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Abstract 

Background:  The roles of antibody and antigen are indispensable in targeted diag‑
nosis, therapy, and biomedical discovery. On top of that, massive numbers of new 
scientific articles about antibodies and/or antigens are published each year, which is a 
precious knowledge resource but has yet been exploited to its full potential. We, there‑
fore, aim to develop a biomedical natural language processing tool that can automati‑
cally identify antibody and antigen entities from articles.

Results:  We first annotated an antibody-antigen corpus including 3210 relevant 
PubMed abstracts using a semi-automatic approach. The Inter-Annotator Agreement 
score of 3 annotators ranges from 91.46 to 94.31%, indicating that the annotations are 
consistent and the corpus is reliable. We then used the corpus to develop and optimize 
BiLSTM-CRF-based and BioBERT-based models. The models achieved overall F1 scores 
of 62.49% and 81.44%, respectively, which showed potential for newly studied entities. 
The two models served as foundation for development of a named entity recognition 
(NER) tool that automatically recognizes antibody and antigen names from biomedical 
literature.

Conclusions:  Our antibody-antigen NER models enable users to automatically 
extract antibody and antigen names from scientific articles without manually scan‑
ning through vast amounts of data and information in the literature. The output of NER 
can be used to automatically populate antibody-antigen databases, support antibody 
validation, and facilitate researchers with the most appropriate antibodies of interest. 
The packaged NER model is available at https://​github.​com/​Trang​Dinh44/​ABAG_​BioBE​
RT.​git.

Keywords:  Antibody, Antigen, Corpus, Named entity recognition, BioNLP, Semi-
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Background
Antibodies (ABs), also referred to as immunoglobulin, are host proteins secreted by 
plasma cells to serve as the first response against targeted antigens (AGs), which are for-
eign molecules or organisms that the ABs stringently bind to and ultimately neutralize 
in various ways. The ability of ABs to bind AGs with a high degree of affinity and speci-
ficity has led to their ubiquitous use in a variety of scientific and medical disciplines: 
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diagnoses, therapeutics, analysis, purification, enrichment, mediation, and modulation 
of physiological responses [1].

Owing to their profound impact on human’s healthcare, a vast array of scientific dis-
coveries regarding ABs and their AGs have been introduced each year. As of June 2021, 
there were over 2 million research articles about antibody and/or antigen (ABAG) on 
NCBI PubMed. This is undoubtedly an enormous source of knowledge about ABAG 
essential for further research, diagnostic, and therapeutic purposes. Unfortunately, such 
an important source of knowledge has not yet been exploited effectively.

In an effort to facilitate the process of AB search and validation through such “big 
data”, numerous projects have emerged over the past decade. For example, antibody 
databases like Antibody Exchange [2], Antibody Watch [3], SAbDab [4], Antibody Regis-
try [5], etc. have been collecting, cross-referencing, and unifying a variety of information 
about ABs and the supporting evidence. Among existing antibody databases, AntiBod-
ies Chemically Defined (ABCD) database [6] sufficiently covers general information 
about antibodies and their targets that are corroborated by PubMed articles or patents. 
Despite being an extensive resource, as a manually curated depository, ABCD (version 
9.0, updated in August 2020) had only 3231 PubMed IDs (PMIDs), which evidently did 
not cover all over 2 million PubMed articles related to ABAG. Additionally, authors usu-
ally only deposit ABs and AGs that are the main topics of their published articles. Hence, 
not all ABAG mentioned in articles are listed in the database.

On that account, together with the constantly growing volume of publications on 
ABAG topics, there exists a high demand for a platform that can automatically collect, 
process, and extract key information about antibodies and antigens from relevant bio-
medical texts. One of the most potent solutions, BioNER is a task of recognizing prede-
fined biomedical-related entities: chemicals, genes/proteins, diseases, or antibodies and 
antigens, in our case, that are mentioned in massive and unstructured biomedical texts. 
BioNER, and NER in general, plays an essential role as a foundation for many down-
stream applications such as knowledge base construction, relation extraction, ques-
tion answering, and other text mining tasks [7]. Traditional NER techniques that utilize 
unsupervised learning typically demand an exhaustive lexicon and are hard to transfer to 
other domains. In a superior approach, deep learning is advantageous in automatically 
finding hidden features [7]. Composed of multiple processing layers, typically artificial 
neural networks, deep learning models can learn multi-level representations of com-
plex and intricate features from data via non-linear activation functions. More impor-
tantly, since the learning of features and useful representations is automatic and directly 
from raw data, without the need for manually designed features, deep learning models 
are not only effort-saving but also domain-independent [8]. Examples of deep learning 
neural networks for sequential data include Convolutional Neural Network (CNN)- or 
Recurrent Neural Network (RNN)-based models in NER, especially in domain-specific 
BioNER [9, 10].

Notably, Long-Short Term Memory (LSTM), a special case of RNN, has superiority 
in remembering larger-context information with its gate mechanism that decides to 
forget irrelevant information and only allows important information to pass through. 
This release of unhelpful memories efficiently averts memory explosion. In addition, 
Bidirectional Long-Short Term Memory—Conditional Random Field (BiLSTM-CRF), 
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introduced by Huang et  al. [11] and by Lample et  al. [12], has been one of the most 
widely used models in sequence labeling tasks, including BioNER. BiLSTM involves two 
LSTM networks, one reads sequences from left to right (forward) and one from right 
to left (backward). While the forward operation handles information from the past, the 
backward layer is for information from the future and hence overall, BiLSTM covers a 
wider context that is useful for the predicting task [13]. Next, the output from BiLSTM, 
which is a rich contextual vector representation of the input sequence, is passed to a 
CRF (Conditional Random Field) layer. Using a probabilistic sequence-labeling model 
for sequence tagging, CRF not only combines the context information from BiLSTM 
outputs, but also considers dependencies and strong restrictions between the output 
sequence of labels for its prediction. Character-level embeddings can also be included 
into BiLSTM-CRF to enhance model performance as they help deal with out-of-vocabu-
lary or misspelled words, or entity mentions of multi-form, etc. [13].

Recent advancements in NER also take advantage of Bidirectional Encoder Represen-
tations from Transformers (BERT). Introduced by Lee et al. [14], BioBERT is a biomedi-
cal domain-specific language representation model. BioBERT was initialized with the 
weights from the pretrained Google BERT model and further pretrained on large-scale 
PubMed abstracts and PubMed Central full-text articles for biomedical task-specific 
labeling [14]. With a masked language model architecture to learn bidirectional rep-
resentations, BioBERT excels in representing words in complicated contexts like bio-
medical literature [15, 16]. BioBERT also outperforms other models when it comes to 
polysemous words, as it produces different embeddings for different meanings of the 
same word [17]. Subsequently, BioBERT has been applied to improve BioNER perfor-
mance, especially at determining the correct name boundaries of biomedical entities 
such as disease, drug/chemical, gene/protein [14]. Using BioBERT as word embeddings 
can also generate contextualized representations of complex biomedical texts, facili-
tating downstream tasks [14, 17]. For example, Gondane utilized BioBERT as feature 
embeddings for inputs to a dense fully connected neural network that identifies personal 
health experience mentioned in tweets [18].

To effectively train a deep learning model, a well annotated dataset is essential. How-
ever, to the best of our knowledge at the time of our study, there has been no corpus 
for antibody and antigen entities. There have been several corpora in closely related 
domains. For example, PGxCorpus [19] covers chemical, gene/protein, disease, pheno-
types, haplotype, and gene variations. The construction of this corpus followed a semi-
automatic annotation process, with automatic pre-annotation and manual correction, 
which was also the approach for our corpus annotation. The Inter-Annotator Agree-
ment (IAA) strict F1 for this corpus was 57.4%. JNLPBA [20] is a well-known corpus 
for protein and gene entities. It contains 2404 abstracts and has been used as a bench-
mark corpus in a lot of state-of-the-art (SOTA) NER studies [21]. The corpus contained 
25 k sentences, 569 k tokens, and 35 k annotations in total. Another similar corpus is 
ProGene [22], which was developed more recently (in 2020 by Faessler et al.) and of a 
slightly larger scale with 3308 abstracts. This gene-protein corpus was further grouped 
into 5 specific entities: protein molecule, protein family/group, protein complex, protein 
variant, and elliptic enumeration of protein. Despite several variants for protein corpora, 
no work has been done for antibodies or antigens.
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The ultimate aim of this study is to develop an automatic tool for identifying antibody-
antigen names in large-scale biomedical abstracts. Our ABAG-NER tool would poten-
tially extract data from the scientific literature to populate a database for antibodies and 
antigens. To that end, the two main objectives in our study are (1) to construct an anno-
tated corpus for antibody and antigen entities and (2) to build a BioNER model for anti-
body and antigen name recognition.

Methodology
Data collection

The very first step in our procedure is to obtain essential information, including AB 
names and synonyms, AG names and synonyms, and PMIDs from the ABCD database. 
The PMIDs are used to further retrieve abstract texts from PubMed, while all the names 
and synonyms are used to build a label lexicon.

We further manipulated a great number of AB names in ABCD with the pattern of 
“anti-AG_Name-AB_Name” or similar (e.g., anti-HER2-2Rs15d), and extracted more AB 
and AG names (2Rs15d and HER2, respectively) to add to the label lexicon. We also fil-
tered out the lexicon names that are easily misleading:

•	 Single-letter names such as “E”, “G”, and “S”, which are abbreviations of envelope-, 
lycol-, and spike-proteins, respectively

•	 Names that are less-than-1000 numbers (easily mistaken with numbers in measure-
ments)

•	 Names that are common words like “antigen”, “antibody”, “fab”, “mab”, “vhh”, “mg”, …

Corpus construction using semi‑automatic annotation

Automatic annotation tool

We utilized a web-based concept tagging tool named ezTag [23] during our annotation 
tasks, both in automatic and manual phases. Since ezTag uses a string-match algorithm 
for automatic annotation, we provided to ezTag the label lexicon and 3210 PubMed 
abstracts as inputs. The outputs were automatically annotated abstract texts with tagged 
entities in highlight as illustrated in Fig. 1a.

Manual revision_annotation guidelines

The automatically annotated abstract texts contained significant numbers of errors (fur-
ther illustrated in Results and Discussion), which unequivocally required manual revi-
sion by human annotators.

Three annotators, trained intensively for the annotation tasks, each independently 
reviewed and corrected 1070 abstracts, following stringent criteria for consistency in 
annotation text span, entity type, and coverage. Some of the top prioritized guidelines 
included:

1.	 If a mention is in the format of “anti-” + AG_name + “Antibody”/“mAb”/…, we anno-
tate the AG_name as “Antigen”; we do not annotate the whole phrase as "Antibody"
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2.	 Annotate names only, exclude common words like “antibody”, “antigen”, “protein”, 
“mAb”, “Fab”, “scFv”, “VHH”, … that come before or after the name, unless these words 
are part of the name

3.	 Include species names mentioned along with AB/AG names, if they are mentioned 
in either of the two following formats:

a.	 Species_name + AB/AG_name
b.	 AB/AG_name + “of ” + Species_name (annotate the whole phrase as a single 

entity)

4.	 Do NOT annotate antibody type (IgG, IgM, IgA, IgE, IgD, …), region, loop, fragment 
name of antibody, or domain name of target, unless they are the main topic/target of 
the AB-AG interaction in the abstract

All the guidelines and rules were established before the beginning of manual annota-
tion tasks and regularly refined at weekly meetings for consistent annotations. The entire 
annotation process took approximately 1.5 months.

Inter‑annotator agreement

To ensure the corpus reliability, we performed Inter-Annotator Agreement (IAA) sta-
tistics via TeamTat, an annotation webtool supporting multi-annotator collaborative 
work [24]. We performed double annotation for 10% (321 abstracts) of the corpus and 

Fig. 1  An example of annotation with ezTag [before (a) and after (b) manual annotation]. Yellow highlight is 
AG; blue highlight is AB
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triple annotation for 1% (32 abstracts). All doubly- and triply-annotated abstracts were 
chosen randomly to ensure the population representation. IAA score indicates consist-
ency among annotators in tagging named entities and was measured using entity-level 
F1 measures:

(TP: True Positive; FP: False Positive; FN: False Negative).
Precision (P):P = TP/(TP + FP), which represents positive predictive value, or rele-
vancy of retrieved values.
Recall (R):R = TP/(TP + FN), which represents sensitivity, or retrieval of relevant val-
ues.
F1: F1 = 2*P*R/(P + R), the balanced ratio between P and R.

F1 has been commonly used in NER tasks [14]. For all our results, we reported micro 
F1. Evaluation of either IAA or NER models in our study used both exact-match (a 
predicted annotation by model and its ground-truth annotation from the corpus must 
match exactly, both the text boundary and the entity type, to be considered correct) 
and relax-match F1 scores. Although exact-match evaluation is widely used, it is unable 
to judiciously assess bioNER performance. This is because biomedical entities are fre-
quently written in various forms in biomedical texts. For example, “(6–4)photoproduct”, 
“6,4-photoproduct”, and “(6–4) Photoproduct” all refer to the same entity. The venial 
mismatch in just a hyphen, space or brackets obviously makes no difference in mean-
ing, but exact-match marks it incorrect, which costs the coverage and results in a low 
F1 score. Therefore, relax-match evaluation was introduced to account for this flexibil-
ity. Relax-match is further divided into span mismatch relax and type mismatch relax. 
With span mismatch relax, an annotation is counted as correct if it has the correct entity 
type with the ground-truth tag, regardless of their mismatched text boundaries. With 
type mismatch relax, a boundary-matched annotation is adequately counted as correct, 
regardless of its entity type [7].

The annotated corpus

The final, fully annotated corpus was used to train and evaluate NER models. For this 
purpose, all the annotated abstract files were converted from XML to CoNLL tabular 
format where entity types followed the Begin (B), Inside (I) and Outside (O) scheme 
(Fig. 2). During the conversion, abstract tokenization was performed using SpaCy NLP 
toolkit with additional Python regular expression script to further separate the tokens by 
some special characters: r’[− ~ /: + ()\’\][",_. > *•#]’. In addition, all tokens were kept case 
sensitive.

Model optimization
Models

The project employs BiLSTM-CRF and BioBERT for generation of baseline NER models.
Firstly, BiLSTM-CRF was obtained via anaGo library; the version used in our study 

was anago-py367 [25], which was suitable to run with Python 3.7. Developed and opti-
mized by Nakayama in 2017 with the combined technique BiLSTM-CRF [26], anaGo 
was implemented in Keras for NER and many other sequence labeling tasks. anaGo 
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implements different pre-trained word embeddings as input; it also has the capability to 
self-generate word embedding based on training data [12, 27]. The BiLSTM-CRF archi-
tecture is described in Fig. 3.

The input to the model is a sequence of tokens (“mEChC6 targets human ABCC6”). 
The word embedding, which can be pre-trained or self-generated based on training data, 
encodes each token and inputs the corresponding representation to Bi-LSTM neural 
networks. Bi-LSTM uses two LSTM networks, forward (f1–4) and backward (b1–4). The 
vector representations from both networks are concatenated (c1–4) and inputted to the 
CRF tagging layer for label assignment [12, 13, 27].

Fig. 2  Excerpts of our ABAG annotated corpus in IOB tagging scheme

Fig. 3  BiLSTM-CRF architecture employed in anaGo model
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The model consists of 10 layers with over 2 M parameters. The model hyperparame-
ters were kept as default: dimension of words = 100, dimension of characters = 25, Adam 
optimizer, dropout = 0.5, and batch size = 32. The number of training epochs was set 
to 100 at maximum, with early stopping that usually stopped at approximately the 60th 
epoch; the early stopping condition was when the validation loss of the model did not 
decrease more than 2 × 10–4 (~ 0.01% initial loss) after 5 consecutive epochs. We set this 
loss threshold since the validation F1 typically did not increase afterward.

Secondly, we also used BioBERT, a transformer-based model initialized with BERT 
by Google and pretrained with 18B words from biomedical texts by Lee et al. [14]; the 
version used in our study was BioBERT-Base v1.1. Similar to BiLSTM-CRF training, 
the model hyperparameters for BioBERT fine-tuning were mostly kept as default, with 
AdamW optimizer and a learning rate of 4 × 10–5. We adjusted the maximum sequence 
length up to 512 and batch size down to 16. The number of training epochs was set to 5, 
but the model usually obtained the best performance at the 2nd or 3rd epoch.

Data splitting

For optimal performance, we investigated 3 different data splitting ratios and 2 differ-
ent data clustering methods. For the former, NER model training typically sets 10–20% 
data for testing, thus we evaluated 3 different splitting ratios of 10%, 15%, and 20% test-
ing. The three ratios of train:validate:test including 60:20:20, 70:15:15, and 80:10:10 were 
assessed. Each ratio had three replicates of different random seeds. For the clustering 
methods, we tried randomizing data on the whole dataset (3210 abstracts) versus rand-
omizing within each abstract classification group (4 groups listed in Fig. 4b). Due to the 
unequal distribution of abstracts across the 4 groups, especially with only 93 AB-only 
abstracts and 140 no-tag abstracts (Fig. 4b), different data clustering methods were nec-
essary to ensure equal distribution of each type into train-validate-test sets.
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Evaluation

Both exact-match and relax-match F1 scores were computed to assess the performance 
of the NER models. Additionally, error analysis on the model outputs was conducted on 
ten randomly chosen abstracts in the test set as well as eight relevant PubMed abstracts 
outside the corpus; the process served as a detailed examination of model performances 
and major error types.

Results
Corpus statistics

ABCD_v9 provided total 40,127 names and synonyms (27,754 AB and 12,373 AG); 
pre-processing to extract more names from ABAG complex and to filter out confusing 
names (as described in Methodology) gave total 48,653 names (35,654 AB and 12,999 
AG). These names were used to build the label lexicon inputted to ezTag for automatic 
pre-annotation.

ABCD_v9 provided 3233 PMIDs, of which 3210 abstracts were available through Pub-
Med. Consequently, the final corpus contains 3210 abstracts, with average 7.5 sentences 
and 183 tokens per abstract. Automatic pre-annotation on these abstracts produced 
38,471 tags. After manual annotation, there remained 31,061 tags in the whole corpus, 
of which 10,835 were AB and 20,226 were AG, as illustrated in Fig. 4a. On average, there 
are about 10 annotations per abstract, approximately 3.5 for AB and 6.5 for AG.

After manual revision, the number of annotations decreased by over 7000 instances, 
which indicated that automatic annotation based on text-matching algorithms tended 
to introduce false positive (FP) errors. Consequently, the manual corrections involved 
mostly removing non-sense mentions, which were typically abbreviations or measure-
ments sharing common name formats with ABAG and mistakenly annotated. As illus-
trated in Fig.  1a, automatic annotation tagged “Fab”, “IgG”, “S”, or “t(1”, which are too 
generic or non-sense mentions. Manual corrections (Fig.  1b) removed these annota-
tions. Moreover, the main corrections also consisted of adding many ABAG names 
being mentioned but not the main topics of the abstracts, which were not covered in 
ABCD, and re-tagging multi-token labels to ensure that the annotations all followed 
our principles. For example in Fig. 1b, the full name (non-abbreviation) of AG “Propro-
tein convertase subtilisin-like/kexin type 9” was manually added and the AB annotation 
“anti-PCSK9 1D05” was re-tagged with “PCSK9” as AG and “1D05” as AB to match our 
annotation rules.

As depicted in Fig. 4b, our corpus covered all four possible cases: abstracts contain-
ing both AB and AG tags (1914 abstracts), abstracts containing only AB (93 abstracts), 
abstracts containing only AG (1063 abstracts), and abstracts with neither AB nor AG 
(140 abstracts).

We observed that the corpus covered a wide range of biomedical topics, from synthet-
ically therapeutic antibodies (anti-HIV, anti-SARS-CoV, etc.), humanization of antibod-
ies, nanobodies, study of crystal structure, mutation analysis, target screening assays, 
to naturally pathogenic autoantibodies (anti-DNA, anti-collagen, etc.), and so on. This 
diversity assisted model training in learning to recognize entities (or ignore non-entities) 
from different cases and contexts.
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Inter‑annotator agreement evaluation

The consistency among annotators working on this ABAG corpus was measured via 
Inter-Annotator Agreement (IAA) F1 scores, reported in Table 1.

Relax-match evaluation divides the agreement into 3 levels: full agreement, partial 
agreement, and single annotation. Full agreement (FA) requires the 2 annotations to 
have the exact same entity type and text span. Partial mismatches (concept agreement, 
partial agreement, and disagreement) are considered as false in strict F1 but are cor-
rect in relaxed F1. Concept Agreement (CA) means that the two annotations have the 
same text span but are tagged as different entity types; Partial Agreement (PA) means 
the same entity type for overlapping text span between the 2 annotations; Disagreement 
(DA) means different entity types for overlapping text span. Single (SN) annotation is 
tagged by only some, but not all, annotators; basically, SN is the sum of False Positive 
and False Negative. F1 scores were calculated as:

Strict F1 = FA/(100% − SN/2) * 100%
Relax F1 = (FA + CA + PA + DA)/(100% − SN/2) * 100%

The overall F-measure is 91.46% for strict method and 94.31% for relax method (Table 1), 
which is in the ‘almost perfect agreement’ range of F = 81–100%, according to the Landis 
and Koch scale [28, 29].

Dataset distribution

To optimize both the BiLSTM-CRF and BioBERT models, we surveyed two different 
methods of data random clustering (whole corpus versus group-wise) and three differ-
ent splitting ratios (60:20:20, 70:15:15, and 80:10:10). Statistics of data in each set were 
performed to ensure uniform distribution.

Table 2 reported statistics of the corpus with group-wise random clustering method 
and splitting ratio of 60:20:20. The same average sentences and similar average mentions 

Table 1  Inter-annotator agreement (IAA) F1-measures of the ABAG annotated corpus

Bold numbers are the overall F-measures, which are the main scores to assess the corpus quality

FA (%) CA (%) PA (%) DA (%) SN (%) Strict F1 (%) Relax F1 (%)

86.54 0.20 2.46 0.03 10.77 91.46 94.31

Table 2  Statistics of the ABAG annotated corpus with 60:20:20 splitting ratio and group-wise 
random clustering method

Characteristics Training Developing Testing Total

No. of PubMed article abstracts 1930 640 640 3210

No. of antibody mentions 6627 1948 2260 10,835

No. of unique antibody mentions 1963 666 796 3144

No. of antigen mentions 12,198 3981 4047 20,226

No. of unique antigen mentions 3235 1335 1271 4950

Avg. sentences per abstract 7.5 7.5 7.5 7.5

Avg. words per abstract 182.9 181.8 183.5 182.8

Avg. mentions per abstract 9.8 9.3 9.9 9.7
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per abstract indicated a uniform distribution of the corpus abstracts across the train-
ing, developing, and testing sets. In addition, AB and AG annotations were also equally 
distributed in an approximately 6:2:2 ratio. Overall, group clustering with the ratio of 
80:10:10 achieved the best performance.

NER model performance
BiLSTM‑CRF

First, the BiLSTM-CRF model achieved the highest F1 score of 62.49%, with a precision 
score (66%) much higher than the recall score (58%) (Table 3). These scores are micro-
averaged from the total true positives, false negatives, and false positives.

F1 for AB was 63%, higher than F1 of 61% for AG. In addition, while precision was 
higher than recall for both AB and AG, recall of AB was surprisingly low (about 20% less 
than precision) and even lower than recall of AG (Table 3). For BiLSTM-CRF, the early 
stopping on average stopped at approximately 60th epoch, where no improvement for 
the validation set was detected, which was consistent at every run, so both the upper 
limit of 100 epochs and the applied early stopping conditions were reasonable.

BioBERT

Second, the BioBERT model achieved the highest F1 of 81.44%, which was almost 20% 
higher than the F1 of BiLSTM-CRF for both entities.

F1 for AB was 88%, much higher than F1 = 78% for AG. Noticeably, R scores were 
higher than P scores for both AB and AG, with recall for AB reaching over 90% (Table 4). 
This trend was opposite to that of the BiLSTM-CRF model. Overall, BioBERT clearly 
showed improvement in annotation coverage compared to BiLSTM-CRF (over 20% 
higher R scores).

Relax‑match evaluation

Relax-match F1 was calculated to provide a fairer understanding of model performance. 
While type relaxation (or categorical relaxation, which does not differentiate the 2 AB 

Table 3  An example BiLSTM-CRF run with 80:10:10 data splitting ratio and whole-corpus random 
clustering method

Entity Precision Recall F1 Score Support

Antibody 74 56 63 1164

Antigen 63 60 61 2044

Micro average 66 58 62 3208

Table 4  An example BioBERT run with 70:15:15 splitting ratio and group-wise random clustering 
method

Entity Precision Recall F1 Score Support

Antibody 86.15 90.36 88.20 1576

Antigen 74.60 81.84 78.05 3072

Micro average 78.40 84.72 81.44 4648
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and AG entity types) reached 63.8%, which increased by 2.5% compared to strict F1, 
span (or text boundary) relaxation reached 71.7%, which increased by 10.4% overall. The 
BiLSTM-CRF model achieved 75.4% (14.1% increase) if both criteria were relaxed. The 
improvement trends for AB and AG were parallel to each other and also similar to that 
of the overall (Table 5).

Similar trend was observed for the BioBERT model but with smaller increases in F1 
score (Table 6). The BioBERT model achieved 88.74% (7.77% increase) if both criteria 
were relaxed; the score improvement was about half of that of the BiLSTM-CRF model. 
This can be attributed to the high performance of BioBERT, especially in recall and type 
distinction, that the relax evaluation did not make as much difference.

Discussion
Many antibody databases focus mostly on structure, sequence, specificity, and source of 
antibodies. At the time of our research, ABCD was the only one with all general infor-
mation required for our semi-automatic annotation project (names and synonyms of 
antibodies and their targets, together with the PubMed IDs of articles supporting the 
information) being systematically formatted and readily available. Through PMIDs 
obtained from ABCD, PubMed abstracts were directly retrieved via ezTag. Because 
ezTag supports both approaches: automatic annotation and manual annotation [23], we 
could continue manual editing directly on the results of automatic annotation. Moreo-
ver, with the ability to execute automatic concept tagging via both user-provided lexicon 
and string-pattern matching algorithm [23], this tool well fits the requirements of our 
annotation project and was chosen.

Although full-text articles could possibly provide more training materials and context 
information for NER models to learn from, retrieval issues such as free open access lim-
ited our project to using abstracts for corpus construction. In the future, for ‘open’ full-
text articles under the Creative Commons License Agreement, one can take advantage 
of our ABAG-NER model or other NLP tools such as TeamTat, SpaCy, NLTK, some of 
which also have pre-trained models, to systematically annotate the literature of varied 

Table 5  Relax-match F1 Evaluation for BiLSTM-CRF model with 80:10:10 splitting ratio & whole-
corpus random clustering method

Relax type Strict Type relax Span relax Relax both

Antibody 68.76 70.85 77.58 80.85

Antigen 56.89 59.57 68.20 72.18

Overall 61.34 63.80 71.72 75.44

Table 6  Relax-match F1 Evaluation for BioBERT model with 70:15:15 splitting ratio and group-wise 
random clustering method

Relax type Strict Type relax Span relax Relax both

Antibody 87.57 87.94 92.74 93.54

Antigen 77.65 78.24 85.5 86.33

Overall 80.97 81.48 87.92 88.74
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lengths (abstract or full-text). After constructing a corpus of both full texts and abstracts, 
some parameters of the deep learning model need to be modified or fine-tuned accord-
ingly to adjust for the larger text capacity. Nevertheless, it is noteworthy that training 
models with full text articles do not always guarantee better model performance.

TeamTat (https://​www.​teamt​at.​org/) is a useful tool to semi-automatically annotate 
documents of any length, including full text journal articles and their figure legends 
[24]. TeamTat is a web-based concept tagging tool that is highly similar to ezTag. One 
advanced feature is that besides entity, TeamTat also allows annotation of relations, 
which is useful for future relationship extraction (RE) studies. Another highlight of 
TeamTat is that it facilitates team collaboration where multiple annotators can simulta-
neously but independently annotate or edit the same article [24]. This feature also results 
in inter-annotator agreement statistics for consistency assessment of the corpus, which 
was conducted in our study (Table 1). Despite the outstanding features, due to unknown 
technical issues with annotated output retrieval, we could not use TeamTat for the main 
annotation procedure and proceeded with ezTag instead.

With ezTag, we performed semi-automatic annotation for a balance of efficiency and 
quality. To elaborate, fully manual annotation would require a vast amount of special-
ized knowledge in immunology; experts would have to read through and annotate all 
abstracts from scratch, which is consuming both time and human resources. On the 
other hand, due to the ambiguity of natural languages, fully automatic annotation based 
on string-match algorithms was too rigid and erroneous. Noteworthy errors included 
conflicting tags, abbreviations or measurements mistaken as named entities, and poly-
semous or out-of-lexicon named entities not getting tagged. It is also possible to develop 
a more automatic pipeline in the future, with the advances of various NLP toolkits to be 
incorporated for systematic corrections of common errors. Nonetheless, to construct a 
corpus of the highest quality possible, manual correction is a must to account for cases 
that most programming scripts and tools would miss out. With semi-automatic annota-
tion, the automatic string-matching step highlighted relevant mentions, so annotators 
knew where to focus right from the beginning of the manual annotation task; thus, they 
just needed to read the surrounding context to determine if the mentions were true tags. 
In brief, our procedure of semi-automatic annotation was substantially timesaving and 
did not require as much expert knowledge. More importantly, our ABAG corpus main-
tained its high quality and consistency with the IAA in the ‘almost perfect agreement’ 
score range.

To the best of our knowledge at the time of our study, there has been no corpus on 
antibody and antigen, which explains the need for this corpus construction. Neverthe-
less, since the majority of antigens are proteins, some are chemicals or nucleic acids, 
while some antibodies are also therapeutic drugs, our ABAG corpus actually shared 
noteworthy similarities with corpora on protein-gene (JNLPBA [20], ProGene [22]), on 
nanomedicines, and on pharmacogenomics (PGxCorpus [19], DDI [30]), etc. Regard-
ing the JNLPBA corpus [20], F1 scores were 72.62% for BiLSTM-CRF [31], 73.50% for 
fusion-based Att-BiLSTM-CRF [31], 74.29% for BiLSTM-CRF with ELMo [32], 78.58% 
for CollaboNet [33], which is comprised of multiple BiLSTM-CRF models, and 77.59% 
for BioBERT [14]. For ProGene [22], the overall BioBERT F1 was 80.5%, which was 0.8% 
higher than our BioBERT result; each entity F1 ranged from 35.6 to 84.6%, while our 

https://www.teamtat.org/
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highest was 87.2% for the antibody entity. Noticeably, BiLSTM-CRF based models and 
BioBERT, the two architectures studied in our project, achieved competitive NER per-
formances on these protein-gene corpora.

In comparison with the related corpora, our results of both NER models (62.49% for 
BiLSTM-CRF and 81.44% for BioBERT) were decent for new entities that have not been 
studied before. The models are potential for further application and development, espe-
cially as novel entities: antibody and antigen. Besides, the ABAG-NER model was trained 
in the context of some molecule targeting, binding, or neutralizing some other molecule, 
so it can also be best expanded into text mining for other similar interactions, such as 
drug-target. To expand our pipeline for other targets in future studies, our ABAG-NER 
model can be used for the automatic annotation step, facilitating new corpora construc-
tion; the model is then retrained on the new corpus for the recognition of novel entities. 
Generalizing the recognized entities would be helpful for broader users.

For both models, NER performance for antibody was better than that for antigen, 
which could be owing to that the boundary for AB identification is more structured; 
there are typically more hinted words like “mAb” or “antibody” before or after AB men-
tions, creating clearer context around ABs that makes them easier to be recognized.

When analyzing the error cases on corpus test set as well as 8 out-of-corpus biomedi-
cal texts about antibody-antigen, major errors were generalized into three main causes:

Tagging inconsistency problem

Let consider an abstract sample with common error cases shown in Fig. 5.
We can see from Fig.  5 that the main error type, in this case, was FNs. The 2 anti-

gen names: ABCC6 and hABCC6 (abbreviation of human ABCC6), and 1 antibody 
name “mEChC6” appeared several times, but half of the times their mentions were not 
tagged by the BiLSTM-CRF model. This is called tagging inconsistency problem. In this 
abstract, the mentions with surrounding keywords like “epitope of” or “recognizes” were 
tagged, while ones further away were not, probably due to fade of context clues. This 
problem caused a low recall rate.

On the contrary, the BioBERT model achieved relatively high recall scores; error anal-
ysis also validated that BioBERT mitigated the tagging inconsistency problem faced by 

Fig. 5  An example of tagging errors by the BiLSTM-CRF model in comparison with the ground truth
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BiLSTM-CRF, thus producing better coverage of name mentions (BioBERT model cor-
rectly recognized all ABAG names in the abstract in Fig. 5).

Span mismatch

Span mismatch is when the tag predicted by a NER model has overlapping text but does 
not exactly match with the ground-truth annotation. An example of span mismatch can 
be seen in the above example (Fig. 5), where the model recognized “ABCC6” instead of 
“human ABCC6”. As indicated in our annotation guidelines, we decided to include extra 
important information for the ABAG such as species, year, location, strain, etc. along 
with ABAG names as one long mention. Nevertheless, the NER model sometimes failed 
to tag this information along with the entity names, possibly due to lack of such occa-
sions/examples in the corpus to learn from.

On the contrary, in cases of antibody-drug conjugate (ADC), such as “hBU12-vcM-
MAE” (in the example in Fig. 6), where hBU12 is an AB and vcMMAE is the conjugated 
drug linker, we decided to annotate only the antibody part, which is “hBU12” instead 
of “hBU12-vcMMAE”. Unfortunately, many ADCs have their whole name formats simi-
lar to a typical antibody name, which confuses the model to annotate both parts like 
“hBU12-vcMMAE” as a whole tag (as illustrated in Fig.  6), leading to span-mismatch 
error.

Another major source of confusion comes from elliptical coordinated compound noun 
phrases with special characters (e.g., “ + ”, “−”, “/”, “.” and brackets), and/or conjunction 
words (“and”, “or”) in between their names. For example, “interleukin (IL)-12”, “IgG 24 
and 30”, or “TGF-beta1, 2, and 3” are such confusing AG names, of which annotation 
could be several tags separated by the conjunctions or just one single tag of the whole 
phrase.

However, these span mismatch errors actually have a minor effect on the mean-
ing conveyed by the annotations; the basic information of ABAG is still delivered. For 
this reason, our report of relax-match scoring accounted for this slight difference, or 
also known as soft agreement. In span-relax match, the NER F1 increased by over 10% 
to achieve 71.7% for the BiLSTM-CRF model (Table  5) and increased by about 7% to 
achieve 87.92% for the BioBERT model (Table 6).

Corpus annotation inconsistency

Despite high IAA, there existed annotation inconsistency in our corpus for vastly ambig-
uous cases. An example is demonstrated in Fig. 7.

This excerpt is from a doubly annotated abstract. The two annotators agreed to tag “E 
protein” as AG but disagreed on the domain name. A rigid rule could not be established 
to decide the annotation for such names or cases as they differ based on their contexts. 

Fig. 6  An example of span mismatch by the BiLSTM-CRF model in comparison with the ground truth
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For AB, the main confusion lies in their name formats since there’s no specific or con-
sistent rule for naming antibody in published literature; many names are just numbers 
or abbreviations that are easily confused with measurements, cell lines, or gene muta-
tions. For AG, some names of target domain, site, or virus may be AGs in some context 
but may be considered either too specific or not specific enough to be tagged as AGs 
in other contexts. This was why annotators faced inconsistency problems during the 
manual annotation task, which unfortunately caused confusion in the learning of NER 
models. As expected, inconsistent annotations occurred mostly at the beginning of the 
annotation process. As we proceeded, confusing cases (over 100 abstracts in total) were 
discussed weekly and agreeably solved together by all three annotators. Through this 
process, potential sources that might lead to disagreement were also realized and the 
annotation guideline was updated accordingly to improve the stringency of the tagging 
rules for higher consistency. Ultimately, the Inter-Annotator Agreement score ranging 
from 91.46 to 94.31% implied that inconsistently annotated cases accounted for a small 
percent of the final corpus. For future studies, provided time and human resource availa-
bility, we suggest revising the corpus for another one or more rounds of annotation with 
our latest set of rules (most stringent annotation guideline).

In our study, there were no situations where the BiLSTM-CRF performed better. The 
BioBERT-based model outperformed the BiLSTM-CRF-based model (with approxi-
mately 20% higher in F1 score for both ABAG entities). However, in some other situ-
ations [34], LSTM could perform better than BERT. Noticeably, in our ABAG-NER 
study, BioBERT had better coverage (or higher sensitivity), which was best explained by 
the fact that it mitigated the tagging inconsistency problem faced by BiLSTM-CRF. In 
other words, if an AB/AG name appears multiple times in an abstract, BioBERT would 
likely recognize the instances where BiLSTM-CRF might miss. The distinction can best 
be attributed to three main reasons. First, the attention mechanism of a transformer 
advances BioBERT in handling long-term dependencies for consistent labeling across 
multiple occurrences of the same entity [35]. Second, BioBERT was pre-trained on two 
large biomedical corpora for better biomedicine-specific word representations [14]. 
Third, the word-piece tokenization used in BERT has advantages in recognizing unfa-
miliar words (novel entities) by splitting them into smaller known tokens and providing 
meaningfully context-specific representation for each [35]. In brief, the BioBERT-based 
model is recommended for ABAG-NER tasks.

With its promising performance, the BioBERT model (https://​github.​com/​Trang​
Dinh44/​ABAG_​BioBE​RT.​git) can be further developed into a text mining tool. As emer-
gent databases are providing more relevant antibody-antigen articles, one can use this 
tool to constantly and automatically annotate and extract AB/AG names from these 
newly published articles. The extracted information and annotated articles can serve 2 
purposes. First, the recognized AB/AG names from these articles (if novel) can be used 

Fig. 7  An example of corpus annotation inconsistency between two annotators

https://github.com/TrangDinh44/ABAG_BioBERT.git
https://github.com/TrangDinh44/ABAG_BioBERT.git
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to update many relevant databases, where users can look up potential cross-reacted tar-
gets of a novel AB or search for new ABs targeting a certain AG. Second, the automat-
ically annotated articles can be revised manually and added onto our current corpus. 
With high-quality ABAG-NER performance (F1 = 81.44%), the manual editing should be 
much faster and easier with less erroneous tags. This expanded corpus can be used to 
retrain the ABAG-NER models. Theoretically, increasing corpus size with more diverse 
examples is beneficial for the model to learn from, which would ultimately enhance its 
performance. This strategy works as an interactive learning cycle.

To demonstrate a specific use case for the tool, we queried PubMed with the keyword 
“monoclonal antibody therapy” for this topic is rapidly growing in terms of demand and 
application. In 2022 only, 9,518 articles with available abstracts were published. After 
performing NER on these abstracts, a total of 27,603 AB/AG mentions were recognized. 
This is a quick and automated process to extract the latest data to update databases 
about monoclonal antibodies or therapeutic antibodies. A specific result for the AG 
“Omicron” demonstrated that Omicron was co-mentioned with 60 different antibod-
ies across 36 abstracts, including Sotrovimab (14 abstracts), Casirivimab (8 abstracts), 
and Imdevimab (7 abstracts) as the topmost frequent co-mentions (Table  7). Besides 
the well-studied antibodies, results also included novel compounds of high therapeutic 
potential from latest preclinical data (e.g., IMM-BCP-01 antibody cocktail) or compu-
tational discoveries (e.g., AKS01-05 against the Spike protein of Omicron). Supporting 
abstracts are annotated, and potentially ranked by ABAG name relevancy, frequency, or 
users’ feedback, so users can pinpoint a list of relevant studies regarding anti-Omicron 
antibodies they can explore more or follow up.

Sixty different antibodies were co-mentioned with “Omicron” in 36 abstracts. The 
antibodies were arranged by the number of abstracts they appeared in (in descending 
order).

Lately, a rising fusion architecture of Att-BiLSTM-CRF, introduced by Luo et  al. in 
2018, which leverages an attention mechanism to pay special attention to a similar entity 
mentioned multiple times throughout the whole document, has been shown to effec-
tively alleviate this tagging inconsistency problem [36]. Suggestion for future studies is 
to combine the attention layer with our BiLSTM-CRF for sufficient capture of multi-
mentioned entity names and a significant decline in FN errors. Future research can also 
focus on model improvement by combining BiLSTM-CRF with SOTA pre-trained bio-
medical word-embedding models (such as BioBERT). Besides, further development for 
corpus can include annotating AB-AG relations and/or more specific entities, like types 
of antibodies, nanobody, paratope and epitope, etc.

Conclusions
We established and annotated an Antibody-Antigen corpus consisting of 3210 abstracts. 
With this corpus, we developed and optimized two baseline models—BiLSTM-CRF and 
BioBERT—specialized for NER tasks on AB and AG domains. F1 scores of the models 
are 62.49% and 81.44%, respectively, which demonstrated potential for further devel-
opment on the two novel entities and possibly their relation. The application of these 
SOTA models in building an ABAG-NER tool kit would help users automatically extract 
central information about ABs and AGs from biomedical literature.
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Table 7  A use case study demonstrating NER-extracted antibodies against Omicron from relevant 
abstracts

Antibodies Number of 
supporting 
abstracts

SOTROVIMAB 14

CASIRIVIMAB 8

IMDEVIMAB 7

TIXAGEVIMAB 4

CILGAVIMAB 4

ETESEVIMAB 3

AZD1061 3

BAMLANIVIMAB 3

BEBTELOVIMAB 3

EVUSHELD 3

CT-P59 2

VIR-7831 2

S2K146 2

BNT162B2 2

REGDANVIMAB 1

IMDEVIMA 1

CASIVIRIMAB 1

AZD8895 1

COV2-2196 1

COV2-2130 1

LY-COV016 1

LY-COV555 1

REGN10987 1

REGENERON 1

REGN10933 1

S309 1

RONAPREVE 1

ADINTREVIMAB 1

S2H97 1

S2X259 1

ZF2001 1

S304 1

AKS-05 1

AKS-03 1

AKS-01 1

AKS-04 1

AKS-02 1

OCRELIZUMAB 1

P5C3 1

P2G3 1

ZWD12 1

P2B-2F6 1

CB6 1

REGN 1

B38 1

P2B2F6 1

CR3022 1
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Abbreviations
AB		�  Antibody (as a named entity)
ABAG		�  Antibody and/or antigen (as named entities)
ABCD		�  Antibodies chemically defined
ADC		�  Antibody-drug conjugate
AG		�  Antigen (as a named entity)
Att-BiLSTM-CRF	� Attention-based BiLSTM-CRF
BERT		�  Bidirectional encoder representations from transformers
Bi-LSTM		�  Bidirectional long-short term memory
BioNER		�  Biomedical named entity recognition
BioNLP		�  Biomedical natural language processing
BioBERT		�  Biomedical bidirectional encoder representations from transformers
CNN		�  Convolutional neural network
CRF		�  Conditional random fields
FN		�  False negative
FP		�  False positive
IAA		�  Inter-annotator agreement
IOB		�  Inside, outside, begin
NCBI		�  National Center for Biotechnology Information
NER		�  Named entity recognition
NLP		�  Natural language processing
LSTM		�  Long-short term memory
P		�  Precision
PMID		�  PubMed identifier
R		�  Recall
RAM		�  Random access memory
RNN		�  Recurrent neural network
SOTA		�  State-of-the-art
TP		�  True positive
XML		�  Extensible markup language
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