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Background
The development of high-throughput computational sequencing methods and tech-
nologies has created a significant opportunity for gene structure analysis research and 
experiments. We focus on splice sites detection in this paper, which is critical for gene 
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structure and expression analysis. The gene sequences essential for protein synthe-
sis are composed of alternating nucleotide regions called introns, which are the non-
protein-coding regions, and exons, which are the protein-coding regions. During DNA 
transcription in eukaryotic cells, an enzyme called spliceosomes cuts out introns and 
concatenates exons; this process is known as RNA splicing and is required for the crea-
tion of mature mRNA from pre-mRNA, which is required for gene expression and 
protein synthesis [1]. The dinucleotides AG and GT are biological markers involved in 
RNA splicing and are often found in the 3′ intron boundary, or donor splice site (DoSS) 
region, and the 5′ intron boundary, or acceptor splice site (AcSS) region, respectively [2] 
as shown in Fig. 1.

Organismal genomes are studied primarily through genome annotation, which 
involves classifying genomic elements based on their function and location [3]. This 
annotation is typically performed at the nucleotide level to determine the locations of 
key genetic elements in DNA sequences, as well as at the protein level to assess prot-
eomic function and investigate the mechanisms underlying gene interaction and splice 
site localization [4]. More specifically, different computational methods have been pro-
posed to accurately detect splice sites location, which can be used to identify genes in 
eukaryotic genomes. This biological and biochemical process has proven to be time-
consuming and ineffective in the real world, necessitating the development of computa-
tional tools for accurate splice site prediction.

The earliest research on genomic DNA splice site prediction primarily leveraged 
methods in machine learning and probabilistic modeling. GeneSplicer was the first 
to achieve record accuracies with its Markov model-enhanced maximal dependence 

Fig. 1  Illustration of 2 step biochemistry process for Splice Sites. This figure shows canonical sequence 
distribution in a splice site location, the Introns are spliced, hence the name splice sites resulting in proteins 
as a final product
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decomposition decision trees, which contributed to the popularity of Markov models 
for splice site prediction [2]. Other earlier works used Markov Model as a preprocessing 
technique for other algorithms such as shallow neural networks, or to enhance perfor-
mance [5, 6]. Burge et al. [7] developed the MDD method [8] as a decision tree approach 
to reduce the computational burden of increasing the Markov model order. Goel et al. 
[9] proposed a method also based on Markov model. Some other methods adopted the 
use of support vector machines (SVMs) for their simplicity and speed [10, 11]. While 
the intricacy of these machine learning models grew, their accuracy plateaued. This was 
due to both compute power and the bottleneck of having to select the model’s features 
manually.

Deep learning, along with better computing methods and resources, has largely solved 
these issues. In recent years, splice site prediction has been performed using the deep 
learning (DL) approach with neural networks (NNs). Convolutional Neural Networks 
(CNN) are the most frequent neural network (NN) architecture adopted for this deep 
learning approaches, and widely deviates in their depth (number of layers) and param-
eters across studies. SpliceRover [12], SpliceFinder [13], DeepSplicer [14], DeepSS [15], 
Spliceator [16], and iSS-CNN [17], among others, employ CNNs. Donor and acceptor 
sites are typically one-hot-encoded and batch-fed into these architectures, which per-
form feature extraction and exceed the earlier ML techniques in classification accu-
racy. On genomic DNA, other deep learning methods have been used, including the 
Long-Short Term Memory (LSTM) neural network and the Recurrent Neural Network 
(RNN), which are sequence learning networks commonly used in time-series analyses. 
SpliceViNCI, for example, is a bidirectional LSTM with integrated gradients [18].

In this work, we propose a stacking ensemble method for splice site prediction to 
combine various classifiers to produce an alpha-classifier that is more effective at clas-
sification and generalization than the individual classifiers. Through training, a stack 
(ensemble) of various neural networks models (base-models) develops its own represen-
tation of the genomic data. Following this, each network predicts the unidentified splice 
sequences on its own. These predictions are combined into a new dataset’s pool entries. 
For example, if the ensemble included three different CNNs and two different DNNs, 
and the predictions for a splice site were [1], [1], [1], [0], [1] for each network, then the 
row of entries would read [1, 1, 1, 0, 1]. Following the creation of this new dataset, a final 
prediction using the new dataset is then made using simple logistic regression (meta-
model). The main importance of ensemble learning is that the diversity of predictions 
balances out the weaknesses of individual base model performances, increasing overall 
accuracy and resulting in improved performance and robustness. This performance and 
robustness importance can be seen in other deep learning works of literature, includ-
ing models for positioning footballers [19] in sport science research, models for predict-
ing generic Escherichia coli population in agricultural ponds based on weather station 
measurements [20], and improving model performances for the detection of Alzheimer’s 
disease [21] in health science research.

Our method combines deep neural network architectures to create EnsembleSplice, 
a novel ensemble architecture. Hence, we propose a deep learning architecture that 
learns from an ensemble of CNNs to achieve a state-of-the-art performance in true 
and false splice sites prediction accuracy and efficiency. We used grid search methods 
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to determine the best hyperparameters, and the best ensemble selection was achieved 
using five-fold cross-validation, as shown in the manuscript’s tables and results. Fur-
thermore, we compare EnsembleSplice’s splice site identification performance to that 
of existing splice site tools using three genomic DNA datasets as benchmarks. The 
datasets, datasets preprocessing using one-hot encoding, EnsembleSplice pipeline, 
performance benchmarks methods, subsections are discussed in the methodology 
section, while explanatory evaluation metrics, cross-validation, result discussion and 
model interpretability subsections are discussed in the experiments and results sec-
tion, as well as the conclusion sections.

In summary, the aim and objective of this work is as follow:

•	 Develop a deep ensemble model architecture consisting of DNNs and/or CNNs 
that achieves excellent performance on the task of splice site classification.

•	 Ensure via cross validation, that the deep ensemble consists of effective compo-
nent neural networks (CNNs and/or DNNs) with high diversity across them.

•	 Ensure that our deep ensemble architecture is robust, with a minimum dispersion 
and consistent in performance in splice site prediction across different datasets, 
than current state-of-the-art algorithms.

Methods
Datasets

Each dataset used in this research consists of both confirmed true (positive) AcSS/
DoSS and confirmed false (negative) AcSS/DoSS. Evaluation of classification perfor-
mance is partitioned by splice site type. This means that EnsembleSplice is trained to 
distinguish between true and false DoSS regions and is trained again and separately to 
distinguish between true and false AcSS regions.

HS3D

The Homo Sapiens Splice Sites Dataset (HS3D) is a collection of human genomic 
DNA introns and exons extracted from GenBank Rel.123 [22] HS3D’s Primate Divi-
sion. There are 2796 confirmed true DoSS regions, 2880 true positive AcSS regions, 
271,937 confirmed false DoSS regions, and 329,374 confirmed false AcSS regions. 
This paper randomly selects 2750 false DoSS regions and 2750 false AcSS regions 
from the 271,937 and 329,374 available in the dataset, respectively; the Python code 
snippet random.seed(123,454) is used to shuffle the entire HS3D dataset before the 
false DoSS and false AcSS subsets are selected. The full set of 2750 confirmed true 
DoSS regions and 2750 confirmed true positive AcSS regions are used. The nucleotide 
consensus AG for AcSS regions occurs at positions 69 and 70, and the nucleotide con-
sensus GT for DoSS regions occurs at positions 71 and 72. In total, each HS3D donor 
and acceptor site splice sequence is 140 nucleotides long, with this sequence length 
used for the cross-validation, performance, and comparison experiment. The HS3D 
dataset can be accessed at http://​www.​sci.​unisa​nnio.​it/​docen​ti/​rampo​ne/.

http://www.sci.unisannio.it/docenti/rampone/
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Homo sapiens and Arabidopsis thaliana

The Homo sapiens and Arabidopsis thaliana datasets consist of splice site regions 
selected from annotated genomic DNA sequences for Homo sapiens and A. thaliana 
in Ensembl 2018 [23]. Using Bedtools [24, 25], the peripheral nucleotide sequences 
padding each AcSS, or DoSS were determined. Each splice site region in these data-
sets is 602 nucleotides long; each DoSS region has consensus GT at positions 301 
and 302, and each AcSS has consensus AG also at positions 301 and 302. There are 
250,400 confirmed true and false DoSS regions and 248,150 confirmed true and false 
AcSS regions in the Homo sapiens dataset. There are 110,314 confirmed true and 
false DoSS regions and 112,336 confirmed true and false AcSS regions in the A. thali-
ana dataset. The confirmed true AcSS and DoSS regions were selected from chro-
mosomes 21, 2, 2L, 1, and I. This paper randomly selects 8000 true and false DoSS 
regions (totaling 16,000 entries) and 8000 true and false AcSS regions (totaling 16,000 
entries) from both datasets. As with the HS3D dataset, the Python code snippet ran-
dom.seed(123,454) is used for shuffling the Homo sapiens and A. thaliana datasets 
before the DoSS and AcSS subsets are selected. The Homo sapiens and A. thaliana 
datasets can be accessed at https://​github.​com/​Somay​ahAlb​aradei/​Splice_​Deep.

We used the source sequence length—140 nucleotides for HS3D and 602 for Homo 
sapiens and A. thaliana datasets —as discussed in the subsections for all cross-valida-
tion, performance, and comparison experiments executed and results reported.

One‑hot encoding and hyper‑parameter search space and tuning

Genomic DNA splice site regions are composed of four nucleotides: A (Adenine), 
G (Guanine), C (Cytosine), and T (Thymine). Given constraints on the input of DL 
architectures, these nucleotides are encoded numerically, with each nucleotide cor-
responding to a row in a 4 × 4 identity matrix. The encoding scheme utilized in this 
paper is that A corresponds to [1, 0, 0, 0], G corresponds to [0, 0, 1, 0], C corresponds 
to [0, 1, 0, 0], and T corresponds to [0, 0, 0, 1]. Now consider a family.

of nucleotide splice site regions. We have the ordered set.

which Si is the i-th nucleotide splice site region, and

For all 0 ≤ j ≤ |Si| is encoded as a |Si| ∗ |X | binary matrix through one-hot encoding.
Alternatively stated, if each splice site region consists of some N  nucleotides, the 

final numerical representation for each splice site region is a N × 4 matrix, where 
each row is a one-hot encoded nucleotide that occurs at the same index as it did in 
the splice site region’s original representation.

We used an easily optimizable hyperparameter tool called KerasTurner (https://​
keras.​io/​api/​keras_​tuner/​tuners/​hyper​band/) for our hyperparameter search. We 

D = {S0, S1, . . . , Sn}

Si = x1, x2, . . . , x|Si|

xj ∈ X = {A,C ,G,T }, 0 ≤ j ≤ |Si|

https://github.com/SomayahAlbaradei/Splice_Deep
https://keras.io/api/keras_tuner/tuners/hyperband/
https://keras.io/api/keras_tuner/tuners/hyperband/
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configure this tool based on the search space parameters as shown in Table  1. This 
table shows the hyper-parameters, search range, steps, and selected parameters for 
each CNN and DNN subgroup. To reduce the learning rate as the training proceeds, 
we used the TensorFlow inverse time decay schedule. For the CNNs, the parameters 
are initial learning rate 0.001, decay steps 140, and decay rate 0.1, while for the DNNs, 
the parameters are initial learning rate 0.002, decay steps 80, and decay rate 1.4. We 
have used a 32-batch size for each neural network model compilation and a 30-epoch 
for each.

Deep learning

Deep learning is a branch of machine learning that uses layered learning and a hierarchi-
cal learning model to enable computers to learn complex concepts [26]. Deep Learn-
ing is based on an artificial neural network that mimics the concept of brain neurons. 
Artificial neural networks contain neuronal connections and the ability to send inputs 
within layers of neurons [26]. Moreso, an artificial neural network with convolutional 
blocks as its fundamental layers is known as a convolutional neural network. [27–29]. 
The EnsembleSplice model combines convolutional layers and dense layers networks to 
receive input, transform it, and output the transformed results between layers to a sim-
ple logistics regression. In other words, they combine features and pattern extraction 
on the genomic acceptor and donor datasets with organized (element-wise multiplica-
tion) operations between the layer inputs and their corresponding weights. To detect 
these patterns, the number and size of filters are given. These filters are matrices with 
randomly defined values in the rows and columns, allowing for effective differentiation 
of true/false acceptors and donor splice sites. We tested and analyzed mean cross-val-
idation results for the different ensemble architectures across the acceptor and donor 
organism datasets to find the best performing model for predicting splice locations. The 
architecture and model parameters are covered in detail in the EnsembleSplice pipeline 
section below.

EnsembleSplice pipeline

EnsembleSplice is an ensemble learning architecture made up of eight sub-models: four 
deep neural networks and four convolutional neural networks. The architecture of each 
CNN and DNN sub-models is shown in Table 2 with colored pattern representation in 

Table 1  EnsembleSplice neural network hyper-parameter search space

This table shows the convolutional neural network (CNN) and Dense Neural Network (DNN) search space. This includes the 
search range, steps and the selected hyperparameter

Neural Network Hyper-parameter Range Steps Selected

CNN Filters 8–400 8 72, 120, 136, 144, 168, 208, 250, 272,

Kernel size 1–9 2 3, 4, 5, 7, 9

Dropout 0.05–0.30 0.05 0.20, 0.35

Max-Pool size 1–9 2 3

DNN Units 32–704 32 32, 128, 224, 250, 256, 352, 512, 704,

Kernel regularizers 0.0025, 0.025, 0.036 - 0.0025, 0.025, 0.036

Dropout 0.05–0.50 0.50 0.1, 0.15, 0.25
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Table 2  EnsembleSplices’ CNNs and DNNs model architecture

Neural networks Layer type

CNN 1 Conv1D(72, 5)

Conv1D(144, 7)

Conv1D(168, 7)

Flatten()

Dropout(0.20)

Dense(2, "sigmoid")

CNN 2 Conv1D(136, 3)

Conv1D(72, 4)

MaxPooling1D(7)

Conv1D(272, 7)

MaxPooling1D(3)

Flatten()

Dropout(rate = 0.35)

Dense(2, "sigmoid")

CNN 3 Conv1D(208, 9)

MaxPooling1D(6)

Conv1D(120, 5)

MaxPooling1D(3)

Flatten()

Dropout(0.20)

Dense(2, "sigmoid")

CNN 4 Conv1D(250, 5)

Conv1D(250, 5)

Conv1D(250, 5)

MaxPooling1D(3)

Flatten()

Dropout(0.20)

Dense(2, "sigmoid")

DNN 1 Flatten()

Dense(704)

Dense(224)

Dropout(0.1)

Dense(512)

Dropout(0.15)

Dense(2, "sigmoid")

DNN 2 Flatten()

Dense(704)

Dense(224)

Dense(128)

Dropout(0.15)

Dense(2, "sigmoid")

DNN 3 Flatten()

Dense(256)

Dense(352)

Dense(32)

Dense(352)

Dropout(0.15)

Dense(2, "sigmoid")
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Fig. 2. Each sub-model’s architectural design choices differ significantly. These Ensem-
bleSplice sub-models predict whether inputted genomic DNA sequences are true or 
false splice regions and handle DoSS and AcSS separately, implying that there are two 

Table 2  (continued)

Neural networks Layer type

DNN 4 Flatten()

Dense(250)

Dense(250)

Dense(250)

Dropout(0.25)

Dense(2, "sigmoid")

The number of filters and kernel size are the first and second parameters for convolutional layers (CNN), respectively, with 
the same activation function (ReLu) and padding. The pool size is the parameter in the max-pooling layer, and the number 
of dense nodes and ReLu activation function is the parameter in the layer for dense neural networks (DNNs). DNN 4 uses the 
random normal as its kernel initializer

Fig. 2  EnsembleSplices’ CNNs and DNNs model architecture. This figure depicts each CNNs and DNNs base 
model’s architecture used in this cross-validation experiment. This Figure contains a CNN 1; b CNN 2; c CNN 
3; d CNN 4; e DNN 1; f DNN 2; g DNN 3; h DNN 4, with architecture containing its respective layers and their 
distinct labels
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sets of weights, one for DoSS and the other for AcSS classification. Both DoSS and AcSS 
use the same sub-model architecture (the architecture of the i-th CNN is identical in 
both). The sub-models produce binary predictions, which are then aggregated (stacked) 
into a new dataset, with row i containing all sub-model predictions for data entry i, and 
this dataset is then fed into an output predictor (logistic regression), which produces 
a final set of predictions for the inputted nucleotide sequences. Each CNN sub-model 
in EnsembleSplice is composed of some combination of convolutional layers, a drop-
out layer, and max-pooling layers. The convolutional layers automatically extract local 
and global features from the AcSS or DoSS input sequences. These layers create com-
plex representations of the AcSS or DoSS, allowing CNN to distinguish between true 
and false AcSS/DoSS with accuracy. Each convolutional layer employs the ReLU activa-
tion function as its final component; this removes noisy or otherwise irrelevant features, 
thus improving feature selection [30, 31]. The dropout layer prunes a percentage of each 
network’s total convolutional nodes, which reduces model overfitting by limiting the co-
dependencies each node in the network has on other nodes in the network [32]. Each 
CNN optimizer uses the ADAM optimizer [33] with an inverse time decay learning rate 
schedule during model compilation.

Each DNN sub-model in EnsembleSplice consists of several fully connected dense 
layers, up to 2 dropout layers, and, in some cases, an L2 kernel regularization penalty. 
Similar to the CNN sub-models, the ReLU activation function and the ADAM optimizer 
with an inverse time decay learning rate schedule are used.

EnsembleSplice is implemented via the TensorFlow/Keras framework [34, 35]. For all 
experiments conducted, we use a training maximum epoch of 30. The training and vali-
dation were performed in Google Coolaboratory using Graphical Processing Unit (GPU) 
hardware, and the early model stopping callback, which stops training if the model’s val-
idation loss does not decrease for a predetermined number of epochs. The CNN and 
DNN ensemble sub-model architecture evaluation and selection is discussed in details 
in the cross-validation section of the Results and Discission section.

Evaluation metrics

The counts of correctly identified True AcSS or DoSS (true positive, "TP"), correctly 
identified False AcSS or DoSS (true negative, "TN"), incorrectly annotated True AcSS or 
DoSS (false positive, "FP"), and incorrectly annotated False AcSS or DoSS (false negative, 
"FN") are used to evaluate EnsembleSplice’s classification performance and to compare 
EnsembleSplice with other splice site detection models used.

For this experiment, we used evaluation metrics standard to splice site detection 
research. This includes.

•	 Accuracy (Acc): the value of AcSS and DoSS correctly identified, given by 
Accuracy = TP+TN

TP+TN+FP+FN .
•	 Precision (Pre): the fraction of positive classifications for AcSS or DoSS that were 

positive, given by Precision = TP
TP+FP.

•	 Sensitivity (Sn): the fraction of positive AcSS or DoSS with a positive classification 
(true positive rate), given by Sensitivity = TP

TP+FN
.
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•	 Specificity (Sp): the fraction of negative AcSS or DoSS with a negative classification 
(true negative rate), given by Specificity = TN

TN+FP
.

•	 Matthew’s Correlation Coefficient (MCC): the correlation between true and false 
AcSS and DoSS and the classifications for them generated by the mode, given by 
MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

•	 F1 Score (F1): the harmonic mean of the fraction of positive classifications for AcSS 
or DoSS that were positive and the fraction of positive AcSS or DoSS that were cor-
rectly identified, given by F1Score = 2×TP

2×TP+FP+FN
.

•	 Error Rate: the fraction of AcSS or DoSS incorrectly identified, given by 1 − Accu-
racy.

We utilized four diversity metrics described below to evaluate how well the different 
ensembles might generalize in our ensemble cross-validation experiments. They are 
as follows: correlation, double fault, disagreement, and Q-statistic. For a mathematical 
illustration of these diversity metrics, we use two classifiers and define Kij as the num-
ber of measures for which binary vector sy,x = i and sy,z = j . Thus, K 11 is the number of 
examples that is correctly classified by the ensemble classifier [36].

Given the output of two classifiers, Qx and QZ:

•	 Correlation: the correlation is given by K 11K 00−K 01K 10√
(K 11+K 10)(K 01+K 00)(K 11+K 01)(K 10+K 00)

 . The 

correlation measure is diverse when the value is low
•	 Double Fault: this measure the fraction of the misclassified examples by both classi-

fier ensemble and is given by K 00

K 11+K 10+K 01+K 00 . This metric is diverse when the value 
is low.

•	 Disagreement: the fraction between the true classifier and false classifier to the total 
number of examples and is given by K 01+K 10

K 11+K 10+K 01+K 00 . Disagreement measure is 
diverse when the value is high.

•	 Q-statistics: this measure is given by K
11K 00−K 01K 10

K 11K 00−K 01K 10 . A low value shows high diversity 
for the Q - statistics metrics.

Performance benchmark methods

In this study, we chose existing cutting-edge splice site models iSS-CNN [17], 
SpliceRover [12], SpliceFinder [13] and DeepSplicer [14] for benchmark comparison 
with EnsembleSplice based on their training architecture, experiment datasets and 
recent deep-learning based splice site state-of-the-arts.

Tayara et al. [17]

iSS-CNN [17], which was trained on a subset of HS3D data, has three layers: a drop-
out layer that prunes 30% of the nodes, a fully connected dense layer using the Sigmoid 
activation function, one convolutional layer of 16 filters and kernel size 7, stride size 3, 
and a classification threshold of 0.5 for predicting AcSS or DoSS. The testing was done 
on the public web server of iSS-CNN and is accessible at http://​nsclb​io.​jbnu.​ac.​kr/​tools/​
iSS-​CNN/. For evaluation, EnsembleSplice uses the same HS3D testing subset as the 
benchmarked iSS-CNN.

http://nsclbio.jbnu.ac.kr/tools/iSS-CNN/
http://nsclbio.jbnu.ac.kr/tools/iSS-CNN/
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Zuallaert et al. [12]

SpliceRover [12] which is also a deep learning approach to splice site prediction was 
trained on human genomic DNA data and A. thaliana genomic DNA data. Its architec-
ture consists of a convolutional layer with filters equal in number to the AcSS or DoSS 
length, a max-pooling layer, and a series of convolutional and max-pooling layers. A 
fully connected dense layer follows the convolutional layers, and the output is input to 
the Softmax activation function. When comparing SpliceRover to EnsembleSplice, their 
publicly accessible web server is used. This time, a cut of 0.5 was used. The web server 
can be found at the following link: http://​bioit2.​irc.​ugent.​be/​rover/​splic​erover.

Wang et al. [13]

SpliceFinder [13] was tested on other species of datasets after being trained on the 
human dataset. Its classification accuracy was 90.25% and it used one-hot encoding, 
one convolutional layer, a fully connected layer, and Softmax. We use this method as 
a benchmark for evaluation comparison since it is a more recent splice site prediction 
method that has been published.

Akpokiro et al. [14]

DeepSplicer [14] uses a five-fold cross-validation approach for its model selection. This 
convolutional neural network state-of-the-art method uses three convolution neural net-
work layers with flatten, dense, dropout, and Softmax layers in its architecture. Similar 
to EnsembleSplice, this method is trained and tested on Homo sapiens and A. thaliana. 
The models, software architecture, and datasets for SpliceFinder [13] and DeepSplicer 
[14] are all available in the corresponding GitHub repositories.

Results and discussion
Cross‑validation

To establish a more efficient and consistent model, we performed a five-fold cross-val-
idation experiment. Through this experiment, we estimated the splice site prediction 
accuracy by dividing the balanced training datasets into K equal dataset splits. This split 
has an equal number of true and false genomic sequences, with true and false splice sites 
being genomic sequence patterns with consensus AcSS AG and DoSS GT dinucleotide 
molecules annotated as splice sites and not annotated as splice sites, respectively. We 
essentially used the K-1 fold for training and the one-fold for testing for each subset of 
the data partitions. Finally, the reported accuracy represents the mean accuracy com-
puted from all K data splits across each balanced genomic organism dataset. Ensemble-
Splice employs the StratifiedKFold [17] ML module for its k-fold (k = 5) cross-validation 
for each acceptor and donor organism dataset. Consequently, there were five groups 
from the training datasets.

We tested potential ensemble architectures using the cross-validation method on the 
following set:

•	 Ensemble ENS1 contains all DNN’s (DNN1, DNN2, DNN3, DNN4).

http://bioit2.irc.ugent.be/rover/splicerover
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•	 Ensemble ENS2 contains all the CNNs (CNN1, CNN2, CNN3, CNN4).
•	 Ensemble ENS3 contains all the neural network models (DNN1, DNN2, DNN3, 

DNN4, CNN1, CNN2, CNN3, CNN4).
•	 Ensemble ENS4 consists of CNN1, CNN2, CNN3, DNN1, DNN3, this does not 

include the two worst DNNs and one worst CNN.
•	 Ensemble ENS5 contains all the neural network sub models except the single worst 

CNN and DNN (DNN1, DNN3, DNN4, CNN1, CNN2, CNN3).
•	 Ensemble ENS6 includes all DNNs with the worst DNN removed and all CNNs with 

the worst two CNNs removed (DNN1, DNN3, DNN4, CNN1, CNN2).

The architecture of each of this ensemble sub-models—that is CNNs and DNNs— are 
provided in Table 2, with the architecture representation in Fig. 3. All the architectures 
use the one-hot encoding of genome data as their input. Additionally, the output of this 
architecture serves as the input for a dense and dropout layer. Consequently, we com-
pute the mean results for the evaluation and diversity metrics of the cross-validation 
results across the organism for each acceptor and donor dataset with results shown in 
the Table 3. From the table, we observe that the performance of the ENS2 architecture is 
highly competitive across all the diversity metrics. Importantly, this architecture outper-
formed the competition in accuracy metrics and error rates for the acceptor and donor 
splice site datasets for the benchmark organisms. Thus, we selected the ENS2 as the 
representative EnsembleSplice model. The evaluation metrics section explains the met-
rics used in this experiment and the Fig. 4 outlines the entire architecture of the ENS2 
model, from input, one-hot encoding of the genome data, to output specifying the false 
and true AcSS/DoSS splice site prediction score.

Performance evaluation

We evaluated and compared EnsembleSplice performance to the benchmarked meth-
ods based on the metrics described above in the evaluation metrics section and the 
datasets as discussed in the datasets section with the state-of-the-art methods consid-
ered because of their deep learning application. EnsembleSplice outperforms all other 
methods for the HS3D acceptor datasets, with the exception of the precision metrics, 
where DeepSplicer outperformed EnsembleSplice by a factor of 1.05%. Furthermore, 
our approach outperforms other cutting-edge methodologies and records an accuracy 
of 93.79% and a reduced error rate of 6.36%. With an improved accuracy of 96.25% and 
a reduced error rate of 3.81% in the HS3D donor datasets, EnsembleSplice outperforms 
competing methods. We continued to test EnsembleSplice to predict splice sites in the 
A. thaliana genomic dataset and discovered that it performed better than other methods 
in every metric for both the acceptor and donor genomic dataset organisms. We tested 
and compared other splice site models on the Homo-sapiens datasets in order to dem-
onstrate EnsembleSplice’s consistency in predicting the splice site. In the acceptor and 
donor datasets, EnsembleSplice records data with higher accuracy and lower error rates 
than other methods. In the Table 4 result, N/A denoted results for methods of no known 
datasets model.

Based on the results we have observed and reported above, we can conclude that each 
of our research objectives have been fulfilled. We have successfully developed a deep 
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Fig. 3  Cross-Validation Ensemble model architecture. These are the architectural representation of each 
Ensemble model architecture and their individual base model architecture combination used in the 
cross-validation experiment. This contain a Ensemble ENS1 contains all DNN’s (DNN1, DNN2, DNN3, DNN4); 
b Ensemble ENS2 contains all the CNNs (CNN1, CNN2, CNN3, CNN4); c Ensemble ENS3 contains all the 
neural network models (DNN1, DNN2, DNN3, DNN4, CNN1, CNN2, CNN3, CNN4); d Ensemble ENS4 consists 
of CNN1, CNN2, CNN3, DNN1, DNN3; e Ensemble ENS5 consists of DNN1, DNN3, DNN4, CNN1, CNN2, CNN3; 
f Ensemble ENS6 consist of DNN1, DNN3, DNN4, CNN1, CNN2. We selected the Ensemble ENS2 from our 
cross-validation experiment
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ensemble model architecture algorithm for splice site prediction (objective point 1). 
EnsembleSplice is the first deep ensemble model architecture algorithm proposed for 
splice site prediction. Our method records an outstanding performance in comparison 
to the state-of-the-art methods and across the evaluation metrics, especially in accuracy 
and error rate, as shown in Table 4. This superior performance can be attributed to both 
the use of individually effective DNN and CNN architectures for splice site prediction 
and the use five-fold cross-validation to select the best ensemble architecture capable of 
generalizing for maximum performance and the diversity of our ensemble-based model 
to provide model performance robustness (objective point 2). Comparing our stable and 
successful model to other state-of-the-art models, Table  4 demonstrates how the use 
of ensemble learning for splice site prediction out-performs other cutting-edge models 
(objective point 3).

Impact and benefit of this study

The primary appeal of deep learning for splice site prediction is that it is more accu-
rate than earlier machine learning methods, especially ones that involved manual feature 

Fig. 3  continued
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selection. Although deep learning is somewhat more computationally intensive, it is 
effective for solving complex problems, which has been its second major appeal. Ensem-
bleSplice further benefits biological research involving splice site classification in that its 
deep ensemble architecture outperforms individual deep learning networks and exceeds 
state-of-the-art performance in splice site prediction, not just in terms of accuracy, but 
also in terms of other classification metrics, such as precision and sensitivity, because 
of the diverse combination of its base models. Additionally, in this study, we adopt the 
stacked ensemble learning algorithm which has the major advantage of using a variety of 
effective models to accomplish classification or regression tasks and produce predictions 
that perform better than any one model in the ensemble. In our benchmarking results, 
the performance of EnsembleSplice’s all-CNN stacked ensemble model demonstrates 

Fig. 3  continued
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the advantages of using an ensemble architecture over a single CNN model for the 
prediction of splice sites, and this knowledge may be applied and transferred to other 
domains to address still unsolved complex regression or classification problems.

Table 3  The cross-validation results for the dataset for the genomic organisms

This table depicts the five-fold Cross-validation Results, average result across the organism distribution, evaluation metrics 
and the ensemble combinations considered. Results highlighted in black shows the best average evaluation metrics. ENS1 
consist of DNN1, DNN2, DNN3, DNN4; ENS2 consists OF CNN1, CNN2, CNN3, CNN4; ENS3 consists of DNN1, DNN2, DNN3, 
DNN4, CNN1, CNN2, CNN3, CNN4; ENS4 consists of CNN1, CNN2, CNN3, DNN1, DNN3; ENS5 consist of DNN1, DNN3, DNN4, 
CNN1, CNN2, CNN3; ENS6 includes the DNN1, DNN3, DNN4, CNN1, CNN2

Datasets SpliceSites Metrics ENS1 ENS2 ENS3 ENS4 ENS5 ENS6

HS3D Acceptor Double fault 0.033 0.00 0.01 0.01 0.007 0.011

Correlation 0.612 0.06 0.22 0.20 0.21 0.33

Q-statistics 0.89 0.131 0.50 0.65 0.553 0.83

Disagreement 0.03 0.00 0.03 0.03 0.02 0.03

Accuracy 0.89 0.936 0.94 0.93 0.94 0.93

Donor Double fault 0.013 0.00 0.00 0.00 0.003 0.003

Correlation 0.496 0.02 0.18 0.11 0.19 0.20

Q-Statistics 0.796 − 0.001 0.44 0.37 0.451 0.478

Disagreement 0.015 0.00 0.01 0.01 0.01 0.01

Accuracy 0.93 0.958 0.95 0.95 0.94 0.94

A. thaliana Acceptor Double fault 0.023 0.003 0.012 0.01 0.011 0.01

Correlation 0.667 0.215 0.358 0.401 0.413 0.415

Q-Statistics 0.988 0.713 0.843 0.98 0.982 0.985

Disagreement 0.023 0.016 0.097 0.027 0.03 0.025

Accuracy 0.913 0.947 0.946 0.945 0.948 0.942

Donor Double fault 0.013 0.019 0.008 0.006 0.007 0.007

Correlation 0.638 0.132 0.317 0.3 0.315 0.326

Q-Statistics 0.992 0.308 0.689 0.83 0.882 0.747

Disagreement 0.016 0.079 0.089 0.056 0.085 0.016

Accuracy 0.93 0.954 0.954 0.95 0.953 0.952

Homo Sapiens Acceptor Double fault 0.034 0.003 0.015 0.01 0.013 0.015

Correlation 0.702 0.19 0.325 0.338 0.353 0.399

Q-Statistics 0.989 0.555 0.667 0.978 0.844 0.978

Disagreement 0.028 0.022 0.083 0.037 0.069 0.037

Accuracy 0.894 0.938 0.938 0.939 0.937 0.933

Donor Double fault 0.022 0.001 0.008 0.007 0.01 0.008

Correlation 0.665 0.103 0.289 0.298 0.338 0.315

Q-Statistics 0.989 0.274 0.773 0.894 0.978 0.907

Disagreement 0.022 0.057 0.024 0.025 0.033 0.025

Accuracy 0.907 0.952 0.952 0.951 0.949 0.946

Average Acceptor Double fault 0.03 0.002 0.01 0.02 0.01 0.012

Correlation 0.66 0.16 0.30 0.31 0.32 0.38

Q-Statistics 0.955 0.466 0.58 0.87 0.793 0.931

Disagreement 0.027 0.012 0.070 0.033 0.040 0.030

Accuracy 0.830 0.941 0.940 0.940 0.940 0.930

Donor Double fault 0.015 0.012 0.010 0.004 0.006 0.008

Correlation 0.599 0.09 0.260 0.240 0.28 0.28

Q-Statistics 0.9256 0.193 0.630 0.700 0.770 0.710

Disagreement 0.017 0.045 0.040 0.030 0.040 0.020

Accuracy 0.920 0.954 0.950 0.950 0.950 0.950
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EnsembleSplice model interpretability

To increase the model’s interpretability, we isolated and showed the motifs that drive 
our EnsembleSplice model’s deep learning processes. Understanding the underly-
ing pattern of the genomic sequence by generating the contribution scores of the 
sequence window is required for implementation. We used the WebLogo [37] (http://​
weblo​go.​three​pluso​ne.​com/​create.​cgi) web server was also used to illustrate the 
sequence logo for our model interpretability test outputs. WebLogo is a web-based 
tool for efficiently generating sequence logos from genomic datasets sequence align-
ment. This genomic sequence logo displays the weighted average nucleotide base 
position contribution score for the genomic sequence organism. To show the contri-
butions of genomic motifs in each positive and negative acceptor and donor organism 
dataset, we use the entire HS3D sequence length of 140. Figure 5a indicates that the 
nucleotide sequence AG contributes significantly to the HS3D acceptor positive splice 
sites, as Fig.  5b shows that the nucleotide sequence AG contributes significantly to 
HS3D acceptor negative splice sites. While Fig. 5c shows the nucleotide sequence GT 
contributes significantly to the HS3D donor positive splice sites as Fig. 5d indicates 
the nucleotide sequence GT contributes significantly to the HS3D donor negative 
splice sites. According to this figure, the nucleotide consensus AG for AcSS regions 
occurs at positions 69 and 70 and the nucleotide consensus GT for DoSS regions 

Fig. 4  EnsembleSplice architectural pipeline. This figure depicts the Ensemble architecture used for this 
experiment. This contains the one-hot encoded datasets, the ensemble neural network combination, 
prediction and label, and the logistics regression and evaluation

http://weblogo.threeplusone.com/create.cgi
http://weblogo.threeplusone.com/create.cgi
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occurs at positions 71 and 72 for the HS3D datasets. This figure also validates that the 
splice site distribution is most significant in sequence region position 70.

Conclusion
Inspired by the stacking ensemble machine learning method, we introduce a method 
that combines heterogeneous base neural network models, learns them in parallel, and 
combines them by training a meta-model to output a prediction based on the different 
base model predictions. EnsembleSplice has the advantage of balancing out the base 
model’s flaws and produces a diverse and stable model that can be applied to both com-
petitive, industrial, and academic research applications. EnsembleSplice has consistently 
shown competitive performance on all metrics used when compared to other methods 

Table 4  The Evaluation performance comparison results

This table shows the EnsembleSplice splice site prediction performance results and its comparison to other methods which 
includes iSS-CNN [17], SpliceRover [12], SpliceFinder [13], and DeepSplicer [14]. We show the prediction accuracy measures 
and the error rate amongst other evaluation metrics performance results. Results figures highlighted in black denotes best 
performance, N/A are results for methods of no known datasets model. For this table, Sp denotes specificity, Sn denotes 
sensitivity, Pre denotes precision, Err error rate, Acc accuracy, MCC denotes Mathew’s correlation coefficient, and F1 denotes 
the F1 score

Datasets SpliceSites Model Sp Sn Pre Err Acc MCC F1

HS3D Acceptor ISSCNN 87.27 91.81 87.82 10.45 89.55 79.17 81.45

SpliceRover N/A N/A N/A N/A N/A N/A N/A

DeepSplicer 92.55 92.91 92.57 7.27 92.73 85.46 92.74

SpliceFinder 89.09 93.09 89.51 8.90 91.09 82.24 91.26

EnsembleSplice 91.09 96.18 91.52 6.36 93.64 87.39 93.79
Donor ISSCNN 94.36 94.90 94.39 5.35 94.64 89.27 89.84

SpliceRover N/A N/A N/A N/A N/A N/A N/A

DeepSplicer 95.45 94.36 95.40 5.09 94.91 89.82 94.88

SpliceFinder 94.00 95.09 94.06 5.45 94.54 89.09 94.57

EnsembleSplice 94.37 98.00 94.56 3.81 96.18 92.43 96.25
A. thaliana Acceptor SpliceRover 88.31 89.25 88.42 11.22 88.78 77.57 88.83

ISSCNN N/A N/A N/A N/A N/A N/A N/A

DeepSplicer 90.00 94.50 90.43 7.75 92.25 84.59 92.40

SpliceFinder 90.88 92.69 91.04 8.22 91.78 83.58 91.86

EnsembleSplice 93.13 95.94 93.31 5.47 94.53 89.10 94.61
Donor SpliceRover 86.88 87.13 86.91 13.00 87.00 74.00 87.02

ISSCNN N/A N/A N/A N/A N/A N/A N/A

DeepSplicer 90.44 95.06 90.86 7.25 92.75 85.59 92.91

SpliceFinder 93.50 91.13 93.34 7.69 92.31 84.65 92.22

EnsembleSplice 94.94 94.38 94.91 5.34 94.66 89.31 94.64
Homo Sapiens Acceptor SpliceRover 88.25 93.44 88.83 9.16 90.84 81.80 91.08

ISSCNN N/A N/A N/A N/A N/A N/A N/A

DeepSplicer 90.88 91.19 90.90 8.97 91.03 82.06 91.04

SpliceFinder 90.75 89.94 90.67 9.66 90.34 80.69 90.3

EnsembleSplice 93.31 95.00 93.42 5.84 94.16 88.33 94.20
Donor SpliceRover 85.44 91.13 86.22 11.72 88.28 76.69 88.61

ISSCNN N/A N/A N/A N/A N/A N/A N/A

DeepSplicer 96.62 88.00 96.31 7.69 92.31 84.94 91.97

SpliceFinder 93.00 91.25 92.88 7.87 92.13 84.26 92.06

EnsembleSplice 96.06 95.88 96.06 4.03 95.97 91.94 95.96
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considered in this experiment. As it contributes computationally to the foundation of 
protein synthesis and gene expression, this tool finds use in both industrial and aca-
demic research applications. In our future work, we will test the generalization strength 
of the EnsembleSplice model for the prediction of splice sites in DNA sequences across a 
variety of species.

Fig. 5  EnsembleSplice model interpretability. This figure is a sequence logo to visualize the importance 
score for each nucleotide per position for the HS3D datasets. a indicates the acceptor positive splice sites, as 
b shows that acceptor negative splice sites. While c shows the donor positive splice sites as d indicates the 
donor negative splice sites
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Fig. 5  continued
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