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Introduction
Prostate cancer (PCa) is the second most frequent malignancy in males worldwide and 
the fifth leading cause of death from cancer. About 75 percent of patients detected are 
older than 65 years, and it is extremely unusual in children and teenagers. In most cases, 

Abstract 

The rapid evolution of image processing equipment and techniques ensures the 
development of novel picture analysis methodologies. One of the most powerful yet 
computationally possible algebraic techniques for measuring the topological charac-
teristics of functions is persistent homology. It’s an algebraic invariant that can capture 
topological details at different spatial resolutions. Persistent homology investigates the 
topological features of a space using a set of sampled points, such as pixels. It can track 
the appearance and disappearance of topological features caused by changes in the 
nested space created by an operation known as filtration, in which a parameter scale, 
in our case the intensity of pixels, is increased to detect changes in the studied space 
over a range of varying scales. In addition, at the level of machine learning there were 
many studies and articles witnessing recently the combination between homologi-
cal persistence and machine learning algorithms. On another level, prostate cancer is 
diagnosed referring to a scoring criterion describing the severity of the cancer called 
Gleason score. The classical Gleason system defines five histological growth patterns 
(grades). In our study we propose to study the Gleason score on some glands issued 
from a new optical microscopy technique called SLIM. This new optical microscopy 
technique that combines two classic ideas in light imaging: Zernike’s phase contrast 
microscopy and Gabor’s holography. Persistent homology features are computed on 
these images. We suggested machine learning methods to classify these images into 
the corresponding Gleason score. Machine learning techniques applied on homologi-
cal persistence features was very effective in the detection of the right Gleason score of 
the prostate cancer in these kinds of images and showed an accuracy of above 95%.
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the incidence and death rates rise with age [1–3].The biggest risk factors are age and 
family history [4].

Considering 1.2 million additional instances of prostate cancer diagnosed each year 
[5], a high incidence-to-mortality ratio, and the danger of overdiagnosis and overtreat-
ment [6, 7], proper prognostic evaluation is critical. About 50  years ago, Dr. Donald 
Gleason developed a prostate cancer scoring system that is based on histopathologi-
cal findings. With many revisions, this present system keeps its validity. The Gleason 
score is the most effective prognostic predictor for prostate cancer (PCa) patients, as 
determined by a pathologist after microscopic study of disease morphology. This score 
is made up of two component scores that correspond to the tissue’s most and second 
most prevalent grades. Each partial score is a letter grade between 1 and 5. Gleason 1 
represents the best differentiated, that keeps the shape of the tissue and its components. 
It is associated with the best prognosis. Whereas Gleason 5 is the lowest differentiated, 
where we remark a big change in the shape of the tissue and its components and is asso-
ciated with a bad prognosis.

The International Society of Urological Pathology published new revisions in 2005 and 
2014. The 2005 ISUP changes to the Gleason scoring system for prostate cancer clas-
sify patients properly based on pathological processes and summary biochemical results, 
However, a revision in reporting is required to better depict tumor behavior while main-
taining the Gleason system’s essence [8]. The new Gleason proposal should include prog-
nostic grade groups, which were as shown in: Gleason score 6 (prognostic grade group 
I); Gleason score 3 + 4 = 7 (prognostic grade group II); Gleason score 4 + 3 = 7 (prognos-
tic grade group III); Gleason score 4 + 4 = 8 (prognostic grade group IV); and Gleason 
score 9–10 (prognostic grade group V). Noting that the first score represents the most 
dominant pattern in the tissue while the second score, the second most dominant score. 
For example, 4 + 3 says that the most dominant score is 4 and the second most dominant 
is 3. This why the prognostic grade group II differs from III [9, 10].

Prostate cancer treatment is mostly determined by the biopsies Gleason score. Fig-
ure 1 shows eight distinct patterns displayed in our study. To date, prostate biopsy sug-
gests that a single way to determine the cancer’s grade is by using imaging techniques. 
Major advancements in imaging technology have improved disease detection and locali-
zation [11]. Consequently, The Gleason grading is an important component in prostate 
diagnosis since it has a high association with the severity of the disease and the patient’s 
chance of survival. It also aids the pathologist in determining the best treatment options 
for the patients [12].

At the level of machine learning, there were many studies and articles recently 
witnessing the combination between prominence of Gleason score on PCa diagno-
sis using machine learning techniques. The major strength of machine learning is its 
capacity to evaluate and use massive amounts of data considerably more quickly than 
humans can using traditional statistical studies. As a result, it’s not surprising that 
its expanding importance in radiology has coincided with radiomics’ growing impor-
tance and potential in research. This is another rapidly growing field that permits 
large amounts of quantitative data to be extracted from medical images [13]. These 
big datasets were examined for clinical information such as correlations with other 
biomarkers, patient prognosis, and treatment outcomes [14, 15]. In the field of PCa, 
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there is a lot of interest in examining the use of ML-based computer-assisted diag-
nostic (CAD) software. For example, Kwak et al. [16] have shown that radiomics and 
machine learning may be used to analyze different tissues and cellular densities in 
the prostate gland to aid in PCa detection. According to Ginsburg and al [17], differ-
ent ML prediction models for the transition and peripheral zones in a tissue should 
be constructed, because lesions and normal prostatic tissue have different imaging 
properties in these zones. In the transition zone, ML can also be used to distinguish 
stromal benign prostatic hyperplasia from PCa. This diagnosis might be difficult, par-
ticularly with tiny lesions. Using either linear regression or the SVM classifier, sta-
tistical analysis of previously established quantitative variables (ADC maps, shape, 
and picture texture) exhibited high accuracy categorization of microscopic malignant 
lesions from benign ones using either linear regression or the SVM classifier. Using 
either linear regression or SVM classifiers, accuracy in the classification of tiny malig-
nant tumors from benign lesions was achieved [18].

Topological data analysis (TDA) is a method that captures the geometric shape (i.e., 
coarse scale, global, nonlinear geometric properties) of high-dimensional data sets using 
algebraic topology ideas. TDA has been applied to a wide range of data, from molecular 
to population-level data, with great success [19, 20]. TDA is ideally adapted to the prob-
lem of quantifying the architecture of prostate cancer from a protastic standpoint. For 
histological classification, the Gleason grading system depends solely on the detection of 
architectural patterns generated by groupings of cancer cells and nearby stroma. Even in 
higher-dimensional space, TDA allows you to grasp the shape of data and hence archi-
tecture. Recently, persistent homology (PH) has been developed as a new multiscale 
representation of topological features. Among the algebraic topology tools, persistent 
homology is one of the most powerful yet computationally feasible algebraic techniques 
for measuring the topological features of functions.

Fig. 1  Four Gleason scores of the modern Gleason grading system and their corresponding classes. A higher 
grade number indicates higher aggressiveness of the cancer
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In our work we propose to study the Gleason score on some glands issued from the 
SLIM technique. This technique reveals the intrinsic contrast of cell structures and, in 
addition, renders quantitative optical path-length maps across tissues. Persistent homol-
ogy features are computed on these images. ML techniques applied on homological per-
sistence features can be very effective in the detection of the right Gleason score of the 
prostate cancer in these kinds of images. Thus, our goal is to procreate a better grasp 
for pathologists in the Gleason grading system through the combination of topological 
data analysis with machine learning algorithms. In [21], the authors described a method 
that discriminate between the Gleason scores 2.3 and 4 using persistent homology fea-
tures and unsupervised learning techniques. Our method works in the same area, but it’s 
more efficient on the level of the classification of degrees of Gleason score as classes and 
sub-classes. It can detect more scores. In addition, more methods of machine learning 
are applied in our article thus it opens a wider perspective and allows more advanced 
results. The prostate glands images are classified into subclasses of Gleason Score. We 
extract glands from the images using ImageJ SOftware then we compute topological fea-
tures over windows in these glands. After, we apply machine learning methods to pre-
dict the classes of each window, which allow us to know the class of each window and 
eventually each Gland. Then we calculate the precision metric over all the Gland in each 
image.

Mathematical methods
Topological data analysis

TDA extracts an important set of topological features from high-dimensional data sets 
that complement geometric and statistical features, which offers a different perspective 
for machine learning. Features generated from traditional topological models like cell 
complexes on the other hand, preserve the global intrinsic structure information, but 
they tend to reduce too much structure information and are rarely used in quantitative 
characterization. In [22] for example, the authors elaborate the idea of Computational 
Topology that allows the implementation of topological tools into well-established algo-
rithms to manipulate data. In this work, we focus on the application of persistent homol-
ogy, one of the most widely studied and applied TDA tools.

Persistent homology

PH is one of the most widely studied and applied TDA tools. Unlike commonly used 
computational homology which results in truly metric-free or coordinate-free represen-
tations, persistent homology is able to embed geometric information into topological 
invariants so that the “birth” and “death” of isolated components, circles, rings, loops, 
pockets, voids or cavities at all geometric scales can be monitored by topological meas-
urements. The authors in [23] and [24] explain in details how the persistent homol-
ogy is computed through the nested topological spaces. In [25], the authors introduce 
an efficient persistent homology computation method using the Morse theory to build 
the nested topological spaces to get a scheme called filtration. Compared with tradi-
tional computational topology [26] and/or computational homology, persistent homol-
ogy inherently has an additional dimension, namely, the filtration parameter, which 
can be utilized to embed some crucial geometry or quantitative information into the 



Page 5 of 22Rammal et al. BMC Bioinformatics          (2022) 23:476 	

topological invariants (see Fig. 2). This figure shows a 5 * 5 example of a greyscale image 
then it shows one sublevel set built from this image through the process of filtration. The 
pixels of the image represent points in our space. We connect these points by edges and 
then 2D squares through the scheme of filtration of sublevels. You can see in the second 
step an example of a one sublevel set of these sets. At the end, a persistence diagram is 
computed and showing the lifetime of persistent homology classes. Barcode represen-
tation has been proposed for the visualization of topological persistence [27], in which 
various horizontal line segments or bars are utilized to represent the persistence of the 
topological features.

The workflow of the proposed topological features computation of a gray scale image 
begins with the concept of “spatialization”, transforming the image into spaces. A combi-
natorial representation for the spaces and the linearization of this representation permit 
to compute homological groups. A scheme of nested sequences of spaces called filtra-
tion permit to compute persistent homology groups, which are the homology groups 
that persist to variation of spaces during this scheme. Each of these steps are described 
in extent below [28].

Spatialization The input image is viewed as a continuous function f  from the domain 
D ⊂ R

2 into the real line R , i.e. f : D → R . This point of view is correct for grayscale 
images and thus several spaces can be defined regarding f  . The sublevel sets are given 
by all points of the domain whose value does not exceed a level a:Ua = f −1[−∞; a] . 
The sublevel sets are ordered by their level a under inclusion, hence Ua ⊂ Ub when 
a < b < . . . < z.. This permits to define the filtration as the nested sequence of spaces.

Combinatorial representation The spaces under study are mathematically well defined 
but are not suited for algorithmic calculation. Therefore, spaces are decomposed into 
cells. The set of all cells and the gluing information provided by its boundaries are called 
the cell complex [29]. This is particularly suited in the case of grayscale image: a pixel is 
considered as a point, an edge represents the connection between neighborhood pix-
els horizontally and vertically. A square is formed from four neighbor edges. The image 
viewed as a function gives a value for each cell of its domain representation. For example, 
f (x) is the grayscale value assigned to a pixel x . The value of an edge is the maximum of 

(1)∅ ⊂ Ua ⊂ Ub ⊂ · · · ⊂ Uz ⊂ D

Fig. 2  The usual use of persistence in TDA. A filtered complex on the top of the dataset is built. The persistent 
complex is then computed and shown on a persistence diagram
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values of surrounding pixels, while a square’s value is the maximum of values of incom-
ing edges. According to this procedure, the sublevel sets obtained by selecting the cells 
whose value is below a constant level a is necessarily a sub-complex. It means that if a k-
cell is in the complex, its boundary is also in the complex. This evaluation of cells implies 
that the filtration of spaces (1) has an equivalent filtration of complex along the level a 
that preserves the inclusion property.

Linearization Even if it is possible to develop the following theory for general coeffi-
cients, we limit our work over Z2 for the sake of simplicity. The complex previously built 
gives birth to several vector spaces Ck that are finite formal sums of k-cells. We call the 
elements of Ck a k-chain76. That is,c = aiσi , where the σi are the k-cells and the ai are 
the coefficients in Z2 . Its boundary operator is ∂kc =

∑
ai∂kσi , where ∂kσi represents the 

boundary of the k-cell σi and it’s the sum of the boundaries of its cells. Hence, by taking 
the boundary function we map a k-chain to a ( k − 1)-chain. We write this homomor-
phism as ∂k : Ck → Ck−1 . A chain complex is a sequence of chain groups connected by 
boundary homomorphisms such that ∂k−1∂k = 0 for all dimensions k:

Homology Homology is an algebraic and topological tool to detect connectivity of 
topological spaces. Boundary less k-chains are meaningful and form a subgroup of Ck 
that we call the k-th cycle group Zk:

Among these cycles, we consider the ones that surround chains. They form a sub-
group called the k-boundary group Bp.

The k-th homology group Hk is defined as the quotient group Zk/Bk. It’s the group of 
non-bounding cycles. The homology group Hk keeps the count of essentially different 
cycles that are interesting by distributing all cycles into equivalent classes. An ele-
ment of Hk gathers together equivalent cycles, which can be deformed continuously 
one onto the other. In other words, two cycles are equivalent if their difference is a 
boundary. In addition, the dimension of Hk is called the k-th Betti number βk . The 
Betti numbers in dimensions 0, 1, and 2 are the number of connected components, 
tunnels, and voids of the complex, respectively. Because of the linearity, homology 
groups Hk can be easily computed by standard matrix manipulations given a combi-
natorial representation of the chain complex.

Persistent homology Persistent homology comes from the ideas of filtration and 
the functoriality of homology described above. Let K = {σ1, . . . , σi} a cell com-
plex of dimension d. We assume an ordering on the cells such that for each i ≤ n , 
Ki = {σ1, . . . , σi} is a cell complex. The chain ∅ = K0 ⊂ Ki . . . ⊂ Kn = K  is a filtration 
of K  . In our case, such a filtration is defined according to a function f : K → R that 
orders the cells of K  by function value. In addition, by tracking the topological evolu-
tion of this filtration using homology, we get a sequence of homology groups that are 
connected by linear maps induced by inclusions:

(2). . . →∂k+2 Ck+1 →
∂k+1 Ck →∂k Ck−1 →

∂k−1 . . .

(3)Zk = {x ∈ Ck |∂kx = 0} = ker∂k

(4)Bk = {x ∈ Ck |∃y ∈ Ck+1, x = ∂k+1y} = im∂k+1
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Noting that these linear transformations are the maps associated with the inclusions 
of cell complexes [29]. Persistent homology tracks the appearance of classes in this 
sequence. As we go from Ki−1 to Ki , we gain new homology classes and we lose some 
(see Fig. 3). In this figure, a two homology classes of dimension one appeared at times 
a and b, then they disappeared at times d and e respectively. The associated persistence 
diagram of dimension one shows two pints that indicate the time of appearance and dis-
appearance of each homology class from Ka to Kb.

Computation of persistent homology We can compute the homology Hp(Ki) for all sub-
level sets Ki of (1) in order to depict the evolution of the number of topological features 
of an image. However, we lose the information concerning the evolution of each par-
ticular cycle. Indeed, a cycle may emerge at a given level i and die further at the level 
j . Recording the “life duration” of each characteristic cycle is more informative than 
recording the evolution of Betti numbers. Along the procedure of filtration by intensity, 
adding a new cell σj of intensity j and dimension k can contribute to two results. Either 
it “creates” a new homology class or a void or we call σj a "creator", or an already exist-
ing homology class σi , created at intensity i, where i < j and of dimension k-1 can also be 
filled and thus "destroyed" and we call σj a "destroyer". Therefore, the life duration of the 
homology class will be equal to the intensity difference between destroyer and creator, 
j-i. That means that it is given by the difference between the death time and its birth time 
along the filtration. The persistence, and its algorithm [30], gives this recording of the 
evolution of cycles along the level. The evolution of lifetimes of 0-cycles and 1-cycles can 
be represented using a persistence diagram or a barcode with respect to filtration time.

Persistent homology based machine learning

The persistent-homology-based machine learning (PHML) models have been used in 
various areas, including image analysis. The essential idea for PHML is to extract topo-
logical features from the data using PH, and then combine these features with machine 
learning methods, including both supervised learning and unsupervised learning 

(5)H(K0) → H(K1) → . . . → H(Ki) → . . . → H(Kn)

Fig. 3  Filtration scheme from Ka to Ke showing the appearance and disappearance of homology groups, the 
first from Ka to Kd, the second from Kb to Ke and the associated persistence diagram
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approaches. As illustrated in (Fig.  4), PHML in computation can be divided into four 
steps, i.e., simplicial complex construction, PH analysis, topological feature extraction 
and topology-based machine learning. In [31] the authors describe and develop, WSI-
GTFE a method that combines TDA and Graph Neural Network in order to identify and 
quantify key pathogenic information pathways to capture macro and micro architecture 
of histology images. In [32] the authors explain how a method that improves modern 
image classification techniques by considering topological features gave quite accurate 
results in classification of images using deep learning. Recently, the authors in [33] intro-
duces a new method that talks about the fusion of TDA and Deep learning features for 
COVID-19 detection from chest X-Ray images.

The first step is to construct simplicial complex (or complexes) from the studied data. 
In topological modeling, we may have various types of data, including functional data, 
point cloud data, matrixes, networks, images, etc. Depending on the type of studied 
data, cubical simplex models can be considered. The cubical homology theory has been 
developed for a long time, especially for its application to image analysis. The decom-
position of images and position of pixels make the use of the cubical complex the most 
appropriate one for the topological spaces. In [34] and [35] the authors give a detailed 
explanation on the construction of cubical complexes from grayscale images and how 
the filtration scheme is built from this topological complex. The second step is the PH 
analysis. In PH, algebraic tools, such as quotient group, homology, exact sequence, etc. 
are used to characterize topological invariants, including connected components, cir-
cles, rings, channels, cavities, voids, etc. Unlike traditional topological models, which 
capture only the intrinsic structure information and tend to ignore all geometric details, 
PH works as a multiscale topological representation and enables to embed geomet-
ric information back into topological invariants. This is achieved through a new idea 
called filtration. With a suitable filtration process, the persistence of topological invari-
ants can be calculated. Roughly speaking, the persistence tells you the geometric size 
of the invariant. Different softwares are currently available for PH analysis of different 
data structures. We use PHAT, persistent homology algorithm toolbox introduced and 
described in [36]. It ensures a fast way to calculate persistent homology classes on the 
images. The third step is to extract meaningful topological features from PH results. The 
PH results are usually represented as (persistent barcode) PBs or (persistence diagram) 
PD. The third step is to extract meaningful topological features from PH results. The 
PH results are usually represented as (persistent barcode) PBs or (persistent diagram) 
PD. Neither of these representations can be used directly as input for machine learn-
ing models. Therefore, we need to transform the PH results into representations, which 
can be easily incorporated into machine learning models. The fourth step is to generate 

Input Data
Image

Persistence 
Diagram

Feature Selec�on
Homological cycles 
of dimension 0 & 1

Filtra�on of 
cubical complexes

Supervised 
Learning

RF, SVM, MN, LDA, 
DT, Naïve Bayes

Fig. 4  The flowchart for PHML modeling. For different data types, certain simplicial complexes are 
considered. With a suitable filtration parameter, PH analysis can be implemented by a designed software 
(PHAT). The result from the PH is transformed into feature vectors, which is further combined with supervised 
methods from machine learning
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topological feature vectors from PH results. Binning approach is a used approach to dis-
cretize the PB or PD into a feature vector [37]. It is also important to note that binning 
is unstable so it should be used with caution in the algorithm. There are numerous ways 
to transform persistence diagrams for machine learning like persistence landscapes [38] 
and persistence images [39]. The last step is to combine the topological features with 
machine learning algorithms. Essentially, these features can be used directly in super-
vised learning models. Depending on the learning models, we should consider different 
feature selection and representation models to bring out the best performance of the 
model. For detailed explanation check article [40].

Supervised machine learning algorithms

The goal of supervised learning is to build a concise model of the distribution of class 
labels in terms of predictor features. The resulting classifier is then used to assign class 
labels to the testing samples where the values of the predictor feature are known, but the 
value of the class labels are unknown. The classifier’s evaluation is most often based on 
prediction accuracy (the percentage of correct prediction divided by the total number of 
predictions) [41]. In this application, we have chosen Decision Trees classifiers as logic 
learning methods, and Linear Discriminant Analysis, Random Forest Classifier, Support 
Vector Machines and Naïve Bayes Classification as statistical learning algorithms.

Decision Tree Classifier (DT) A decision tree classifier is a non-parametric classifier 
that does not require any a priori statistical assumptions to be made regarding the dis-
tribution of data. The basic structure of the decision tree, however, consists of one root 
node, a number of internal nodes and finally a set of terminal nodes. A node is a subset 
of the predictors that is used to determine a split. A non-terminal node or parent node is 
a node that is further split into two child nodes. Growing a tree consists of selecting the 
optimal splits to determine a non-terminal node, and the assignment of each terminal 
node to a class. The data is recursively divided down the decision tree according to the 
defined classification framework.

Multi-Class Support Vector Machine (SVM) The support vector machines (SVMs) are 
a set of related learning algorithms used for classification and regression. Like the Deci-
sion Tree classifiers, the SVM are non-parametric classifiers. The most basic scheme 
used for the implementation of SVM multi-class classification is the one-against-all 
method. In this simplest extension of the SVM to a K-class problem, K binary SVM 
models are constructed. In kth class SVM problem, class ck is separated from the remain-
ing classes. All k binary SVM classifiers are combined together to make a final multi-
class classifier. Here the remaining means that all the data points from classes other than 
ck are combined to form one class cl . The optimal hyperplane that separates data points 
from the class ci and the combined class cl is found by using the standard SVM approach.

Naive Bayesian classifier (NB) The naive Bayesian classifier is simple probabilistic clas-
sifier based on Bayes’ theorem with independence assumptions between predictors. 
A naive Bayesian model is easy to build, with no complicated iterative parameter esti-
mation which makes its short computational time for training. The parameter of naive 
Bayes models estimates by the method of maximum likelihood. The Naive Bayes clas-
sifier reduce the intractable sample complexity by making a conditional independence 
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assumption that dramatically reduces the number of parameters to be estimated when 
modeling P(X|Y).

Linear Discriminant Analysis (LDA) LDA is a common technique used for dimen-
sionality reduction and classification that has been extensively used for processing data 
information for machine learning and pattern classification applications. The LDA 
technique is developed to transform the features into a lower dimensional space, which 
maximizes the ratio of the between-class variance to the within-class variance, thereby 
guaranteeing maximum class separability.

Random Forest Classifier (RF) A random forest is a classifier consisting of a collection 
of tree-structured classifiers {h(x, θk ), k = 1,…} where the { θk } are independent identically 
distributed random vectors and each tree casts a unit vote for the most popular class at 
input x. An upper bound for random forests can be derived for the generalization error 
in terms of two parameters that are measures of how accurate the individual classifiers 
are and of the dependence between them. The interplay between these two gives the 
foundation for understanding the workings of random forests.

Proposed methodology

The topological features calculated using persistent homology have a big importance in 
image segmentation [42–44]. We compute topological features over windows in glands. 
Machine Learning techniques are then used to predict the classes of each window, which 
allow us to know the class of each Gland. Then we calculate the precision metric over 
all the Gland in each image. We apply the persistence algorithm to the image, exactly to 
the derived functions given by the pixel values. More explicitly, we manipulate images 
by an overlapping square sliding window of size 50 * 50. We applied our methodology on 
40 * 40 and 60 * 60 window sizes (showed in the Additional file 1 at the end of the article). 
Changing the window size to 40 or 60 has a small effect on performance and slight dif-
ferences in classification results are observed. After computation of persistent homology 
in each window we can get the life duration of 0-cycles and of 1-cycles as well as the 
persistent entropy. Besides topological features, we calculate the mean and the standard 
deviation of the life durations of 0-cycles and 1-cycles in each window, their persistent 
entropies for dimensions 0 and 1, and the mean and standard deviation of pixel values, 
which will form a set of eight features calculated in each patch. The persistent entropy H 
of the topological space is calculated as follows:

where i = li
L , li = bi − ai and L =

∑
i∈I

li . Note that, when topological noise is present, for 

each dimension of the Betti barcode, there can be more than one line, denoted by 
[ ai;∞ ], with i ∈ I . Instead of [ai;∞) a persistent topological feature is denoted by [ai;m) 
where m = max {F} + 1 . Note that the maximum persistent entropy corresponds to the 
situation in which all of the lines in the barcode are of equal length. Many articles 
described the use of these statistical features derived from persistent homology espe-
cially persistent entropy [45–47]. These methods are mathematically robust methods of 
turning a persistence diagram into a stable feature vector. The Fig. 5, shows how we get a 

H = −
∑

i∈I

pi log (pi)
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vector of 8 features from each sliding window then we apply machine learning methods 
to classify each image.

In this study we intend to study the Gleason score on some glands issued from a new 
optical microscopy technique called SLIM. The Spatial Light Interference Microscopy 
(SLIM) is a new optical microscopy technique that combines two classic ideas in light 
imaging: Zernike’s phase contrast microscopy and Gabor’s holography. SLIM provides 
quantitative phase images of transparent (unstained) structures with 0.3  nm spatial 
accuracy. This technique reveals the intrinsic contrast of cell structures and, in addi-
tion, renders quantitative optical path-length maps across tissues. First, we break down 
each prostate cancer images issued from the SLIM technique by an image processing 
program called “ImageJ” into K-glands. Then the topological features specifically, persis-
tence homological features, are extracted in sliding windows inside each gland. Methods 
issued from machine learning to classify these windows into their corresponding Glea-
son score are applied. Note that the machine learning techniques applied on homologi-
cal persistence features are very effective in the detection of the right Gleason score of 
the prostate cancer in these kinds of images. Finally, we compute the confusion matrix to 
measure the accuracy of the five supervised machine learning methods used.

Results and application
Data collection

The Quantitative Light Imaging (QLI) group at the Beckman Institute for Advanced Sci-
ence and Technology at the University of Illinois at Urbana-Champaign (UIUC) recently 
developed a new technology called Spatial Light Interference Microscopy [48]. SLIM 
is an add-on module for an existing phase contrast microscope that has the potential 
to have a big impact on the area of light microscopy. We introduce SLIM as a unique, 
extremely sensitive QPI method that has the potential to enable unparalleled structural 
and dynamics studies in biology and beyond. Zernike’s phase contrast approach, which 
reveals the intrinsic contrast of transparent samples [49], is combined with Gabor’s 
holography, which renders quantitative phase maps throughout the sample [50]. SLIM 
enables speckle-free imaging with sub-nanometer spatial background noise because 
to the illuminating light’s exceptionally short coherence length of around 1.2 μm. Fur-
ther, the SLIM images are also intrinsically registered with the microscope’s other chan-
nels, including fluorescence, allowing for strong multimodal investigations. The results 

Fig. 5  Computation of 8 features inside each sliding window to get the classes using machine learning 
methods
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proved that SLIM could acquire rich and quantitative information from biological struc-
tures without physical contact or staining (see Fig.  6). The following are the primary 
characteristics of SLIM. Speckle-free pictures are provided by SLIM, allowing for spa-
tially sensitive optical path-length assessment (0.3 nm). It uses common path interfer-
ometry to quantify optical route length in a temporally sensitive manner (0.03 nm).

Overtime researches has shown that statistical analysis of SLIM images can identify 
and locate tumor areas in high degree of malignancy prostate cancer biopsies. The infor-
mation relevant to the diagnosis, especially for low-malignancy biopsies, is drowned in 
the large body of data from the SLIM microscopy, which provides images in gray levels 
of about 50,000 × 50,000 pixels for a 40 × resolution acquisition on a tissue cut of about 
1 cm2. It is therefore necessary to make an adequate treatment to extract and present it 
in intelligible form. In addition, the amount of data in a SLIM image is substantial and 
it becomes necessary to integrate it to extract the information. This integration requires 
a shift from the local to the global as proposed by the algebraic topology. Our approach 
concentrates on the theoretical and fundamentally on the practical development of new 
algebraic topological tools and mainly persistence homology.

Noting that in our application, we have a data set of 500 images (of size 10,000 * 10,000) 
approximately, classified into 5 classes. Each image is decomposed of glands of size 
1000 * 1000 in average. All the glands in one image are of the same class. Then we com-
pute 8 scores on sliding windows of size 50 * 50 on these glands. The machine learning 
methods are applied after that on these windows to classify them. As an example, if we 
have one image that consist of 50 glands, and each gland consists of 20 windows. So, we 
will get 1000 windows for the image. We run the machine learning methods to predict 
the classes of each window and then we can check the most common class in each gland. 
After that we can calculate the accuracy for each image. And finally, we calculate the 
global accuracy for all images.

Statistical analysis

A confusion matrix is displayed to describe the performance of the classifiers and meas-
ure the accuracy of them. Aside from confusion matrix, cross-validation is primarily 

Fig. 6  a: The SLIM module added on to a commercial phase contrast microscope. b: Four frames are 
acquired to compute one phase image by modulating the phase difference between scattered and incident 
light using a spatial light modulator (SLM). c:An image of the whole slide scanned using SLIM and an esemble 
of gleason pattern through SLIM image
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used in applied machine learning to estimate the skill of a machine learning model 
on unseen data. That is, to use a limited sample in order to estimate how the model is 
expected to perform in general when used to make predictions on data not used dur-
ing the training of the model. It is a popular method because it is simple to understand 
and because it generally results in a less biased or less optimistic estimate of the model 
skill than other methods, such as a simple train/test split. We hired in our study five 
classification algorithms: the decision tree (DTC), Random Forest (RF), support vector 
machine classifier (SVM), Naïve Bayes classifier (NBC) and linear discriminant analysis 
classifier (LDA).

Cross-validation is a model assessment technique used to evaluate a supervised clas-
sification algorithm’s performance in making predictions on new datasets that it has not 
been trained on. This is done by partitioning a dataset and using a subset to train the 
supervised learning algorithms and the remaining data for validation and testing. Several 
methods of cross validation exist such as k-fold, Holdout, Leave-out and Re-substitution. 
We use k-fold method that partitions the persistent homology features of glands images 
into k randomly chosen subsets of roughly equal size. One subset is used to validate the 
model, one subset is used to testing the model, training the model using the remaining 
subsets. This process is repeated T = 100 sampling such that each subset is used exactly 
once for validation. A ROC (Receiver Operating Characteristic) curve summarizes the 
performance of a classifier over all possible thresholds. It is generated by plotting the 
True Positive Rate (y-axis) against the False Positive Rate (x-axis) by varying the thresh-
old for assigning observations to a given class. ROC curves are used to compare different 
supervised classifiers. If the curve has high values, it leads to the greater of area under 
the curve obtained (AUC), and the less error the classifier makes.

Gleason score 3 According to Gleason grade system, grade 3 is characterized by small 
glands, thin boundary, small and round lumen. This score has three intra classes labeled 
as class 32, class 33, and class 34. We used the same k-fold cross validation with k = 2, 3, 
4, 5 on the intra classes to measure the accuracy of each of the five classifiers individu-
ally. Table 1 shows the performance of our methodology combining persistent homol-
ogy to extract features from images and supervised algorithms to classify the Gleason 
score 3 of prostate cancer images by calculate the accuracy of confusion matrix and the 
area under the roc curve (AUC). The confusion matrix was implemented, and the accu-
racy was comprised as 97.4% for the decision tree classifier, 65.7% for the support vector 
machine, 65.9% for the random forest classifier, 56.7% for the Naïve Bayes classifier, and 
55.1% for the linear discriminant analysis classifier. The greater of area under the curve 
obtained (AUC) for the decision tree classifier with 0.9813 value of k = 3 fold CV.

Gleason score 4 According to Gleason grade system, the glands in grade 4 merge 
together and create a mass of glands containing multiple lumens. This score has three 
intra classes labeled as class 43, class 44, and class 45. We used the same k-fold cross 
validation with k = 2, 3, 4, 5 on the intra classes to measure the precision of each of the 
five classifiers individually. Table 2 shows the performance of our methodology combin-
ing persistent homology to extract features from images and supervised algorithms to 
classify the Gleason score 4 of prostate cancer images by calculate the accuracy of confu-
sion matrix and the area under the roc curve (AUC).The confusion matrix was displayed, 
and the accuracy was comprised as 97.8% for the decision tree classifier, 77.8% for the 
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random forest classifier, 67.5% for the support vector machine, 44.8% for the Naïve Bayes 
classifier, and 46.3% for the linear discriminant analysis classifier. To quantify the results, 
we calculate the area under the roc curve (AUC) for each supervised method with k = 2-, 
3-, 4- and 5-fold CV. We obtained the decision tree classifier giving the highest value of 
the AUC compared to the other methods.

Gleason score 5 According to Gleason grade system, grade 5 indicates that poorly dif-
ferentiated tissue and low chance of survival. This score has two intra classes labeled 
as class 53 and class 55. We also used the same k-fold cross validation with k = 2, 3, 4, 
5 on the intra classes to measure the fineness of each of the five classifiers individually. 
Table 3 shows the performance of our methodology combining persistent homology to 
extract features from images and supervised algorithms to classify the Gleason 5 score of 
prostate cancer images. The accuracy of confusion matrix was executed, and the accu-
racy is understood as 99.3% for the decision tree classifier, 80.1% for the random forest 
classifier, 84.5% for the support vector machine, 90.8% for the Naïve Bayes classifier, and 
73.2% for the linear discriminant analysis classifier. To quantify the results, we calculate 
the area under the roc curve (AUC) for each supervised method with k = 2-, 3-, 4- and 
5-fold CV, we obtained the decision tree classifier giving the highest value of the AUC 
compared to the other methods.

Discussion

Depending on the approached outcomes, there is a clear evidence that the decision tree 
is the most preferable supervised machine learning algorithm among the other classi-
fiers. It has shown an accuracy above 95% of the classification. Consequently, it is the 
bestead classifier who was able to detect the accurate diagnosis through the intra classes 
of Gleason score 3, Gleason score 4, and Gleason score 5 solely. Besides it was consid-
ered to be the leading classifier of our study. Our destination then focused on the tabula-
tion of the decision tree when taking all Gleason scores jointly. Here we picked several 
images from each of the four Gleason scores including Gleason score 2 that has one sin-
gle class that is class 23. In other embodiments, we stratified this classifier on Gleason 
score 2, Gleason score 3, Gleason score 4, and Gleason score 5 altogether but with dif-
ferent k-fold cross validation. Cross-Validation (CV) is recognized as a very powerful 
tool. It helps better use the data and gives us much more information about our algo-
rithm performance. K-fold cross validation is about estimating the accuracy, not improv-
ing the accuracy where most implementations of k-fold cross validation give an estimate 
of how accurately they are measuring the accuracy. Table 4 shows the performance of 
our methodology combining persistent homology to extract features from images and 
supervised algorithms to classify the Gleason score 2, Gleason score 3, Gleason score 
4, and Gleason score 5 of prostate cancer images by calculate the accuracy of confusion 
matrix and the area under the roc curve (AUC). The results were implicated as 95.8% for 
2-fold CV, 95.4% for 3-fold CV, 96.1% for 4-fold CV, and 96.9% for 5-fold CV. As a result, 
the fluctuation of k-fold cross validation did not affect the fineness of the results. Hence 
cross validation was considered posteriorly as an inconsequential procedure in our case. 
The greater of area under the roc curve obtained (AUC) for the decision tree classifier 
with k = 2-, 3-, 4- and 5-fold CV. Results on 40 * 40 and 60 * 60 window sizes are added 
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as Additional file 1 at the end of the article. Small effect on performance were remarked 
with slight differences in classification results.

On the other hand, deep learning methods were applied to classify the images. A CNN 
method showed a 72% accuracy of classification of the 4 classes of Gleason score (2, 3, 
4, 5). For the subclasses (as 2–2, 2–3…), also the CNN was not a good classifier and 
our method remains the only one with a high accuracy of classification of Gleason score 
subclasses.

Existing methods

Overtime there was various proposals discussing the importance of persistent homology 
and others examining the renovation of machine learning in the medical field. Yet, few 
tutored the integration of these two on image segmentation for Gleason score stratifica-
tion. Presently we focus in this study on two existing methods and compare their results 
to ours. The authors of the article “Quantitative Phase Imaging” [51] proposed a unified 
framework to perform automatic diagnosis of prostatic cancer directly from QPI images. 
The framework used texture analysis to produce segmentation maps for different regions 
of the cores. Given the label map, all glands in each core are identified and their feature 
vectors are calculated. Bag-of-Ward (BoW) model was used to compute the core fea-
ture vector from its glands. The main two common points were the proposition to study 
the Gleason score on glands issued from the SLIM optical microscopy technique and 
the employment of the SVM classifier. Researchers trained the random forest classifier 
to segment SLIM based on the texture of the tissue and SVM classifier to differentiate 
Gleason grade 3 and 4. In addition, PCA and K-means clustering were employed as well. 
Eventually, using SVM classifiers, the accuracy was 70% in the binary classification prob-
lem for grade 4 and 3. Thus the preference in our work is the manifest of SVM and four 
more supervised classifiers to detect the right Gleason score not only for grades 3 and 4 
but also between the intra classes of these grades. Besides, we were able to recognize a 
better precision with accuracy exceeded 90%.

On the other hands, other authors in their study “Persistent Homology for the Quanti-
tative Evaluation of Architectural Features in Prostate Cancer Histology” [19] proposed 
persistent homology as a new means of describing prostate cancer architecture (PCa). 
The rapprochement between both studies is the integration of machine learning with 
persistent homology. First they applied persistent homology to prostate cancer glandu-
lar architecture, they computed topological representations of purely graded prostate 
cancer histopathology images of Gleason patterns 3, 4 and 5, and showed that persis-
tent homology was capable of clustering prostate cancer histology into architectural 
groups through a ranked persistence vector. Then un-supervised learning techniques, 
mainly principal component analysis (PCA) and Hierarchical Clustering, were executed. 
The results of their study displayed the ability to stratify PCa into architectural sub-
types using persistent homology as a tool, which ultimately might have different prog-
nostic outcomes. Of particular interest was the ability to segregate PCa architecture 
into potentially prognostically distinct groups. Whereas the advantage in our work is 
the deployment of five supervised machine learning algorithms: decision tree classifier, 
SVM classifier, Naïve Bayes classifier, and linear discriminant analysis on the extracted 
persistent homological features. Moreover, we utilized these classification models on 
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Gleason score 2, Gleason score 3, Gleason score 4, Gleason score 5. Consequently, and 
due to our outcomes, decision tree classifier was superb classifier among the five classi-
fiers who was able to differentiate the scores and the intra classes of each Gleason score. 
Substantially, such results might help pathologists better comprehend the Gleason grad-
ing system to snaffle subservient clinical information.

Conclusion
Many works on images have employed persistent homology and associated statistical 
conclusions to classify the data. We employed the statistical results of persistent homol-
ogy to classify photos into their Gleason scores in our research. To compute persistent 
homology, the pixels are binarized based on a threshold. The Gleason score reveals a 
revolutionary tumor detection technique, which is provided utilizing the novel concept 
of persistent homology profiles. In Gleason disclosure, combining machine learning 
with persistent homology is recommended as an effective technique. The topological 
features extracted from biomedical pictures, notably the SLIM technology, are repre-
sented as the scale and distribution of zero and one-dimensional persistence features via 
persistent homology. We present a unified platform for doing automatic prostate cancer 
diagnosis. The framework uses texture analysis to create segmentation maps for various 
gland regions. Given the label map, all glands are identified and their topological fea-
tures are calculated. ImageJ is used to pluck the features from the glands and five distinct 
standard classifiers were used then. The decision tree classifier was the leading classifier 
among the rest and showed an accuracy of above 90% obtained in the binary classifica-
tion problem for Gleason scores 2, 3, 4 and 5 jointly. Moreover, this classifier also per-
formed overwhelming, above 90% fineness, results in the binary classification for intra 
classes in Gleason score 3, Gleason score 4, and Gleason score 5 individually.

Future work
While this is a preliminary work and yields no definitive conclusions regarding clinical 
utility, it does point to the power of persistent homology based on machine learning, 
PHML, to interrogate the architectures present in PCa. Using this tool, it may be possi-
ble to develop a better understanding of not only inter and intra classes of Gleason score 
in PCa but, more importantly, how they correlate with patient prognostic outcomes. 
There are many directions for further research. On the processing front, it is serious to 
examine the effectively of our results to characterize the aggressiveness of prostate can-
cer and allow urologists to make more informed decisions. On the technology front, it is 
useful to study the applicability of our approach to others by using convolutional neural 
network (CNN) to extract the features instead of PH.
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