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Background
Describing the compositions of physical systems, such as in mixtures of industrial 
chemical reactions, across bacteria in the microbiome, or relative influences in cancer 
networks is of significant practical importance. In the present work, these systems are 
modeled as networks of components (or nodes) and their unknown node-node inter-
actions. However, the challenge of inferring these interactions lies in incorporating the 
defining feature of such compositions: the total proportion across components must 
always stay fixed.

Much recent interest has been devoted to improving the statistical analysis of com-
positional data [1–5]. The typical strategies that have been employed broadly fall into 
three categories. First, many apply traditional statistics (such as correlational analyses). 
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Applied to compositional data, however, such tools are known to generate spurious 
results [6–8]. A second approach considers analyses that are unaffected by data rescal-
ing (“scale invariance”) and the addition of new components (“subcompositional coher-
ence”) [1, 2, 9]. However, such methods cannot natively handle zeros in the data and 
require transformations (e.g. log ratios) that may introduce unwarranted biases into 
downstream analyses [10, 11]. A third approach considers more general models of the 
simplicial geometry, or the set of coordinates that sum to a fixed quantity, inherent to 
compositional data [12–14]. What is needed, however, is an approach for modeling 
compositional data that is both general and principled.

In contrast to previous approaches, we aim to infer the structure of our model from 
the data. The natural method for this is the principle of maximum entropy or Max Ent 
[15–18]. Here, one provides constraints, such as means, variances, and even the geom-
etry of the data itself, and Max Ent provides the model. The advantage of this approach 
is twofold. First, as opposed to other modeling approaches, Max Ent makes minimal 
assumptions that are not warranted by the data itself; we simply require our principle 
to provide a unique, coordinate-independent answer that preserves independence of 
subcomponents [19]. Second, Max Ent is a widely and successfully utilized modeling 
framework for complex biological systems [20–25]. We provide theory and practical 
demonstrations of our new approach in the present work.

Results
The model

Suppose one is given several stochastic observations of the relative abundances of 
N different components. Each of these observations may be represented as a vec-
tor Ŵ = {s1, s2, . . . sN } . Our goal is to infer the most likely and least-biased inter-com-
ponent relationships that give rise to these observations (see Fig. 1). The unique model 
with this property is provided by the principle of maximum entropy, which selects the 
model P that both maximizes the entropy S = − Ŵ PŴ log PŴ and satisfies known con-
straints from the data. Here, the standard constraints are the estimated first and second 
moments, Mi = �si� and χij = �sisj� [26], as well as the special compositional constraint, 
∑

i si = 1 (or 100% ). The resulting solution P∗ , obtained through the method of Lagrange 
multipliers, is given by:

Here hi and Kij enforce, respectively, the means Mi and the covariances χij −MiMj . The 
normalizing constant Z is defined by an intractable integral over the simplex. Thus, the 
model parameters are found using an adapted pseudolikelihood approximation (see 
Methods: The simplex pseudolikelihood method). Finally, as 

∑

i si = 1 , several con-
straints are redundant. Thus, we set hN = 0 and Kii ( i = 1, 2, . . .N  ) to 0 (see Methods: 
Refining the maximum entropy parameters).

(1)

P∗
Ŵ = Z−1 exp





�

i



hi +
1

2

�

j �=i

Kijsj



si



,

Z =

�

N
�

i

si=1

exp





�

i



hi +
1

2

�

j �=i

Kijsj



si



d�s



Page 3 of 13Weistuch et al. BMC Bioinformatics          (2022) 23:449  

In summary, Eq 1 provides the Compositional Maximum Entropy model (CME) sub-
ject to known means and covariances. The CME method provides interpretable influ-
ence weights hi for each component node i as well as the interaction strengths Kij 
between each pair of components (i and j). Below, we provide two proofs of principle of 
the method: in a model of the abundances of co-evolving species and the analysis of gene 
expression data in cancer.

Quantifying competition among co‑evolving species

The quantification of competition among bacteria in the gut, market forces in the econ-
omy (or even among scientists) is of course of great interest. A simple and widely-used 
mechanism is provided by the competitive Lotka-Volterra model (cLV), which describes 
the population dynamics (i.e., the abundances) of different species vying for a shared 
resource [27–29]. The population ( ̃si ) of each species i depends on its growth rate ri and 
interaction αij with each other species j. Furthermore, the population of each type stops 
growing as it nears its carrying capacity κi , representing the complete exhaustion of 
resources.

While cLV remains a powerful model for predicting population dynamics, several chal-
lenges remain in calibrating it to experimental data. First, we are often only provided 
with relative (normalized) species abundances. Tools handling both this information loss 
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Fig. 1 The Compositional Maximum Entropy (CME) approach. a Through maximum entropy, CME infers 
the unknown generative model of the observed component abundances. b. hi embodies the influence of 
each (i) component. Components with large hi tend to have higher abundances than those with small hi . Kij 
embodies the interaction between pairs of components. Pairs with Kij > 0 tend to coexist, while pairs with 
Kij < 0 tend to be mutually exclusive
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and the resulting compositional data remain problematic [7, 30]. In addition, we rarely 
have access to the full time series [31]. Bacterial abundances, for example, are typically 
measured sparsely but across many different conditions and environments [7].

Here we show that CME can provide accurate quantitative estimates of inter-spe-
cies interactions, as predicted by cLV, using only available experimental information. 
The simulated cLV abundances s̃i are first normalized to resemble experimental data:

The time-evolving relative abundances si(t) are then randomly sampled to apply CME. 
Compared to the cLV model, our proposed approach requires fewer parameters that are 
thus more resolvable from the limited available data [31].

cLV models exhibit three broad classes of stable inter-species behaviors: mutualism 
(they coexist), neutralism (they ignore each other), and competition (only one type 
can exist at a time) [30]. To illustrate these behaviors, we consider a cLV model of 
three different species with equal interactions αij = α . Figure 2 shows the dynamics 
and abundance distributions for each of three different regimes: α = 0.6 (mutualism, 
Fig. 2a), α = 1.2 (neutralism, Fig. 2b), and α = 4.0 (competition, Fig. 2c). For simplic-
ity, ri , κi , and the self-interactions αii are fixed at 1. Gaussian noise was then added to 
the simulated dynamics to introduce additional inter-sample variability.

(3)si =
s̃i

∑

j s̃j
, i = 1, 2, . . .N

cLV CME

(a)

Model Probability

(b)

(c)

A
bu

nd
.

Time

Mutualism
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Competition

Fig. 2 Simulated abundances of three co-evolving species under mutualism (a), neutralism (b), and 
competition (c). Left, the cLV simulated abundances of each of the three interacting species over time. Center, 
the corresponding abundance distribution (cLV). Right, the best fit maximum entropy distribution (CME)
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The cLV model exhibits a sharp qualitative transformation in its abundance distribu-
tion, from a unimodal (Fig. 2a) to a trimodal (Fig. 2c) behavior [32], as α is increased 
above a critical value ( α ≈ 1.2 , Fig. 2b). Despite requiring fewer parameters ( h = 0 and 
K, compared to the original four of cLV), CME (right) captures the cLV model behavior 
(center) across this transformation; K > 0 describes mutualism while K < 0 describes 
competition.

In summary, our model provides a simple, data-driven framework for modeling inter-
species relationships from limited experimental information. We next consider the more 
complex case involving heterogeneous interactions from gene expression data in cancer.

Revealing driving interactions in cancer networks

Cancer is a heterogeneous disease involving complex molecular interactions between 
many genes. Despite the wealth of information provided by modern experimental tools, 
the application of such molecular data, including gene expression, to identify effective 
drug targets continues to face two significant obstacles. First, the accuracy of experimen-
tal expression profiles differs between genes [33]. Thus influences from biologically criti-
cal but more poorly resolved genes may be overlooked. Second, genes of typical interest 
often interact, and their effects overlap [34].

Novel network analysis techniques have been developed to refine the genetic signa-
tures of critical genes in cancer. These approaches have been utilized to discover feed-
back structures in gene interaction networks, identify hubs and bridges, and define 
measures of robustness and fragility [35–37]. The Wasserstein distance from optimal 
transport lies as the basis for such methodologies, and in addition to the above refer-
ences has been directly applied to the stationary (normalized) measures of the networks 
in question to derive biological information, e.g. showing that pediatric sarcoma data 
forms a unique cluster [38]. We will now show that CME may provide an important tool 
for such problems and help point to potential driver genes and their most important 
interactions.

To test our method, we analyze whole-genome expression data of triple-negative 
breast tumors, a highly aggressive and complex type of cancer. While many genes are 
known to be dysregulated in this disease, the relative influence of individual genes is far 
from established [39]. The data consist of expression profiles from 299 disease samples in 
METABRIC (Methods: The METABRIC dataset) [40]. We obtained normalized weights 
for each of N = 3147 genes using the Human Protein Reference Database (HPRD) for 
each sample (Methods: Network identification) [41]. As most of these genes provide no 
signal in the data, we renormalized these weights after considering only the top 17 high-
est variabiliy genes with known relevance to cancer (according to OncoKB, see [42] and 
Methods: Data preparation). Figure 3 illustrates the known connectivity of these genes, 
but with node size and color proportional to their inferred maximum entropy node 
weights ( hi ). We immediately notice two key details. First, our genes of interest all form 
a tightly connected network. Second, despite being highly correlated with each other (as 
the topology would suggest), these genes have unequal influences on the data. The high-
est-ranked genes, SRC and TP53, are also known master regulators of cancer [43, 44].

A major strength of maximum entropy methods is identifying key node-node 
interactions underlying the more complex covariances measured from data. This is 
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illustrated in Fig. 4, which compares the maximum entropy pairwise interactions Kij 
to those inferred from a widely-used alternative statistical model, the logit-normal 
distribution (Methods: Implementation of the logit-normal distribution [1]); there is 
an identifiable mapping between the strongest magnitude maximum entropy inter-
actions (Fig. 4a), in contrast to these obtained from the logit-normal (Fig. 4b), and 
their corresponding gene-gene covariances (Fig. 4c).

We also note that the two top maximum entropy interactions alone (SRC/TP53 
and BRCA1/PTPN11) provide an intuitive explanation for some of the key features 
of the data. SRC and TP53 maintain the critical balance between growth (SRC) and 
damage repair (TP53): enhanced SRC (or repressed TP53) promotes cell survival, 
growth, and metastasis, while the reverse leads to accelerated aging [43–45]. This 
known and critical negative interaction between SRC and TP53 separates most of the 
17 genes into two distinct (and negatively covarying) clusters. Thus, since BRCA1 
and PTPN11 belong to opposing clusters, their corrected interaction, as revealed by 
both maximum entropy and logit-normal modeling, is much larger than expected 
from their weak, positive covariance. Interestingly, both BRCA1 and PTPN11, along 
with SRC and TP53, are involved in the JAK-STAT pathway [46, 47]. Thus, these 
genes may have a general and synergistic role in cancer that remains to be explored.

Yet, while the logit-normal model does appear to resolve some features (such as 
the subtle covariance between AKT1 and EP300) that CME neglects, the interac-
tions predicted by this method generally appear difficult to interpret in the context 
of the original covariance matrix: it predicts many interactions between uncorre-
lated genes and fails to resolve, among others, the clear negative covariance between 
SRC and TP53. Overall, the CME method provides a parsimonious biological mech-
anism, involving known cancer drivers and only a few of their interactions, for the 
genetic variability in this poorly understood disease.

Fig. 3 Maximum entropy ranking of key genes in triple-negative breast cancer. Edges correspond to 
protein-protein interactions obtained from HPRD. Node color and size correspond to their influence ( hi)
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Discussion
We have provided CME, a probabilistic framework for inferring the behaviors of com-
positional systems from data. Typically, models are deduced bottom-up, starting from 
mathematical relationships between individual components and combining them often 
in a complex, nonlinear way. However, as we have described for the Lotka-Volterra 

(a)

(b)

(c)

Fig. 4 Comparison between three breast cancer network analyses: CME (a), logit-normal (b), and the data 
covariances (c). Maximum entropy and logit-normal results are shown on a log-scale to reveal the most 
influential positive (red) and negative (blue) interactions
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model, these interactions can rarely be resolved from the available experimental data. 
CME, instead, takes a top-down approach – starting from the data and learning the 
most parsimonious model for it. As evidenced by our breast cancer analysis, CME may 
also provide more interpretable insights into the organization of compositional systems.

Similar to partial correlational analysis [48–50], maximum entropy computes direct 
pairwise interactions by controlling for the confounding indirect effects of the other 
nodes. Despite being widely used in data analysis and machine learning, partial correla-
tions are only appropriate for linear associations or Gaussian-like data [48]. Maximum 
entropy methods, such as our application to compositional data [49], are, by contrast, 
much more general.

For simplicity, we have considered only small networks; however, our method can be 
easily extended to much larger networks. First, the pseudolikelihood approach at the 
core of our method has been successfully applied, with the proper regularization, to net-
works consisting of thousands of nodes [51]. Second, the implementation of our algo-
rithm uses a scalable L-BFGS algorithm and is fully parallelized across multiple CPU 
cores.

The principle of maximum entropy deduces the simplex-truncated normal distribu-
tion from the given first and second moment constraints. While such models have been 
previously studied in compositional data analysis [13], our approach provides two key 
advantages. First, maximum entropy can naturally incorporate more general model con-
straints including higher-order moments [26], more complex geometries [52], additional 
types of data [53], and domain-specific assumptions [1, 2]. Second, our simplex pseudo-
likelihood method provides consistent [54] and asymptotically efficient [55] parameter 
estimates and is asymptotically equivalent to maximum likelihood estimation [54]. Fur-
thermore, a recent study demonstrates that score matching approaches can be viewed 
as approximations of pseudolikelihood [56], suggesting a relationship between our 
approach and [13] that could be explored in a future work.

Conclusion
We proposed CME, a data-driven framework for modeling compositions in multi-spe-
cies networks. We utilize maximum entropy, a first-principles modeling approach, to 
learn influential nodes and their network connections using only the available experi-
mental information. Our method requires minimal assumptions and no modifications 
of the experimental data. Furthermore, the method can be easily generalized to incorpo-
rate new types of constraints and data that may emerge.

Methods
The simplex pseudolikelihood method

Fitting maximum entropy models to data is generally computationally intractable. Thus, 
to fit CME, we will adapt the widely-used pseudolikelihood approximation [51]. This 
method requires two pieces of information. First, we need a formula to compute the 
conditional distribution P(si|s∼i) , where s∼i represents all of the variables of interest sj 
( j = 1, 2, . . .N − 1 ) excluding si and sN = 1−

∑N−1
i=1 si . For the simplex model, we have:
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Unlike that of Eq 1, Z̃i is a tractable Gaussian-like integral. However, its value is sample 
dependent. Thus, the second required piece of information is the actual samples of the 
agent proportions sdi  ( d = 1, 2, . . .D) rather than simply the summary means and covar-
iances. Together these enable the maximization of the pseudolikelihood functions ℓiPL 
(see Methods: Model implementation):

Refining the maximum entropy parameters

One challenge in modeling compositional data is handling the parameter 
redundancies induced by the compositional constraint 

∑

i si = 1 . Specifically, 
MN = 1−

∑

i �=N Mi and χiN = χNi = Mi −
∑

j �=N χij are entirely determined from 
the other data constraints. We could set the associated Lagrange multipliers to 0, but 
this would hide information about node N (as all of its connections would be forced 
to 0).

Instead, we recover interpretable model parameters with the following 
transformations:

By forcing Kii to be 0 in Eq 1, we can resolve the interaction strengths between all pairs 
of nodes in the data. For simplicity, we have defined hN = 0 . However, we can increase 
or decrease all hi by any constant and still have an equally good fit. Thus we introduce 
another transformation to facilitate intra-model comparison of these node weights:

Conceptually, the quotient Qi compares the relative probability of observing a network 
configuration with influence dominated ( P∗(si = 1) ) by node i. We posit this as a useful 
comparison metric for future studies of compositional systems modeled under different 
conditions.

(4)P(si|s∼i) = Z̃i(s∼i)
−1 exp
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2
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1

2
(KiN + KNi), K̃ij = Kij − KiN − KNj
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i=1 e
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Model implementation

To provide a high-accuracy, low overhead approximate maximum of the CME log pseu-
dolikelihood functions, we performed convex optimization using L-BFGS [57] aug-
mented by automatic differentiation. To validate our method, we also designed a custom 
Monte-Carlo scheme to simulate from CME models. This scheme considers the fitted hi 
and Kij parameters and numerically estimates the corresponding means Mi and covari-
ances �ij = χij −MiMj . In contrast to CME, such simulation is prohibitively expensive 
for even moderately-sized, strongly-interacting networks. However, it enabled us to con-
firm the high accuracy of our model on our Lotka-Volterra simulations (see Fig. 5).

The METABRIC dataset

Microarray gene expression data for METABRIC were downloaded from the cBioPor-
tal database [58, 59]. The METABRIC dataset, containing 1904 samples, is one of the 
most extensive publicly-available breast cancer studies [40]. We utilized microarray gene 
expression data containing 24368 genes from the 299 triple-negative samples.

Network identification

To quantify the (normalized) influence of genes relevant to triple-negative breast cancer, 
we utilized the method of network Markov chains [35–37]. The Human Protein Refer-
ence Database (HPRD) provides a curated interaction network of most human proteins 
[41]. Thus, to perform our analysis, we utilized the largest connected component, con-
sisting of 3147 genes, obtained from the intersection of HPRD with the METABRIC 
gene list. We then performed network analysis as in [37] using the subset of 288 genes 
annotated in OncoKB, a curated database of prominent cancer genes [42].

Data preparation

For each sample, we obtain a measure of the relative influence of each of 288 genes. To 
identify potential drivers of the variability of these influences across the data, we computed 
their inter-sample Pearson correlations. We identified two distinct clusters of highly cor-
related genes: one containing a small number of immune-adjacent genes and the other, a 

Fig. 5 Comparison of CME model covariances to the sample covariances of the cLV model. We observe 
complete agreement between our model and the data (see Figure 2), confirming the correctness of our 
maximum entropy fitting algorithm. The means, not shown, were all equal to 1/3 as expected
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much larger component, containing prominent breast cancer genes such as TP53 and 
BRCA1. Thus, we utilized only this second component for our analysis.

Our primary goal is to identify genes and their interactions that potentially drive the vari-
ability in treatment responses observed in triple-negative breast cancer [39]. Likely genes 
include only those with large influence and inter-subject variability. Upon computing the 
variance in the influence of each gene, we found 17 candidates with markedly higher vari-
ance than the remaining bulk. We thus renormalized node influence across these 17 prime 
candidates before performing our maximum entropy analysis.

Implementation of the logit‑normal distribution

An alternative to CME, the logit-normal distribution is given by [1]:

where MLN and �LN are the means and covariances of the transformed data: 
y =

[

log( s1sN
), . . . , log(

sN−1

sN
)

]

 . Here, the feature of interest is the precision matrix 

K ∗
LN = −�−1

LN which, under fairly general circumstances, has been shown to approxi-
mate maximum entropy interactions [20]. As with CME, we then utilized Eq 8 to define 
symmetric interactions between all pairs of nodes rather than simply the first N − 1.
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