. The output of the dense layer for 
m omics data is given by

where W 2
m and b2m denote the weight matrix and bias vector for mth omics data for dense 

layer. The bias vector of this layer is initialized as zeros and learned during the training 
process.

The dense layer outputs of different omics data are concatenated as z:

Assume that the attention layer weight W 3 is composed of W 3(d,m, i) , where W 3(d,m, i) 
represents the weight corresponding to drug d, dataset m, and feature i. Output layer 
weights W(d, m, i) are defined by

where {k(d, i)} denotes the kill matrix used for enforcing output neurons in the final 
layer to focus on its corresponding neurons from each individual omics sub-network. 
Specifically, we maintain the hidden sizes of the dense layers of all omics in Figure 2 to 
be the same with final output size, which means the range of d and i will be the same. 
Then the k(d, i) can be designed to be 1 when d = i , or 0 when d  = i . Element-wise mul-
tiplication of natural exponential of weights and the kill matrix ensures that the output 
neuron representing a drug solely focuses on the corresponding neurons in preceding 

(3)y1m = f ((W 1
m)

T
xm + b1m)

(4)y1m = f ((W 1
m · A)

T
xm + b1m)

(5)y2m = f ((W 2
m)

T
y1m + b2m)

(6)z = [y2m]
5
m=1

(7)W (d,m, i) =
eW

3(d,m,i) · k(d, i)
∑

m eW
3(d,m,i)
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sub-networks that represents the same drug, and influences coming from other neu-
rons are set to zero. This design prevents prediction of one drug being affected by other 
drugs.

The output y is given by
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