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Background
CRISPR-Cas adaptive immune system is one of the most widespread immunity strate-
gies in prokaryotes against invading bacteriophages and plasmids [1, 2]. To counteract 
and overcome different CRISPR-Cas immunity systems, bacteriophages have evolved 
anti-CRISPR proteins (Acrs) that were first discovered in Pseudomonas aeruginosa 
phages in 2013 [3]. Subsequently, a proliferation of Acrs has proved to inactivate multi-
ple CRISPR subtypes [3–7].

Several methods have been proposed to identify Acrs, including “Guilt-by-association” 
studies [6, 8], self-targeting CRISPR arrays [6, 7], and metagenome DNA screening [9, 
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10], etc. These methods assumed the new Acrs are similar to the previous Acrs. How-
ever, most Acrs fall short in sharing similarities currently acknowledged. Therefore, the 
traditional screening methods based on homology search are unreliable and require a lot 
of prior knowledge of Acrs to identify new Acrs. For instance, the “Guilt-by-association” 
method involves searching for homologs of helix-turn-helix (HTH)-containing proteins 
that are typically encoded downstream of Acrs [11]. The performance of “Guilt-by-asso-
ciation” is unstable when known Acrs proteins might share low similarity with queried 
protein. Therefore, a computational approach with less requirement for prior knowledge 
of known Acrs will provide a new perspective on the identification of Acrs. Machine 
learning algorithms with appropriate features could reveal the potential mechanism of 
Acrs and identify the Acrs without prior knowledge.

Recently, some machine learning methods have been presented for predicting Acrs. 
There are several web servers about Acrs, such as: Anti-CRISPRdb [12], AcrHub [13], 
AcrDB [14], CRISPRminer2 [15], AcRanker [14, 16], AcrFinder [17], AcrCatalog [18] 
and PaCRISPR [19]. Anti-CRISPRdb, AcrDB, and AcrCatalog are online Acr datasets, 
while AcrHub, CRISPRminer2, AcRanker, AcrFinder and PaCRISPR are prediction web 
servers. Eitzinger et al. developed AcRanker, using the XGBoost ranking model to pre-
dict candidate Acrs only based on protein sequence information [16]. Wang et al. pro-
posed PaCRISPR, an ensemble learning-based predictor, to identify Acrs from protein 
datasets derived from genome and metagenome sequencing projects [19]. Gussow et al. 
proposed a machine learning approach, using a random forest model with extremely 
randomized trees to expand the repertoire of Acrs families [20]. These machine learning 
methods have made a great contribution to discovering Acrs. However, the most appro-
priate features or feature combinations for Acrs prediction have not been systematically 
assessed. For instance, The PaCRISPR method identified the Acrs using only evolution-
ary features, and the AcRanker used only amino acid composition features to identify 
Acrs. Gussow et al. predict Acrs based on the sequence alignment and a heuristic sec-
ondary screen of few known Acrs. Thus, since previous work did not fully assess the 
feature combinations and relied on prior knowledge, we proposed a novel, effective and 
robust machine learning framework to help identify Acrs.

This study presented an ensemble machine learning method, called PreAcrs, to effi-
ciently and accurately predict Acrs based on protein sequences. Specifically, we used 
three features and eight different machine learning methods to train our model. 412 
experimentally validated Acrs and 412 non-Acrs were introduced in the training data-
set, and 176 were experimentally determined Acrs and 176 non-Acrs in the independent 
dataset. We found that the PreAcrs method outperformed other existing predictors with 
an AUC of 0.972 in the independent dataset.

Results and discussion
Performance evaluation of five different features

To find the appropriate feature encoding methods, we evaluated and compared the 
performance of nine machine learning methods, including SVM, KNN, MLP, LR, RF, 
XGBoost, LightGBM, CatBoost and ensemble methods, for each feature encoding based 
on a randomized fivefold cross-validation. The results of classifiers based on the fivefold 
cross-validation are shown in Table 1.
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Table 1 Performance comparison of different features and classifiers based on the fivefold cross-
validation

Feature Model PRE SN SP F-score ACC MCC

AAC SVM 0.874 ± 0.077 0.638 ± 0.175 0.886 ± 0.116 0.716 ± 0.096 0.762 ± 0.050 0.562 ± 0.080

KNN 0.762 ± 0.035 0.808 ± 0.063 0.742 ± 0.071 0.782 ± 0.017 0.775 ± 0.015 0.557 ± 0.032

RF 0.669 ± 0.041 0.621 ± 0.091 0.689 ± 0.082 0.640 ± 0.054 0.655 ± 0.040 0.314 ± 0.078

MLP 0.790 ± 0.071 0.704 ± 0.128 0.794 ± 0.116 0.732 ± 0.054 0.749 ± 0.033 0.514 ± 0.059

LR 0.743 ± 0.051 0.738 ± 0.124 0.733 ± 0.118 0.732 ± 0.055 0.735 ± 0.040 0.483 ± 0.075

XGB 0.793 ± 0.071 0.718 ± 0.077 0.801 ± 0.094 0.749 ± 0.034 0.760 ± 0.033 0.528 ± 0.072

Light 0.800 ± 0.069 0.670 ± 0.076 0.820 ± 0.086 0.723 ± 0.023 0.745 ± 0.016 0.503 ± 0.043

CAT 0.785 ± 0.052 0.745 ± 0.063 0.791 ± 0.069 0.762 ± 0.039 0.768 ± 0.038 0.540 ± 0.077

Ens_vote 0.826 ± 0.058 0.745 ± 0.085 0.835 ± 0.083 0.779 ± 0.043 0.790 ± 0.036 0.589 ± 0.072

Sta_LR 0.837 ± 0.048 0.745 ± 0.080 0.849 ± 0.066 0.785 ± 0.038 0.797 ± 0.030 0.603 ± 0.060

Sta_GBC 0.818 ± 0.064 0.701 ± 0.096 0.837 ± 0.078 0.750 ± 0.058 0.769 ± 0.046 0.550 ± 0.092

PAAC SVM 0.869 ± 0.054 0.658 ± 0.140 0.900 ± 0.047 0.741 ± 0.103 0.779 ± 0.069 0.580 ± 0.124

KNN 0.711 ± 0.030 0.934 ± 0.031 0.616 ± 0.063 0.807 ± 0.017 0.775 ± 0.025 0.583 ± 0.046

RF 0.808 ± 0.058 0.758 ± 0.122 0.811 ± 0.093 0.774 ± 0.068 0.784 ± 0.050 0.578 ± 0.090

MLP 0.893 ± 0.067 0.614 ± 0.143 0.917 ± 0.061 0.714 ± 0.098 0.766 ± 0.058 0.566 ± 0.094

LR 0.748 ± 0.032 0.760 ± 0.153 0.735 ± 0.088 0.743 ± 0.069 0.748 ± 0.040 0.509 ± 0.080

XGB 0.841 ± 0.048 0.748 ± 0.120 0.854 ± 0.053 0.785 ± 0.069 0.801 ± 0.049 0.612 ± 0.091

Light 0.848 ± 0.048 0.760 ± 0.105 0.859 ± 0.055 0.796 ± 0.059 0.810 ± 0.044 0.628 ± 0.083

CAT 0.856 ± 0.047 0.801 ± 0.112 0.861 ± 0.055 0.823 ± 0.064 0.831 ± 0.051 0.670 ± 0.097

Ens_vote 0.871 ± 0.043 0.770 ± 0.122 0.881 ± 0.053 0.810 ± 0.065 0.825 ± 0.046 0.662 ± 0.082

Sta_LR 0.866 ± 0.046 0.745 ± 0.131 0.881 ± 0.051 0.794 ± 0.076 0.813 ± 0.056 0.640 ± 0.102

Sta_GBC 0.875 ± 0.035 0.719 ± 0.081 0.896 ± 0.035 0.786 ± 0.050 0.807 ± 0.037 0.627 ± 0.068

PSSM-AC SVM 0.776 ± 0.389 0.226 ± 0.186 0.990 ± 0.014 0.327 ± 0.240 0.608 ± 0.087 0.298 ± 0.190

KNN 0.821 ± 0.042 0.828 ± 0.046 0.818 ± 0.048 0.824 ± 0.033 0.823 ± 0.033 0.647 ± 0.068

RF 0.881 ± 0.058 0.359 ± 0.092 0.954 ± 0.019 0.505 ± 0.102 0.657 ± 0.049 0.387 ± 0.094

MLP 1.000 ± 0.000 0.231 ± 0.087 1.000 ± 0.000 0.367 ± 0.110 0.615 ± 0.045 0.357 ± 0.076

LR 0.952 ± 0.035 0.507 ± 0.184 0.971 ± 0.025 0.640 ± 0.157 0.739 ± 0.083 0.543 ± 0.130

XGB 0.936 ± 0.042 0.352 ± 0.108 0.976 ± 0.020 0.502 ± 0.117 0.664 ± 0.051 0.418 ± 0.088

Light 1.000 ± 0.000 0.272 ± 0.064 1.000 ± 0.000 0.424 ± 0.083 0.636 ± 0.033 0.395 ± 0.057

CAT 0.957 ± 0.032 0.424 ± 0.140 0.976 ± 0.026 0.572 ± 0.121 0.700 ± 0.057 0.483 ± 0.080

Ens_vote 0.988 ± 0.014 0.328 ± 0.090 0.995 ± 0.006 0.485 ± 0.106 0.661 ± 0.043 0.432 ± 0.069

Sta_LR 0.981 ± 0.016 0.338 ± 0.081 0.993 ± 0.006 0.496 ± 0.097 0.665 ± 0.040 0.436 ± 0.064

Sta_GBC 0.977 ± 0.023 0.347 ± 0.141 0.990 ± 0.009 0.496 ± 0.147 0.669 ± 0.068 0.438 ± 0.107

RPSSM SVM 0.914 ± 0.062 0.713 ± 0.229 0.915 ± 0.068 0.767 ± 0.172 0.814 ± 0.090 0.659 ± 0.133

KNN 0.738 ± 0.020 0.925 ± 0.024 0.670 ± 0.035 0.820 ± 0.014 0.797 ± 0.016 0.616 ± 0.031

RF 0.922 ± 0.015 0.694 ± 0.102 0.939 ± 0.020 0.787 ± 0.063 0.817 ± 0.042 0.657 ± 0.064

MLP 0.870 ± 0.034 0.898 ± 0.016 0.864 ± 0.040 0.883 ± 0.017 0.881 ± 0.019 0.763 ± 0.038

LR 0.815 ± 0.066 0.876 ± 0.069 0.789 ± 0.105 0.840 ± 0.027 0.833 ± 0.033 0.676 ± 0.057

XGB 0.892 ± 0.017 0.777 ± 0.078 0.905 ± 0.021 0.828 ± 0.045 0.841 ± 0.034 0.690 ± 0.058

Light 0.907 ± 0.013 0.767 ± 0.092 0.920 ± 0.020 0.828 ± 0.053 0.843 ± 0.039 0.698 ± 0.066

CAT 0.926 ± 0.014 0.765 ± 0.066 0.939 ± 0.011 0.836 ± 0.042 0.852 ± 0.034 0.716 ± 0.061

Ens_vote 0.913 ± 0.026 0.849 ± 0.047 0.917 ± 0.032 0.879 ± 0.021 0.883 ± 0.017 0.771 ± 0.032

Sta_LR 0.921 ± 0.020 0.844 ± 0.052 0.927 ± 0.019 0.880 ± 0.031 0.886 ± 0.026 0.775 ± 0.049

Sta_GBC 0.892 ± 0.035 0.820 ± 0.025 0.898 ± 0.039 0.854 ± 0.010 0.859 ± 0.012 0.722 ± 0.026

SSA SVM 0.903 ± 0.038 0.740 ± 0.099 0.915 ± 0.043 0.807 ± 0.054 0.828 ± 0.033 0.671 ± 0.047

KNN 0.699 ± 0.036 0.937 ± 0.043 0.592 ± 0.070 0.799 ± 0.028 0.765 ± 0.037 0.566 ± 0.071

RF 0.840 ± 0.016 0.663 ± 0.068 0.874 ± 0.018 0.739 ± 0.043 0.768 ± 0.029 0.550 ± 0.052

MLP 0.881 ± 0.046 0.772 ± 0.146 0.886 ± 0.070 0.811 ± 0.073 0.829 ± 0.046 0.675 ± 0.075

LR 0.817 ± 0.036 0.811 ± 0.113 0.813 ± 0.062 0.808 ± 0.053 0.812 ± 0.037 0.633 ± 0.072

XGB 0.858 ± 0.018 0.731 ± 0.112 0.879 ± 0.028 0.784 ± 0.064 0.805 ± 0.046 0.620 ± 0.083

Light 0.908 ± 0.038 0.624 ± 0.123 0.934 ± 0.034 0.732 ± 0.083 0.779 ± 0.054 0.591 ± 0.089

CAT 0.882 ± 0.021 0.745 ± 0.119 0.898 ± 0.033 0.802 ± 0.063 0.822 ± 0.045 0.657 ± 0.080
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We used five feature encoding methods (AAC, PAAC, PSSM_AC, RPSSM, SSA) 
to convert each protein into a feature vector. As the most forceful one in five feature 
encoding methods, RPSSM achieved the highest AUC value in eight classifiers (Fig. 1). 
An interesting phenomenon is that the RPSSM feature obtained the best performance 
among five single features and the performance of PSSM_AC is second only to RPSSM. 
The evolutionary features derived from the PSSM files showed that evolutionary fea-
tures have an outstanding contribution to Acrs prediction. The evolutionary feature 
RPSSM had a better performance than the evolutionary feature PSSM AC in most 
classifiers (except LR). The pre-trained machine learning feature SSA also achieved 

Table 1 (continued)

Feature Model PRE SN SP F-score ACC MCC

Ens_vote 0.887 ± 0.026 0.787 ± 0.119 0.898 ± 0.034 0.828 ± 0.069 0.842 ± 0.051 0.695 ± 0.092

Sta_LR 0.903 ± 0.033 0.738 ± 0.118 0.917 ± 0.045 0.806 ± 0.069 0.828 ± 0.048 0.672 ± 0.083

Sta_GBC 0.882 ± 0.080 0.597 ± 0.112 0.915 ± 0.060 0.705 ± 0.083 0.756 ± 0.060 0.545 ± 0.115

RPSSM&PSSM_
AC&SSA

SVM 0.974 ± 0.020 0.713 ± 0.155 0.978 ± 0.018 0.811 ± 0.115 0.846 ± 0.071 0.722 ± 0.110

KNN 0.826 ± 0.015 0.917 ± 0.033 0.806 ± 0.022 0.869 ± 0.017 0.862 ± 0.015 0.729 ± 0.033

RF 0.966 ± 0.014 0.665 ± 0.093 0.976 ± 0.013 0.784 ± 0.062 0.820 ± 0.042 0.676 ± 0.066

MLP 0.969 ± 0.021 0.740 ± 0.110 0.973 ± 0.019 0.833 ± 0.067 0.857 ± 0.046 0.738 ± 0.069

LR 0.927 ± 0.029 0.796 ± 0.078 0.934 ± 0.031 0.853 ± 0.041 0.865 ± 0.028 0.741 ± 0.045

XGB 0.961 ± 0.013 0.699 ± 0.084 0.971 ± 0.012 0.806 ± 0.051 0.835 ± 0.037 0.698 ± 0.060

Light 0.972 ± 0.008 0.595 ± 0.091 0.983 ± 0.006 0.734 ± 0.066 0.789 ± 0.044 0.628 ± 0.070

CAT 0.965 ± 0.009 0.730 ± 0.106 0.973 ± 0.009 0.827 ± 0.070 0.852 ± 0.049 0.728 ± 0.082

Ens_vote 0.970 ± 0.002 0.774 ± 0.045 0.976 ± 0.000 0.860 ± 0.028 0.875 ± 0.022 0.766 ± 0.039

Sta_LR 0.978 ± 0.015 0.750 ± 0.047 0.983 ± 0.012 0.848 ± 0.031 0.866 ± 0.025 0.754 ± 0.043

Sta_GBC 0.982 ± 0.012 0.662 ± 0.058 0.988 ± 0.008 0.790 ± 0.044 0.825 ± 0.030 0.688 ± 0.051

The bold values indicate the best performance

Fig. 1 The ROC curve of five single features and AAC&PAAC&RPSSM feature on five-fold cross-validation
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good performance for most classifiers, and its performance is better than sequence 
features AAC and PAAC. The PAAC contains more sequence information, showing 
higher AUC values than AAC for all classifiers. The sequence features AAC and PAAC 
achieved a relatively poor performance compared with other features. One explana-
tion is that evolutionary features and the pre-trained feature encoded more valuable 
and appropriate information about protein sequences. In contrast, sequence features 
might involve redundant information that reduces the accuracy of Acrs prediction. In 
the PreAcrs model, features PAAC_AC, RPSSM and SSA were considered. From Addi-
tional file  2: Table  S2, the RPSSM-based model achieved the best prediction perfor-
mance among the three features on the independent test, the PSSM_AC-based model 
achieved the second prediction accuracy, and the SSA-based model showed a lower 
prediction accuracy compared to another two features. In addition, the AUC value of 
the PSSM_AC&SSA was 0.953, up to 0.969 after considering the feature RPSSM. Two 
ensemble features PSSM_AC&RPSSM and RPSSM&SSA achieved an excellent perfor-
mance in terms of AUC (0.967 and 0.961, respectively). Therefore, the feature RPSSM 
made the most contribution to the PreAcrs model in predicting Acrs.

Performance evaluation of eight different single classifiers and ensemble classifiers

For most feature encodings, the LightGBM classifier, CatBoost and SVM classifier outper-
formed the other single classifiers (except the ensemble classifier) in terms of PRE (Table 1). 
This observation is supported by Fernandez-Delgado et al. [21], who found the SVM model is 
most likely the best classifier compared with the other 17 machine learning methods based on 
various public data sets. Moreover, Ke et al. [22] demonstrated LightGBM model achieved a 
better performance than others in multiple public datasets. LightGBM could handle the high-
dimension features and large-scale data [22]. CatBoost is proved superior to XGB and Light-
GBM in terms of a set of publicly available datasets [23]. Although LightGBM obtained the 
highest PRE values among the eight classifiers in PSSM_AC and SSA in this study, CatBoost 
had a better performance than LightGBM in RPSSM. In addition, Catboost showed excellent 
performance in other metrics, such as AUC and MCC. SVM obtained the highest PRE values 
among the eight classifiers in features AAC and PAAC. It implied that the SVM, LightGBM 
and CatBoost classifiers provided an outstanding prediction ability, and SVM tended to show 
excellent performances in sequence features. Additionally, the highest PRE value of 1.00 was 
obtained by LightGBM classifier when the PSSM_AC feature was used for training during 
experiments. It means that the predicted positive samples of this model are more likely to be 
true positive samples, and it might be beneficial for the virtual screening of Acrs.

To fairly compare the performance of various classifiers, other measurements were 
considered, such as SP, SN, and MCC. As one crucial evaluation matrix, MCC considers 
all four confusion matrices and can comprehensively reflect the performance. CatBoost 
presented its powerful and stable ability in terms of MCC value among five features. 
MLP outperformed other single classifiers in RPSSM features according to the MCC 
value. In all cases, the highest MCC value was 0.763 when the RPSSM feature was used 
for training in MLP. It provided more extensive and persuasive evidence for various per-
formances with various features and classifiers. It is unreliable only to use one feature 
and a single model to identify Acrs protein.
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Although some single classifiers have shown good performance for predicting Acrs, 
only one classifier might not be robust and reliable enough. In order to build a more 
comprehensive, reliable, and robust predictor, three ensemble methods have been 
adopted based on eight single classifiers in this study. Three ensemble methods inte-
grated other classifiers by three different principles. Table  1 and Fig.  2 illustrate that 
three ensemble methods achieved better performance than single classifiers in terms of 
AUC value in most features, demonstrating the superiority of ensemble learning. This 
observation is supported by the study of Zou et al. [24].

Performance evaluation of various ensemble features

As we mentioned above, five features were trained by eight different classifiers, respec-
tively. Since single features cannot comprehensively represent the Acrs for identifica-
tion, we attempted to integrate five single features in two ways: ensemble feature and 
combination feature. For combination features, we combined singles features into a 
vector to train models [25–27]. We explored the contribution of a variety of combined 
features to the prediction models of Acrs (Additional file  1: Table  S1). For ensemble 
features, first, we trained eight different classifiers (including ensemble classifier) with 
five single features, then integrated classifiers of five features as an ensemble model. 
This study discussed ensemble features detailly because they showed better perfor-
mance than combination features. For every single feature in each classifier, we have 
obtained its probability score of Acrs. The output of two-feature ensemble models is 
obtained by averaging the predictive scores of two single features in the same model. 
For example, we averaged the predictive scores of predicted Acrs obtained by the AAC 
feature trained in the SVM model and the PAAC feature trained in the same model, 

Fig. 2 The six matrices PRE, SP, SN, F-score, ACC and MCC values of various classifiers in five types of 
encoding features based on five-fold cross-validation
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and we labeled it as ‘AAC&PAAC’. Therefore, the three-feature ensemble models were 
obtained by averaging the predictive scores of three single features in the same model, 
and Feature1&Feature2&Feature3 represented the three-ensemble features. The four-
ensemble features and the five-ensemble feature were also shown similarly. Finally, we 
used the averaged predictive scores as the final scores of the ensemble feature in every 
classifier. From the cross-validation results, the ensemble features achieved good perfor-
mance for Acrs identification. By comparing the performance of all ensemble features, 
the ensemble feature PSSM_AC&RPSSM&SSA showed the best performance with the 
highest AUC value. The second-best ensemble feature is PAAC&PSSM_AC&RPSSM, 
and the PSSM_AC&RPSSM ensemble feature is the third best. We found that all the 
top 12 ensemble features include the RPSSM encoding method from Additional file 2: 
Table S2. These observations also demonstrated that the RPSSM feature plays an essen-
tial role in Acrs prediction.

Performance evaluation of ensemble learning model

In the above section, ensemble classifiers with five single features have shown an excel-
lent ability to predict Acrs, and the Sta-LR method obtained the best performance in 
terms of metrics. Therefore, we used the Sta-LR classifier to train various features in 
this study. Besides, we compared combination features with ensemble features in the 
same model. The ensemble feature achieved superior performance than combination 
features in most classifiers. Among all models, the average AUC value of Sta-LR clas-
sifiers using PSSM_AC, RPSSM and SSA features (the three-ensemble feature PSSM_
AC&RPSSM&SSA) achieved the highest 0.969. Besides, the Sta-LR classifier with 
PSSM_AC&RPSSM&SSA ensemble feature achieved an excellent performance in terms 
of a high PRE value of 0.978, a high MCC value of 0.754, an ACC value of 0.866 and an 
F-score of 0.848 based on the fivefold cross-validation test. Based on these findings, we 
constructed a PreAcrs predictor to predict Acrs with a default setting: eight machine 
learning classifiers (SVM, KNN, MLP, LR, RF, XGBoost, LightGBM, CatBoost) were 
integrated into an ensemble classifier (Sta-LR); three features PAAC_AC, RPSSM, and 
SSA were trained by the Sta-LR classifier, separately, and three models could be obtained 
in this step. Then, we could obtain the PreAcrs predictor by averaging the score of the 
three models. The PreAcrs predictor achieved a stable and accurate prediction perfor-
mance in the fivefold cross-validation and independent dataset.

Performance comparison with other existing methods

In order to further evaluate the performance of the PreAcrs predictor, we compared 
PreAcrs with the state-of-the-art Acrs predictor PaCRISPR. This machine learning 
model was proposed by Wang et  al. [19], and significantly outperformed other meth-
ods such as AcRanker and BLAST on their independent dataset. Four evolutionary 
features, PSSM-composition, DPC PSSM, PSSM_AC and RPSSM, were adopted in the 
PaCRISPR predictor, which was constructed by 10 SVM classifiers. Besides, the BLAST-
based predictor, AcRanker and the hidden Markov model (HMM) based predictor were 
implemented for the comparison. For the BLAST-based predictor, each protein in the 
independent dataset was searched against all samples in the training dataset based on 
BLAST + software [28] and was predicted as Acr when it has the highest similarity with 
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positive samples. The predicted results of the other three predictors could be obtained 
from the webserver (https:// pacri spr. erc. monash. edu/ AcrHub).

Figures 3 show that the performance of PreAcrs is better than the other predictors on 
the independent dataset based on the AUC and AUPRC values. The performance dem-
onstrates that the PreAcrs method is more suitable for capturing the intrinsic patterns 
of non-homologous Acrs than other predictors. From other metrics (Table  2), HMM 
obtained higher PRE and SP values than PreAcrs, but it does not indicate that HMM 
outperformed PreAcrs. It means the false positive is lower and one possible reason for 
it is HMM prone to predict the queried proteins as non-Acrs. HMM uses probabilistic 
models to search homologous protein sequences. The homology-based baseline predic-
tors made a biased prediction, as HMM failed to recognize Acrs. It predicted the Acrs 
with extremely high accuracy (the lowest FP) but classified many true Acrs into non-
Acrs (the highest FN). HMM obtained the best PRE with the cost of predicting most 
Arcs as non-Acrs. This observation is supported by the work of Wang et al. [19]. There-
fore, when considering the FN and FP, HMM showed poor performance when it was 
evaluated. According to other more critical metrics like ACC, F-score and MCC, PreA-
crs outperformed the other four approaches.

We listed the predictive scores of five experimentally validated Acrs on the inde-
pendent test as a case study to further evaluate the performance of PreAcrs (Table 3). 
The PreAcrs achieved better performance than PaCRISPR and AcRanker. For the 
AcrIIA7 and AcrIIA9, PaCRISPR predicted lower scores, and the predictive score 

Fig. 3 The precision-recall curves (A) and the ROC curves (B) are produced by the two existing 
state-of-the-art methods and the PreAcrs in the independent dataset

Table 2 Performance comparison between PreAcrs and existing methods based on the 
independent test

The bold values indicate the best performance

Method PRE Sensitivity Specificity F-score ACC MCC AUC AUPRC

BLAST 0.714 0.910 0.632 0.800 0.771 0.564 0.771 0.695

PaCRISPR 0.816 0.528 0.881 0.641 0.705 0.437 0.838 0.842

AcRanker 0.692 0.409 0.818 0.514 0.614 0.249 0.712 0.698

HMM 1.000 0.039 1.000 0.076 0.5200 0.142 0.520 0.520

PreAcrs 0.986 0.795 0.989 0.881 0.892 0.799 0.972 0.976

https://pacrispr.erc.monash.edu/AcrHub
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of AcrIIA7 was 0.407. In contrast, PreAcrs gave these three Acrs higher scores. For 
AcrIIC2, PaCRISPR showed better performance, but PreAcrs also gave considerable 
scores. PaCRISPR only considered four features driven from evolution information 
and the SVM model, while PreAcrs incorporated the SSA feature from the pre-trained 
model and eight different models. Considering more information and various classi-
fiers, PreAcrs showed a more robust and accurate prediction performance.

Conclusions
The identification of candidate Acrs plays a vital role in manipulating CRISPR-Cas 
machinery as a tool in gene editing or gene therapy. Using the machine learning 
method to identify the new Acrs based on the protein sequence can accelerate the dis-
covery of Acrs. In this work, we proposed a machine learning-based ensemble frame-
work, PreAcrs, to accurately and efficiently identify Acrs from protein sequences. 
PreAcrs extracted distinctive characteristics from experimentally validated Acrs by 
combining the evolutionary features with the pretrained model feature with multi-
ple models. The features were trained by an ensemble classifier constructed by eight 
base classifiers. PreAcrs predictor displayed a good performance for predicting new 
Acrs in terms of prediction accuracy and robustness. We anticipate that PreAcrs will 
be extensively used in Acrs prediction and help researchers to have a comprehension 
understanding of Acrs. PreAcrs shows excellent performance compared to the exist-
ing methods, but it still has some limitations. One limitation is that only the mRMR 
algorithm is applied to select significant features in PreAcrs, so some biases in this 
step may reduce the predictive accuracy. Another limitation is that PreAcrs does not 
provide a visual and user-friendly website; it may be difficult for some biologists to 
analyze Acrs. In future works, we may use multiple feature selection algorithms to 
calculate feature importance to obtain a reasonable feature, and build a powerful, 
user-friendly and interactive website.

Methods and materials
Overall framework of PreAcrs

Figure 4 shows the overall workflow of the PreAcrs framework, including five major 
steps: Dataset collection and curation, Feature encoding, Feature selection, Model 
training, and Model validation. These steps are described in the following sections.

Table 3 The predictive scores of the case study Acrs

* The threshold of AcRanker is − 5

Acrs PaCRISPR AcRanker* PreAcrs

AcrIIA7-980 0.407 − 5.949 0.800

AcrIIA9-1120 0.503 − 5.494 0.857

AcrIIA9-1158 0.531 − 5.242 0.791

AcrIIC2-DAW 0.791 − 5.266 0.746

AcrIIC2-DAS 0.833 − 5.379 0.744
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Dataset collection and curation

To build a powerful Acrs predictive model, we need to construct a training dataset and 
an independent test dataset comprised of two parts: positive samples (experimentally 
validated Acrs) and negative samples (non-Acrs). As mentioned above, Anti-CRISPRdb, 
AcrDB, and AcrCatalog are online databases of anti-CRISPR proteins. The latest update 
time of the Anti-CRISPRdb database is January 2021, and it has 1378 experimentally val-
idated entries.

The AcrDB and AcrCatalog are databases of computationally predicted Acrs. In this 
study, we collected the experimentally validated Acrs from Anti-CRISPRdb, which 
is the latest database and contains more experimentally validated Acrs than others. 
We extracted 1,378 experimentally validated Acrs from the Anti-CRISPRdb [12] and 
17 newly discovered experimentally validated Acrs from NCBI. To construct a robust 
machine learning model and eliminate the redundant Arcs, we used CD-HIT [29] to 
remove the highly-homologous sequences. Here, we set the identification threshold as 
70% in CD-HIT (removed those sequences with more than 70% similarity). 588 Acrs 
sequences were obtained, and their length ranges from 50 to 350. After the 588 Acrs 
were randomly divided into two parts with a ratio of 7:3, we obtained 412 Acrs in the 
training dataset and 176 Acrs in the independent dataset.

Because there is no standard set of non-Arcs, constructing a comprehensive and rea-
sonable non-Acrs dataset is a challenging and vital question. In this study, we referred 
to the work of Wang et al. [19] to construct the non-Acrs dataset. Because the range of 
Acrs sequence length is fixed, and most Acrs were found from a limited set of phages 
and mobile genetic elements (MGEs), the negative samples were selected with four strict 
criteria from Uniprot. The four criteria are the following: (1) must not be known or puta-
tive Acrs; (2) must be isolated from phage or bacterial MGEs (known or putative MEGs); 
(3) must have < 40% sequence similarity to each other and the 588 positive samples; (4) 
the lengths must fall in the range between 50 and 350 residues. According to the above 
four criteria, 1571 non-Acrs were obtained in this study. Then, we randomly selected 
412 non-Acrs as negative samples in the training dataset and 176 non-Acrs as negative 

Fig. 4 The flowchart of the PreAcrs framework for Acrs prediction. The five major steps for constructing 
PreAcrs include data collection, feature encoding, feature selection, model construction, and performance 
evaluation
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samples in the independent dataset. Each negative sample was only included in one 
dataset. In this way, the training dataset has 412 positive and 412 negative samples, while 
the independent test dataset contains 176 positive and 176 negative samples (Table 4). In 
addition, we chose 5 Acrs from the independent dataset as a case study.

Feature encoding

In order to find the features that could better represent Acrs, we firstly evaluated 18 
types of features to represent Acrs, including the composition of k-spaced amino acid 
pairs (CKSAAP), amino acid composition (AAC), pseudo amino acid composition 
(PAAC), bidirectional long short-term memory (BiLSTM), soft sequence alignment 
(SSA), PSSM_AC, RPSSM and PSSM-composition et. (Table  5 and Additional file  3: 
Table S3). We selected five features (AAC, PAAC, PSSM_AC, RPSSM, SSA) considering 
the computational requirements and predictive performance. The five features could be 
categorized into three groups: sequence features, evolutionary features, and pre-trained 

Table 4 The statistics of datasets employed in this study

Number of anti-CRISPR 
proteins

Number of non-anti-CRISPR 
proteins

Total

Training dataset 412 412 824

Independent test dataset 176 176 352

Total 588 588 1176

Table 5 Features: the sequence and structural features calculated and their dimensionalities

Feature type Feature cluster Dimensions Reduced-
dimensions

Sequence AAC 20 20

PAAC 23 23

CKSAAP 2400 200

DDE 400 200

DPC 400 200

Evolutionary PSSM-composition 400 200

DPC-PSSM 400 200

PSSM-AC 200 200

RPSSM 110 110

PSSM-SMTH 1000 200

Pre-trained BiLSTM 3605 200

LM 533 200

SSA 121 121

TAPE-BERT 768 200

UniRep 1900 200

W2V 300 200

esm 1280 200

ProtTrans 1024 200

Total 14,884 3074
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model features. These features have been widely applied in feature encoding research 
[19, 30, 31] and have achieved a good performance in protein properties and function 
predictions [32–38]. The following are the five features adopted in this study.

AAC 

As one of the most important features, amino acid composition (AAC) has been success-
fully applied in many bioinformatics fields, for example, protein structure classification 
[30], thermophilic proteins prediction [39], and protein–protein interactions identifica-
tion [40]. For AAC, each sequence is represented by a 20-dimensional numerical vector, 
in which each number corresponds to the frequency of an amino acid type in the whole 
protein sequence [41]. Every element in AAC of a given protein P could be calculated by 
the following formula:

with

where ci is the number of type i native amino acid in the whole protein P sequence, and 
L is the length of the protein P sequence. Finally, the pi is the frequency of type i native 
amino acid in the protein P.

PAAC 

Pseudo-Amino acid composition (PAAC) was proposed by Zhou [42] for predicting cel-
lular protein attributes and has been widely used in many studies [31, 43]. This group of 
descriptors involves sequence-order information, hydrophobicity value, hydrophilicity 
value, and side-chain mass. The PAAC is defined by 20 + λ discrete numbers:

with

where the fc is the normalized frequency of amino acid c in the protein sequence. L 
is the length of protein and θj is the jth rank of the coupling factor. �(P(Si),P(Si+j)) 

P =

p1
p2
...

p20

pi =
ci

L
, (i = 1, 2, · · · , 20)
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1

L− �

N−1∑

i=1

�(P(Si),P(Si+j))



Page 13 of 21Zhu et al. BMC Bioinformatics          (2022) 23:444  

represents the correlation function, and λ is the maximum correlation length. This study 
used iLearnPlus to extract PAAC feature-based protein sequences [44] and generated a 
23-dimensional feature vector for each protein.

PSSM‑AC

PSSM-AC is derived from Position-Specific Scoring Matrix (PSSM) by applying the auto 
covariance (AC) transformation to each column of PSSM, and it measures the average 
correlation between two elements within the PSSM [45, 46]. A 20 × G-dimensional vec-
tor represents each sequence in PSSM-AC by the following formula:

with

where Pi,j represents the PSSM value at the ith row and jith column, and the Pj  is the 
average value of amino acid j in the whole protein sequence. G is a number smaller than 
the length of the whole protein sequence L, and the g ranges from 1, 2, …, G; here, G is 
set to 10 in this study [47]. Therefore, a 200-dimensional feature vector is generated for 
each protein.

RPSSM

According to the work of Li et  al. [48], the original PSSM profile (L × 20) could be 
reduced to a L × 10 matrix by merging some columns. RPSSM is obtained by exploring 
the local sequence information based on the L × 10 reduced PSSM [49, 50]:

and

where pA, pR, . . . , pV  represent the 20 columns in the original PSSM profile correspond-
ing to the 20 amino acids. The re-PSSM is further transformed into a 10-dimensional 
vector:

PSSM − AC(j, g) =
1

L− g

L−g∑

i=1

(Pi,j − Pj)× (Pi+g ,j − Pj)

Pj =
1

L

L∑

i=1

Pi,j , (j = 1, 2, 3, · · · , 20)

re − PSSM = (P1,P2,P3, · · · ,P10)

P1 =
pF + pY + pW

3
,P2 =

pM + pL

2
,P3 =

pI + pV

2
,P4 =

pA + pT + pS

3

P5
pN + pH

2
,P6 =

pQ + pE + pD

3
,P7 =

pR + pK

2
,P8 = pC ,P9 = pG ,P10 = pP

Ej =
1

L

L∑

i=1

(pi,j − pj)

2
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and

Additionally, the re-PSSM can be further transformed into a 10 × 10 matrix to cap-
ture the local sequence-order information by this formula:

where pi,j represents the element at the ith row and jth column of there-PSSM. Finally, a 
110-dimensional RPSSM feature is obtained by combining Ej,t and Ej:

Pretrained SSA embedding

The pretrained SSA embedding mosdel is obtained by combining the pre-trained 
language model with the soft sequence alignment (SSA) [51]. First, an embedding 
matrix  RL×121 is given using the stacked BiLSTM encoders for each sequence, where 
L is the protein sequence length [52]. Then, the pretrained SSA embedding model 
is trained and optimized by SSA, which the following formulas could describe. For 
convenience, we supposed two embedding matrices P1(RL1×121) and P2(RL2×121), of 
two different protein sequences with lengths  L1 and  L2, respectively:

where  xi,  yi are vectors with 121-dimension.
The following formula represents the similarity of  P1 and  P2:

and

with

The SSA embedding model could convert each protein sequence into an embed-
ded matrix  RL×121, and finally, an average pooling operation obtained a 121-dimen-
sional feature.

pj =
1

L

L∑
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pi,j , (j = 1, 2, · · · , 10; i = 1, 2, · · · , L)
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1
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2

2
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Feature selection

Original features are represented by a high dimensional vector or matrix, which 
would raise severe problems in machine learning algorithms, such as overfitting, 
time-consuming training process and high requirement of computing resources. 
Therefore, identifying the most contributing information and features plays a vital 
role in performance improvement. As one of the most popular feature selection algo-
rithms, maximum relevance minimum redundancy (mRMR) was proposed by Peng 
et  al. [53] and has been applied in many studies and achieved robust performances 
[54–56]. In this study, mRMR was used to identify the most important features and 
improve the generalization ability of the model.

Machine learning algorithm

In this study, we focused on the traditional machine learning classification meth-
ods, including support vector machine, k-nearest neighbor, multi-layer perceptron, 
logistic regression, random forest, extreme gradient boosting, Light gradient boost 
machine and ensemble method that integrates the previous eight classification meth-
ods by hard voting strategy and stacking classifiers. More information is shown in the 
following subsections.

Support vector machine

Support vector machine (SVM) was first proposed by Vapnik et al. [57], and has suc-
cessfully dealt with some binary classification problems in bioinformatics [25, 58, 59]. 
Two parameters Cost (C) and Gamma (γ) affect the performance of the SVM model 
with the RBF kernel. In this study, we used the grid search strategy to optimize C and 
γ in the space {2−6,  2−5, …,  25,  26}. Finally, an SVM classifier with the optimal value of 
C and γ was constructed.

K‑nearest neighbor

K-nearest neighbor (KNN) is a fundamental classifier that has been applied in pre-
dicting protein function [60], extracting protein–protein information [61], and pre-
dicting eukaryotic protein subcellular [62]. The performance of KNN is directly 
affected by the parameter k. In this study, a grid search within the space {
1, 2, . . . , max

{√
FeaNum, FeaNum2

}}
 was applied to optimize the parameter k during 

model training, where FeaNum is the number of features used in modelling.

Multi‑layer perception

Multi-layer perceptron (MLP) is known as a type of artificial neural network (ANN) 
[63, 64]. MLP has been applied in many bioinformatics studies, such as the prediction 
of protein structure classes [65], protein tertiary structure [66], and DNA–protein 
binding sites [67]. In this study, an MLP classifier with two hidden layers was trained, 
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and the first and second hidden layers have 64 and 32 nodes, respectively. The maxi-
mum learning iterations is 1000.

Logistic regression

Logistic regression (LR) is widely used to predict the probability of an event happening 
[59, 68], which the following formula could represent:

where p(y) is the expected probability of dependent variable y , and β0 and β1 are 
constants.

Random forest

Random forest (RF) classifier is proposed by Breiman [69] and has been used in the pre-
diction of type IV secreted effector proteins [70] and protein structural class [59]. To 
find the optimal number of the trees M and features mtry, we used a gird searching to 

optimize M and mtry within space {1, 2, · · · , max
{√

FeaNum, FeaNum2

}
} and {1, 6, 11, 

16}, respectively, where FeaNum is the number of features adopted during modeling.

XGBoost

Extreme gradient boosting (XGBoost) is a scalable end-to-end tree boosting system [71] 
and has been widely used as a fast and highly effective machine learning method [72, 73]. 
Eitzinger et al. implemented AcRanker using XGBoost to identify Acrs [14, 16]. In this 
study, the default parameters are adopted in the XGBoost model, except for the learning 
rate of 0.1.

LightGBM

Light gradient boost machine (LightGBM) shows excellent performance when the fea-
ture dimension is high and the larger data size [21]. LightGBM has been used in iden-
tifying miRNA targets [74] and predicting the protein–protein interactions [75] and 
the blood–brain-barrier penetration [76]. This study used the LightGBM package with 
default parameters in python during experiments.

CatBoost

CatBoost achieves state-of-the-art results since it successfully handles categorical fea-
tures and calculates leaf values via a new scheme, which helps reduce overfitting [23]. 
Catboost has been applied in various tasks, including molecular structure relationship 
and the biological activity prediction [77] and the identification of pyroptosis-related 
molecular subtypes of lung adenocarcinoma [78]. In this study, the parameters of Cat-
Boost were set as default values.

Ensemble learning method

This study proposed three ensemble models to construct more robust and reliable classi-
fiers, which predicted new Acrs proteins by integrating the above eight classifiers (SVM, 

p(y) =
1

1+ e−(β0+β1χ)



Page 17 of 21Zhu et al. BMC Bioinformatics          (2022) 23:444  

KNN, MLP, LR, RF, XGB, LightGBM, and CatBoost) through the hard voting rule (Ens-
vote) or two stacking classifiers with logistic regression (Sta-LR) and gradient boosting 
classifier (Sta-GBC) [79], respectively.

Performance assessment

Fairly evaluating the classification methods’ predictive performance is an essential sub-
ject in machine learning. In this study, we used six measurements, namely, Sensitivity 
(SN), Specificity (SP), Accuracy (ACC), Precision (PRE), F1-score, and Matthew’s cor-
relation coefficient (MCC) [80], which are denoted as:

where TP, TN, FP, and FN are the number of true positive, true negative, false positive 
and false negative, respectively. Besides, the area under the receiver operating charac-
teristic (ROC) curve (AUC) is also used to assess the performance, and the ROC was 
shown in a plot of the TP rate versus the FP rate. All methods were evaluated based on a 
fivefold cross-validation.

Abbreviations
Acrs  Anti-CRISPR proteins
AAC   Amino acid composition
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