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Background
The CRISPR-Cas9 system is a powerful tool for genetic engineering that can be pro-
grammed to target specific regions of a given genome [1–3]. CRISPR can be used to 
modify genomes for applications as varied as pathway analysis [4], drug screens [5], and 
gene therapy [6, 7]. The versatility of the technology comes from the programmabil-
ity of the single guide RNA (sgRNA, or gRNA), an RNA sequence approximately 100 
nucleotides (nt) long comprised of a spacer sequence of 20 nt and a scaffold sequence 
of approximately 80 nt. The spacer sequence can be engineered to match a 20 nt tar-
get DNA sequence in an organism of interest and designates where Cas9 will cut the 
genome. These 20 nt target regions must be followed by a short pattern in the target 
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genome, typically 2–6 nucleotides long depending on the CRISPR-Cas system used, 
known as a protospacer adjacent motif (PAM). In the CRISPR-Cas9 system, the PAM is 
a 3 nt sequence, NGG, where N designates any of the 4 DNA nucleotides. Thus, genomic 
regions targeted for cleavage using the CRISPR-Cas9 system typically follow the pattern 
5’-N20-NGG-3’, where the 20-nucleotide sequence specified by N20 is used to create a 
matching sgRNA and the NGG designates the typical 3-nucleotide PAM sequence used 
by Cas9.

In recent years, a variety of models have been created for the prediction of sgRNA on-
target efficiency. Features are typically generated through one-hot encoding of sgRNA 
target region nucleotides and dinucleotides, obtaining k-mer counts for those regions, 
and through the generation of features based on thermodynamic and epigenetic proper-
ties of the sgRNAs and target regions. Model architecture choices are varied and have 
included linear regression [8, 9], binomial regression [8], SVMs [10–12], elastic net [13], 
boosted regression trees [14, 15], Bayesian ridge regression [16], multi-step models 
[17–19], convolutional neural networks (CNN) [20–23], and recurrent neural networks 
(RNN) [24].

A review by Haeussler et al. [25] compared the performance of various CRISPR pre-
diction algorithms and found that cross-dataset performance strongly depended on 
whether sgRNAs were produced within cells via a U6 promoter or in vitro via a T7 pro-
moter and then injected. Furthermore, a recent study evaluated eight regression mod-
els by training them on five different CRISPR screen datasets from different species and 
evaluating their performance on their own test sets and that of the other species [16]. 
The authors selected the best model for each species for evaluation on the other spe-
cies’ datasets. They showed that the best model varied across datasets; the best models 
included random forests, the lasso, gradient boosted regression trees, and Bayesian ridge 
regression.

While deep learning-based approaches achieve considerable success on this problem, 
they often lack interpretability—insights into how specific predictions were made. In 
many areas of application, but particularly in health-adjacent fields, the use of black-box 
models without insights into their decision-making process can limit their trustworthi-
ness and hence, further adoption and use of machine learning [26]. In contrast, methods 
based on conventional statistical or machine learning methods, often shown to have less 
competitive performance, are continuing to be explored for their interpretable prop-
erties. For example, in one recent study, Konstantakos and coauthors [8] developed a 
prediction tool based on binomial and linear regression, CRISPRedict, which achieves 
competitive performance compared to other recent tools, but with the added benefit of 
model explainability and interpretable predictions. In this paper, we contribute a novel 
tool termed BoostMEC for CRISPR efficiency prediction. We show that BoostMEC fea-
tures prediction interpretation capabilities while achieving state-of-the-art performance.

Results
Data

Our training data is derived from sgRNA efficiency datasets from two studies: Kim 
et  al. [21] and Xiang et  al. [22], which we combined in the same manner that Xiang 
et al. outlined for the training of their prediction tool CRISPRon. Both studies produced 
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high-throughput sgRNA efficiency data for HEK293T cells, a human kidney cell line, 
using sgRNA and synthetic target region pairs that were delivered via lentivirus. Lenti-
viral integration of the expanded target region reduces the impact of chromatin acces-
sibility on measured CRISPR activity, hence the indel rates produced by these screens 
can better reveal how sgRNA efficiency is impacted by sequence features [24, 27–29]. 
From Kim et  al. [21], we combined the HT_Cas9_Train and HT_Cas9_Test datasets, 
which contained 12,832 and 542 sgRNAs, respectively, to produce one dataset with 
13,359 sgRNAs after averaging duplicates between the datasets. From Xiang et al. [22], 
we followed the processing steps specified in the paper including selecting sgRNAs with 
at least 200 reads from their Day 8 and Day 10 doxycycline-negative datasets and averag-
ing the intersection to obtain 10,592 unique sgRNAs. We found 49 overlapping sgRNAs 
between the Kim and Xiang datasets and utilized linear regression on this set of sgRNAs 
to produce a normalization model to adjust the Xiang data to the scale of the Kim data. 
We then combined the Kim and rescaled Xiang datasets into one large training dataset 
composed of 23,902 unique sgRNAs (the efficiency value was averaged for guides shared 
between the datasets as was done in Xiang et al. [22]) which is to be termed the Kim-
Xiang dataset henceforth.

Overall model performance

We tuned the LightGBM hyperparameters for BoostMEC using tenfold cross-validation 
and Bayesian hyperparameter optimization (Methods). To quantify model performance, 
we follow most existing work by using Spearman correlation, keeping the ranking nature 
of the task in focus, and accounting for the non-linearity commonly observed in pre-
dicted efficiency scores (Figure S1 in Additional File 1). The final parameter configura-
tion achieved an average Spearman correlation of 0.78 on the validation folds, and the 
full Kim-Xiang dataset was used to train the final BoostMEC model. To assess the per-
formance of BoostMEC more rigorously, we selected 13 external test datasets adapted 
from the repository for the study by Haeussler et  al. [25] (https:// github. com/ maxim 
ilianh/ crisp orPap er; the repository datasets are named in parentheses below for con-
venience of discussion). These datasets include U6 promoter CRISPR efficiency datasets 
created from HL60 cells (xu2015TrainHl60) [12, 13], KBM-7 cells (xu2015TrainKbm7) 
[12, 13], HEK293T cells (chari2015Train293T) [10], HeLa cells (hart2016-HelaLib1Avg 
and hart2016-HelaLib2Avg) [30], HCT116 cells (hart2016-Hct1162lib1Avg) [30], 
RPE-1 cells (hart2016-Rpe1Avg) [30], a dataset derived from MOLM13, NB4 and TF1 
cells (doench2014-Hs) [31], EL4 cells (doench2014-Mm) [31], and A375 cells (doen-
ch2016azd_hg19) [14, 15]. Also included were three T7 promoter CRISPR efficiency 
datasets created from zebrafish embryos (morenoMateos2015, gagnon2014, varsh-
ney2015) [9, 32, 33]. Note that for xu2015TrainHl60 and xu2015TrainKbm7, efficiency 
was measured via log2 fold change in negative selection screens (lower values indicate 
stronger efficiency); hence, we reversed the reported efficiency scores during model 
evaluation for consistency with the other datasets.

We compared BoostMEC with 10 other competing models, including CRISPRon 
(CNN) [22], CRISPRedict (2 separate linear models, each optimized for U6 or T7 pro-
moters) [8], DeepSpCas9 (CNN) [21], Azimuth (boosted regression trees) [14, 15], and 
others [9, 10, 12, 13, 31, 34] utilized in Haeussler et al. [25]. Predictions for CRISPRon, 

https://github.com/maximilianh/crisporPaper
https://github.com/maximilianh/crisporPaper
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CRISPRedict, and DeepSpCas9 were obtained by utilizing the software made avail-
able by the authors of each study. All other predictions were adapted from the study 
by Haeussler et  al. [25]. We will focus more on the comparison between BoostMEC 
and more recent approaches including CRISPRon, DeepSpCas9, and CRISPRedict, as 
they have been shown to have the most competitive performance. For more rigor, we 
removed the sgRNAs in these test datasets if they overlapped with the combined Kim-
Xiang training dataset, which was used in part or whole for the training of BoostMEC, 
CRISPRon, DeepSpCas9, and CRISPRedict (CRISPRedict also used data from Moreno-
Mateos et al. [9] for training their T7 model). The results are presented in Fig. 1.

Among the 11 methods, CRISPRon, BoostMEC, DeepSpCas9, and CRISPRedict show 
pronouncedly better performance than the rest. Among these four, CRISPRon is the 
overall winner and achieved the highest nominal Spearman correlation in 9 test datasets, 
whereas BoostMEC, CRISPRedict and DeepSpCas9 excelled in 3, 1 and 0, respectively. 
It should be noted that CRISPRedict has two variants, one trained on U6 promoter data, 
and the other separately trained on T7 promoter data. Thus, its relatively stronger per-
formance in T7 promoter data is not surprising compared to BoostMEC, CRISPRon 
and DeepSpCas9, as the latter three were all trained based on U6 promoter data. To test 
whether the observed differences are significant, we performed pairwise Steiger’s tests 
on the Spearman correlation values between BoostMEC and the other three methods 

Fig. 1 Comparison of model performance, measured through Spearman correlation, for 11 CRISPR‑Cas9 
cleavage efficiency prediction methods. Under comparison are the proposed method BoostMEC and other 
10 methods, among which, predictions for CRISPRon, CRISPRedict, and DeepSpCas9 were obtained by 
utilizing the software made available by the authors of each study, and the rest were adapted from the study 
by Haeussler et al. [25]. The details of the 13 external datasets were described in the text. Cells grayed out 
indicate that dataset was used in the training of that method, and thus not included in the comparison. Cells 
with bold figures indicate that method achieved maximum nominal Spearman correlation among the 11 
methods for that external dataset under testing
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using the psych R package; the results are presented in Fig.  2. The Spearman correla-
tion of CRISPRon is significantly higher than BoostMEC at the 0.05 significance level 
in three datasets, namely: doench2016azd_hg19 (Spearman correlation 0.44 vs. 0.41, 
p-value = 0.010), xu2015TrainHl60 (0.61 vs. 0.60, p-value = 0.016), and morenoM-
ateos2015 (0.20 vs 0.18 p-value = 0.039), while BoostMEC surpasses CRISPRon in none. 
BoostMEC significantly outperforms DeepSpCas9 in 7 out of 13, and CRISPRedict in 9 
out of the 12 external test datasets, respectively, while neither of the latter two surpass 
BoostMEC at the 0.05 significance level (note: morenoMateos2015 was used in train-
ing of CRISPRedict, thus it is not included in the comparison between BoostMEC and 
CRISPRedict). In summary, we conclude BoostMEC achieves the state-of-the-art pre-
diction accuracy of CRISPR-Cas9 cleavage efficiency.

Feature importance in cleavage efficiency

Our features are all derived from expanded 30-mer target region sequences from the 
Kim-Xiang dataset, consisting of the 4 nt region upstream of the sgRNA, the 20 nt 
sgRNA-matching sequence, the 3 nt PAM, and the 3 nt region downstream of the PAM. 
In our early modeling work, we observed high feature importance values for the num-
ber of Ts, TTs, and TTTs across the 30-mer sequence. It has been reported that even 
poly-T sequences of length 3 are associated with decreased sgRNA activity [34–36]. We 
investigated the presence of poly-T sequences in the Kim-Xiang dataset and found 3,561 
guides with a maximum poly-T length of 3 nt (TTT) and 1,276 guides with a poly-T 
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Fig. 2 Significance test of performance difference between BoostMEC and CRISPRon, DeepSpCas9, and 
CRISPRedict. Each bar represents the Spearman correlation obtained in the 13 external testing datasets 
for the four methods. Pairwise Steiger’s tests were performed for BoostMEC with CRISPRon, DeepSpCas9, 
and CRISPRedict. Asterisks on top of the bars of CRISPRon, DeepSpCas9, and CRISPRedict indicate the test 
significance of the p‑value (*: p‑value < 0.05, **: p‑value < 0.005 and ***: p‑value < 0.0005). Red asterisks 
indicate the Spearman correlation from the method under consideration is significantly higher than 
BoostMEC whereas black asterisks indicate the opposite. Note: The morenoMateos2015 dataset was used in 
the training of CRISPRedict, thus it was dropped in the comparison between BoostMEC and CRISPRedict
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sequence of length 4 or greater, with the longest sequence spanning 25 nt. We compare 
the cleavage efficiency of these three groups in Fig. 3, finding statistically significant dif-
ferences between sgRNAs without these poly-T sequences (mean efficiency score 45.1) 
and the TTT and TTT + groups (mean efficiency scores 34.8 and 20.5, respectively, all 
pairwise p-values < 2 ×  10–16), further supporting the hypothesis that RNA Pol III termi-
nation can occur with the presence of poly-T sequences of length 3. These results and 
one reviewer’s feedback prompted the inclusion of another set of sequenced-based fea-
tures in our model: the number of poly-T sequences (contiguous stretches of 3 or more 
Ts) and length of the longest poly-T segment in the target region 30-mers.

To investigate the role of each feature in BoostMEC, we computed the feature 
importance values. Each is characterized as the total gain, or improvement on the 
LightGBM objective function contributed by the given feature, which we further nor-
malize to provide the proportion of gain contributed by each feature (the sum of all fea-
ture importance values adds up to 1). BoostMEC contains a total of 149 sequence or 
sequence-derived features (see Methods). The top 20 features are shown in Fig. 4, and 
the full list of feature importance values is available in Supplementary Table S1 (Addi-
tional File 1). In plots produced by BoostMEC, we denote position-specific mono and 
di-nucleotide k-mers by their position relative to the start of the combined sgRNA and 
PAM region; therefore, the positions of the region upstream of the sgRNA are indexed 
as −4 to −1, the sgRNA + PAM correspond to positions 1 through 23, and the region 
downstream of the PAM corresponds to positions + 1 to + 3. Furthermore, note that 
LightGBM allows direct use of categorical features without one-hot-encoding, therefore 
all position-specific mononucleotides and dinucleotides are only characterized by their 
position in the feature importance table.

Within the top 20 features ranked by importance, we observed position-specific 
features for positions 10 through + 1 and 1 through 3 of the sgRNA and surrounding 
expanded target region. Among those position-specific features, the highest ranked were 
concentrated on the 3’ end of the sgRNA and the first nucleotide of the PAM, including 

Fig. 3 Comparison of observed CRISPR‑Cas9 cleavage efficiency between sgRNAs with and without poly‑T. 
From the combined Kim‑Xiang training data, we identified 3,561 guides with a maximum poly‑T length of 3 
nt (TTT) and 1,276 guides with a poly‑T sequence of length 4 or greater (TTTT +), with the longest sequence 
spanning 25 nt. The box plots present the distribution of the observed cleavage efficiency in the three 
groups and the statistical significance in pairwise comparisons from two‑sample t‑tests
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dinucleotide type at positions 19, 18, 17, and 20 (Fig. 4), consistent with findings from 
other studies [13, 24, 31]. Other features in the top 20 include 2 out of 4 melting temper-
ature features, sgRNA free energy, and a number of poly-T-related features: number of 
TTs, maximum poly-T length, and number of poly-T segments in the 30-mer sequence. 
Melting temperature has previously been found to be a strong feature in feature impor-
tance investigations [14, 15, 18]. On the other hand, free energy has sometimes been 
found to be a useful discriminator in some studies [34], and not in others [9]. Interest-
ingly, our feature importance results differ from those obtained by an alternative model 
created by Xiang et al. [22] trained using gradient boosting regression trees on the same 
training data sources; this is discussed further in the Discussion section.

Model interpretation

The versatility of the LightGBM software package enables BoostMEC to produce a 
number of different visualizations that can aid in interpreting both the overall model 
and individual predictions. In addition to the standard feature importance values 
and plot previously discussed (Fig. 4 and Table S1 in Additional File 1), BoostMEC 
can provide more granular insights into its decisions by plotting out its component 
regression trees. As BoostMEC relies on gradient boosting, it consists of a sequence 
of regression trees. In Fig. 5, we show the first 2 regression trees of the model, up 
to a depth of 3 (manually edited to reduce tree width for illustration purposes; the 
full trees produced by the software are available in Additional Files 2 and 3). In the 
first tree, each node contains an “internal value,” which equals the mean of the group 
before that specific split (under the mean squared error loss function used here), or 
the value that would be assigned to a prediction should it stop at that node. When 
the tree stops growing, the end nodes become leaves. Thus, the internal value at the 
root node equals the grand mean of the efficiency scores of all sgRNA in the train-
ing data. At the start of subsequent trees, the residuals from previous aggregated 

Fig. 4 Feature importance chart for BoostMEC. The top 20 features for BoostMEC are listed in descending 
order of importance, showing the percentage gain contributed by all tree splits for each feature in the 
minimization of the LightGBM cost function under mean squared error loss
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tree models are used in the response for tree construction, and thus the root nodes 
always have an internal value of 0 under the mean squared error loss function.

In the root of the first tree, displayed in Fig.  5A, the importance of the 3’ end of 
the sgRNA and the first nucleotide of the NGG PAM region is immediately visible, 
with the model assigning a higher efficiency to sgRNAs with either a G in position 20, 
or AC and AG starting at position 20. LightGBM’s grouping strategy for categorical 
variables allows this initial split point to be highly informative and more interpretable 
than a series of binary splits, showing how a nucleotide and a subset of dinucleotides 
can be grouped together in a decision for the model.

In the second tree, shown in Fig.  5B, the dinucleotide at position 19 (di19), the 
most important overall feature as shown in Fig. 4, dictates the first split at the root 
node, followed by other prominent features such as dinucleotide at position 18 (di18), 
number of Ts in the 30-mer, and melting temperature for positions 1–21 (Tm1). The 
feature importance in Fig. 4 represents the proportion of error reduction in the Light-
GBM cost function due to all the splits contributed by a feature over all trees in the 
model.

di 20 = AC||AG||GA||GC||GG||GT
internal_value: 42.216

tm1 ≤ 47.521
internal_value: 42.303

mono 19 = C||G
internal_value: 42.172

leaf 0:
42.094

tm1 ≤ 73.431
internal_value: 42.311

di 17 = TA||TT
internal_value: 42.212

di 17 = AC||CC||CG||GC||GG||TG
internal_value: 42.109

yes no

yes no yes no

A

di 19 = AG||CA||CG||GA||GG||GT||TG
internal_value: 0.000

T≤ 9.500
internal_value: 0.077

di 18 = AA||AT||TA||TT
internal_value: -0.064

tm1 ≤ 73.431
internal_value: 0.089

tm1 ≤ 47.521
internal_value: -0.044

T≤ 9.500
internal_value: -0.185

T≤ 9.500
internal_value: -0.028

B

Tree index=0

Tree index=1

yes

yes yes

no

no no

Fig. 5 Schematic plot of regression trees from BoostMEC. BoostMEC consists of many sequencing trees. 
Plotted are the first (tree index = 0) and second (index = 1) regression trees from BoostMEC, truncated at 
depth = 3 for illustration purposes, i.e., only the branches/leaves in the first three hierarchical levels from 
the root are shown. The first tree plotted in A starts with the grand mean of the efficiency score (internal_
value = 42.216) and splits based on whether the dinucleotide at position 20 is one of several values (di 
20 = AC||AG||GA||GC||GG||GT) and so forth. The internal_value at each node represents the mean within 
each branch under the mean squared error loss function. An oval shape represents an end node whereas a 
rectangle represents an intermediate node that grows further. The second tree in B is constructed based on 
the residual values resulting from the first tree model (mean residual or internal_value = 0) and splits based 
on di19 and so forth. The full tree for 6A is available in Additional File 2, and the full tree for 6B is available in 
Additional File 3
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Prediction interpretation

For insights into the workings of specific predictions, BoostMEC also supports the gen-
eration of "interpretation plots" through LightGBM’s interprete function. These plots 
can highlight the total contributions, either positive or negative, that different features 
had for a specific prediction value. In Fig. 6, we exemplify this by showing the interpreta-
tion plots for two specific sequences, illustrating how individual sequence features con-
tribute to the predicted efficiency. The first sequence, originating from doench2014-Hs, 
is GTCT-GCC ATC TCT GAT GGA TGT GA-TGG-GCA (dashes separating the upstream 
region in positions -4 to -1, the sgRNA spacer region in positions 1–20, PAM posi-
tions 21–23, and downstream region + 1 to + 3) and the interpretation plot is shown in 
Fig. 6A. The second sequence, GGGG-GGA CTG TAT CGA CGC TGA AT-TGG-GGG, is 
from morenoMateos2015 with the interpretation plot shown in Fig. 6B. The interpreta-
tion plots in Fig. 6 show the top 10 features that contribute to the predicted efficiency 
score for each sequence (the full set of sequence feature contributions can be found in 
Supplementary Tables S2 and S3 in Additional File 1). The predicted efficiency scores, 
49.53 and 28.42 respectively, equal the sum of all feature contributions and the root 
node value for the first tree in the model (42.2156, the grand mean of the training data). 
These feature contributions provide a clear picture into how sequence features can dra-
matically impact sgRNA cleavage efficiency. For example, the dinucleotide at position 
19 (di19), GA, AT in the two cases respectively, again shows up as the first and second 
important feature in the two cases, but impacting the efficiency score in opposite ways 
(scores are 3.98 vs. -4.2), as does another top feature di18 (TG vs. AA with scores 1.76 vs. 
-6.66). It should be noted that the contribution score for a given feature is an aggregated 
score from all the trees in BoostMEC. For the same sequence feature, its contribution in 
different sgRNAs may be different as it also depends on other features and the splits they 
cause in the component trees.

Fig. 6 Feature contributions for individual sgRNA efficiency predictions. Two examples, A and B, show 
how the predicted efficiency scores were obtained under BoostMEC, using plots generated by LightGBM’s 
interprete function. The sequence for A comes from the doench2014‑Hs dataset, and B’s sequence comes 
from the morenoMateos2015 dataset. In both examples, only the contributions of the top 10 features are 
plotted; the full sets of feature contribution values are available in Supplementary Tables S2 and S3. The 
predicted efficiency scores for these sequences are 49.5 and 28.4, respectively, and equal the grand mean of 
the efficiency score in the training data (42.2156) plus the sum of the individual feature contribution values 
for each sgRNA
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Discussion
BoostMEC is a novel approach for predicting CRISPR-Cas9 cleavage efficiency, based on 
a LightGBM learner trained on carefully constructed features. Most existing sgRNA effi-
ciency models rely on one-hot encoding to capture position-specific nucleotide features, 
resulting in a steep increase in feature dimensions when encoding high-order nucleo-
tides. BoostMEC, however, relies on LightGBM’s ability to directly encode these features 
as categorical variables. Instead, by creating a sorted histogram for each categorical 
variable, LightGBM can create efficient splits without constructing deep trees [37]. As 
with the global feature importance, LightGBM’s holistic handling of categorical variables 
allows for splits focused on different position-specific mono and di-nucleotides to be 
grouped together when evaluating impact, allowing for a more comprehensive under-
standing of the overall importance of each position across the target region, as opposed 
to importance computed through one-hot encoding.

We note that there are some interesting differences in the feature importance results 
for BoostMEC and those obtained by Xiang et al. [22] for their alternate CRISPR effi-
ciency prediction model, CRISPRon-GBRT_v1, which, unlike CRISPRon, was trained 
using gradient boosting regression trees (see Supplementary Note 6 and Supplementary 
Fig. 12 in [22]). There was a general consensus between the models in terms of the gen-
eral importance of position-specific sequence values on the 3’ end of the sgRNA, the 
importance of the 1st nucleotide of the sgRNA, and the strength of the number of TT in 
the 30-mer region. Nevertheless, compared to BoostMEC, CRISPRon-GBRT_v1 places a 
much heavier relative importance on thermodynamic features, such as their gRNA-DNA 
binding energy feature ∆GB (not used in BoostMEC), melting temperature features, and 
gRNA free energy, as opposed to sequence-based features. Furthermore, for BoostMEC, 
every position-specific feature in the top 20 was dinucleotide-based, as opposed to 
CRISPRon-GBRT_v1, which provided (one-hot encoded) a mixed set of mono and dinu-
cleotide position-specific features in its top 20. It is possible that these differences may 
be due at least in part to how each of these models handles sequence features. One addi-
tional difference of note is that only BoostMEC computed the maximum poly-T length 
and number of poly-T segments, which were also present in the top 20 features for the 
model.

One advantage of BoostMEC over neural network models is the interpretability of 
the model, which can be elucidated by feature importance analysis, as well as by addi-
tional interpretability tools, such as tree visualizations and LightGBM’s interprete func-
tion. These representations allow for further scrutiny of the factors influencing a specific 
sgRNA’s efficiency or lack thereof. Nevertheless, we acknowledge that there are limits 
to BoostMEC’s interpretability due to the large number of trees in the model, as well as 
their depth, both of which add complexity to the model compared to conventional sta-
tistical models such as linear regression or generalized linear models. Future research to 
reduce model complexity is needed for improving interpretability.

Like many other methods, BoostMEC has been developed and tested for editing in U6 
and T7 promoter environments using wild-type CRISPR-Cas9, and utilizes information 
from expanded 30 nt target DNA regions. We found sequence features outside the 20 nt 
target and PAM region also play important roles. Most pronouncedly, the dinucleotide 
at position + 1 (di + 1, the first dinucleotide after the PAM site), di -1 (the dinucleotide 
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consisting of the first nucleotide immediately upstream of the 20-mer target and the 
first nucleotide of the target), di + 2, di −2, di −3 and di −4 ranked as the 15th, 27th, 
29th, 31st, 32nd and 33rd most important features in the list (Fig.  4 and Supplemen-
tary Table S1 in Additional File 1). Considering the attenuating trend of importance as 
sequence features get farther away from the seed region, we did not try training Boost-
MEC with more expanded lengths. Furthermore, BoostMEC has not been tested on 
other CRISPR systems, such as Cpf1, or on data utilizing other promoter variants, such 
as U3, nor for non-animal cell types. Future studies and tests are needed to expand the 
applicability to such variant systems.

Conclusion
In conclusion, our novel method for the prediction of CRISPR-Cas9 efficiency, Boost-
MEC, can serve as a powerful and reliable tool for the design and selection of CRISPR-
Cas9 sgRNAs in both U6 and T7 promoter environments. Relying on informed feature 
engineering and boosting (a more conventional machine learning approach as opposed 
to deep learning), BoostMEC can offer a more informative model showing explicit 
feature importance as well as more interpretable prediction for any individual sgRNA 
sequence.

Methods
Feature construction

We used two main types of features in the construction of BoostMEC that are all gen-
erated from either the expanded target region 30-mer sequence (4 nt context in the 5’ 
end + 20 nt sgRNA + 3 nt PAM + 3 nt context in the 3’ end) or the 20 nt sgRNA itself. 
The first category includes the GC content, the frequency of k-mers (for k = 1, 2, 3) in 
the entire 30 nt expanded target region (4, 16, and 64 features, respectively), the num-
ber of poly-T segments (defined as contiguous stretches of 3 or more Ts) in the 30-mer, 
the length of the longest poly-T segment, and the position dependent k-mer (k = 1, 2) 
instances that may differentiate the sequence motif at different positions relative to the 
PAM site (28 features each, after removing the static GG from the PAM for each). The 
second category contains thermodynamic or mechanic metrics derived from the target 
or sgRNA sequences. The first sub-category contains four melting temperatures calcu-
lated from different regions of the 20 nt sgRNA spacer sequence and the first letter of 
the PAM, including positions 1–21, 1–4, 5–12, and 16–20 (features for these positions 
termed Tm1, Tm2, Tm3, and Tm4, respectively, as was done in Wang et al. [24]) using 
the TmCalculator R package (version 1.0.1). The second sub-category includes two min-
imum free energy (∆G) metrics calculated for the 20 nt sgRNA spacer sequence, as well 
as for the full sgRNA plus the 81 nt WT scaffold sequence using the RNAfold program 
from the ViennaRNA package [38]. The model in total uses 149 features, utilizing direct 
encoding of character vectors as opposed to one-hot encoding. More details are avail-
able in the Supplementary Materials (Additional File 1).

BoostMEC model and training

BoostMEC is based on a LightGBM regression model [39] tuned using Bayesian hyper-
parameter optimization. Optimization was performed using the rBayesianOptimization 
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R package (version 1.2.0), with 10 initial sample points, 100 rounds of optimization, and 
all other settings set to default values. We included a range of model parameters in the 
tuning process, including the learning rate, maximum tree depth, maximum bin size, 
maximum number of leaves, and the fraction of columns and rows used in training. The 
MSE (mean squared error) of each hyperparameter combination was evaluated through 
tenfold cross-validation on the Kim-Xiang dataset, using the same folds each time. Each 
model fit had a tree limit of 7,000 and early stopping was employed using the validation 
fold to prevent overfitting (early_stopping_rounds = 10). The optimal hyperparameters 
are available in Supplementary Table S4 (Additional File 1). This configuration was then 
used to train the final BoostMEC model on the entirety of the Kim-Xiang dataset, using 
the average number of trees obtained in cross-validation.
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