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Background
Structural variants (SVs) encompass a diverse range of genomic changes that vary con-
siderably in type and size, but are commonly defined as any DNA variant affecting 50 or 
more nucleotides [1]. SVs can alter DNA copy number or structure, impact gene dosage, 
and contribute to human phenotypes [2–4]. Accurate identification of SVs is challeng-
ing as many SVs arise in paralogous and repetitive regions, resulting in inconsistencies 
between samples not only in terms of the presence or absence of a given SV, but also in 
the predicted breakpoints of the event. It is estimated that the average human genome 
harbors at least 8,000 SVs, altering millions of bases of DNA sequence, when compared 
to the human reference genome [5]. However, when considering individual Mendelian 
disease phenotypes, the vast majority of these SVs are likely inconsequential. Thus, the 
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identification of causal or deleterious SVs relies on sophisticated SV variant filtering and 
prioritization pipelines.

Traditional genomic annotation tools, like the Variant Effect Predictor [6] or SnpEff 
[7], rely on identifying overlaps with known genomic features to aid in the identification 
of SVs that may have phenotypic consequence. However, these methods are generally 
more applicable to other variant types including single nucleotide variants (SNVs) and 
insertions-deletions (INDELs) and are focused on annotating the predicted functional 
consequence of genetic variation. Annotation tools have been created specifically for 
the complexities of SVs [8–10] and may add useful information to help define SVs of 
interest. Existing software tools attempt to prioritize SV calls with scores that reflect the 
potential pathogenicity of a given SV call [11–14]. Yet, many of these tools are trained 
on or incorporate previously published data and few consider the entirety of available 
SV-specific datasets. Furthermore, they have limited capacity to integrate additional SV 
callsets as they continue to be generated.

Large-scale reference datasets of human genetic variation have enabled the measure-
ment of accurate allele frequencies (AFs) and provide the opportunity to stratify variants 
as common or rare in the general population [15, 16]. Prioritizing variants based on their 
population frequency provides an effective prioritization strategy for SNVs and INDELs, 
especially in the context of rare disease. Filtering based on AF substantially reduces the 
number of putative genetic variants for analysis, especially when combined with addi-
tional annotations and expected inheritance patterns [17].

Until recently, population-scale measures of SV allele frequencies have been limited. 
The Database of Genomic Variants [18] represents the first human SV-specific refer-
ence dataset, consisting of SV calls from a variety of studies, methods, and platforms. In 
recent years, however, collaborations involving the whole-genome sequencing (WGS) of 
thousands of human samples have generated extensive SV datasets making population-
level AFs and related metrics available for SV analysis. These include the CCDG [19], 
gnomAD [20], and 1000G [21] SV datasets, all of which were generated using different 
samples, sequencing protocols, and SV calling methods. Unsurprisingly, given the dis-
tinct methodologies used to create each dataset and human population growth [22], the 
vast majority of all identified SVs are rare (average of 85% with AF < 0.01) and many SVs 
are limited to only a few samples, or are "singletons" (i.e., found in one individual, Addi-
tional file 1: Fig. S1).

By focusing on overlapping genomic coordinates to identify SVs observed in multiple 
datasets, we find that the fraction of SVs of the same variant type (SVTYPE) shared by mul-
tiple datasets decreases as the degree of overlap required among them increases (Fig. 1). 
This observation highlights two important aspects when comparing SV calls across data-
sets. First, since the vast majority of genetic variants in the human population are rare, most 
SV calls found in these datasets are unique to those collections, and therefore, no single 
dataset sufficiently represents the full spectrum of potential SVs in the general population. 
Second, as opposed to SNV and INDEL variant calls, matching SV calls across datasets var-
ies depending on both the presence or absence of the variant as well as the required amount 
of overlap between potential matches. This additional "spatial uncertainty" illustrates the 
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possible variability in genomic coordinates between calls, but also the difficulty in determin-
ing whether SV calls with overlapping coordinates represent the same or different variants 
[23]. These observations are not surprising given the differences in samples, sequencing, 
and variant calling between datasets, but differences in read length, read depth, and insert 
size will also result in differing coordinates for the same SV. Thus, trying to match observed 
SVs to SVs in these population datasets is a challenge that requires special consideration, 
especially in the context of rare disease.

Recognizing this obstacle, we have created SVAFotate as a tool that provides the means 
to aggregate SV calls from multiple SV population datasets and create summaries of AF-
relevant data into simple annotations that are added to SV calls based on default or user-
determined SV matching criteria. Primarily, this enables the classification of SVs within a 
VCF [24] file as being either common, rare, or unique to an individual dataset with respect 
to the thousands of samples in published datasets. Being able to differentiate SVs based on 
their population frequency enables powerful filtering strategies in the context of SVs for 
rare disease analysis. Here, we describe the functionality of SVAFotate, demonstrate the 
effectiveness of its annotations for filtering SV calls, and describe recommendations for 
using SVAFotate in rare disease analyses.

Fig. 1  Matching SVs from different datasets based on shared SVTYPE and genomic overlaps. The average 
fraction of overlaps between deletions (DEL, in red), duplications (DUP, in blue), and inversions (INV, in purple) 
from CCDG, gnomAD, and 1000G are identified using varying amounts of required reciprocal overlap. Higher 
required reciprocal overlap fractions correspond to more exact genomic coordinate matches. Each dataset 
is compared to one another (CCDG + gnomAD, CCDG + 1000G, and gnomAD + 1000G) and overlaps with a 
different required reciprocal fraction are calculated. The fraction of total SVs found to have overlaps given the 
required reciprocal overlap fraction is found for each respective dataset and the average of these fractions is 
plotted. Finally, the average fraction of SVs found to have overlaps in all datasets (CCDG + gnomAD + 1000G) 
is found for each SVTYPE and at each required reciprocal overlap fraction
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Implementation
SVAFotate is a Python-based command line tool that annotates an input VCF file 
with allele frequencies and related information from SVs reported in population-scale 
datasets. Two distinct file types are required as input for SVAFotate: an input SV VCF 
file and an input BED [25] file containing known or reported SV calls with accompa-
nying AF information.

Input SV VCF file

SVAFotate has been tested on VCFs created from various SV callers, including those 
that utilize data derived from both long and short-read DNA sequencing, and is com-
patible with any VCF that includes SVTYPE (preferably END and SVLEN also) in the 
INFO field. SVAFotate will annotate SV calls of any and all SVTYPEs. While SVAFo-
tate can be used on individual sample VCFs, to avoid potential complications aris-
ing from potential differences in SV coordinates between samples, it is recommended 
that a single VCF with all samples of interest be created before using SVAFotate. This 
can be accomplished using SV callers that feature joint-calling or by employing post-
processing tools that can help correct genomic coordinate variability between indi-
vidual sample SV calls [26]. All SV calls in the VCF are internally converted into a 
BED format for the purposes of identifying overlapping genomic coordinates with the 
SVs provided by the input BED file, and the output from SVAFotate is returned as an 
annotated VCF file.

Input BED file

The motivation behind SVAFotate was to enable the comparison of unannotated SV calls 
and known SVs with computed AFs from multiple population datasets. As a result, vari-
ants can be analyzed and prioritized based on these population frequency annotations. 
With that in mind, SVAFotate requires that known population SV calls with pertinent 
AF data be provided as an input file in the BED format. BED files corresponding to the 
GRCh37 and GRCh38 human genome reference builds have been created by parsing 
and compiling SVs and their associated AF data from the CCDG, gnomAD, and 1000G 
datasets and can be found here: https://​github.​com/​faked​rtom/​SVAFo​tate/​tree/​master/​
suppo​rting_​data/. The CCDG and 1000G published datasets were generated using the 
GRCh38 reference and thus for the provided GRCh37 BED file, coordinates pertain-
ing to these datasets were converted to GRCh37 coordinates using the UCSC liftover 
executable (https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver). Similarly, the gnomAD data-
set, which was generated using the GRCh37 reference, was converted to GRCh38 for 
inclusion in the provided GRCh38 BED file. These BED files define genomic breakpoints 
of reported SVs, and include additional columns detailing the allele frequency informa-
tion for each listed SV. The origin of each SV in these files, with respect to the dataset 
that includes it, is listed and labeled as the SV’s source. Missing annotations from one or 
more datasets are included in the BED file marked as “NA”. Researchers can also provide 
custom BED files from their own cohorts, as long as the structure of the file matches 
SVAFotate’s built-in BED file structure (Additional file 1: Table S1).

https://github.com/fakedrtom/SVAFotate/tree/master/supporting_data/
https://github.com/fakedrtom/SVAFotate/tree/master/supporting_data/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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Identifying SV matches

SVAFotate attempts to identify matches for each SV from the input VCF with SVs in the 
BED file based on congruent SVTYPEs and overlapping genomic coordinates (Fig. 2a). 
By default, SVAFotate considers any amount of overlap, but allows for a recommended 
parameter which requires overlapping SVs with the same SVTYPE to share a minimum 
reciprocal overlap (see SVAFotate Best Practices). In this manner, SVAFotate allows 
users to control the specificity with which matching SVs are defined. For each matching 
SV, corresponding AF metrics from the input BED are saved with the maximum values 
across all matches being returned, creating annotations that reflect the observed max-
imum AF (Max_AF) and other complementary annotations (Fig.  2b, Additional file  1: 
Table S2). Any individual SV from the input VCF that does not have any matches with 
SVs from the input BED file, and is therefore unique with respect to those provided SVs, 
is annotated with a value of 0.

Identifying matching SVs as described is more straightforward for many SVTYPEs, 
such as, deletions (DELs), duplications (DUPs), and inversion (INVs), but can be more 
complicated for other SVTYPEs. Insertions (INSs), for example, are often reported as 
a single base pair genomic coordinate with an accompanying SVLEN that reflects the 
size of the insertion. SVAFotate still matches INSs based on overlapping coordinates 
and shared SVTYPEs, which generally means that INSs from the input VCF only match 
when their coordinates are (nearly) the same as those in the BED file, even if the SVLENs 
between the potential matches differ. If the reciprocal overlap parameter is used, 
SVLENs for INSs are then used to better refine the matching INSs though differences 

Fig. 2  Matching SVs for Annotation Creation. a SVAFotate expects two distinct input files: an unannotated SV 
VCF file and a BED file which may contain SV calls from multiple population datasets and their accompanying 
AF metrics. To represent the SV calls in these files, unannotated SVs are illustrated as gray rectangles while SVs 
from three different datasets, such as CCDG, gnomAD, and 1000G, are represented by green rectangles with 
their reported population AF included as labels. For this example we will assume that all rectangles represent 
SVs of the same SVTYPE.  SVAFotate attempts to identify matches between unannotated SVs and the SVs 
present in the BED file by identifying genomic coordinate overlaps that meet user-defined criteria between 
SVs of the same SVTYPE. Multiple matches are possible, and all AF related data is saved for each match. b 
SVAFotate is capable of generating multiple annotations that are added to the original VCF file and are each 
derived using information saved from matching the SVs. The types and variety of annotations added to the 
VCF are determined by input parameters provided at the command line, but here the example annotation 
added is the Max_AF (default) annotation
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in SVLENs may still exist between resulting INS matches. Other even more complex 
SVTYPEs, including copy number variants (CNVs), may require more specialized 
attention.

Results
SVAFotate offers AF-related annotations that can greatly reduce the number of putative 
SVs for review in different genomic analyses. We demonstrate SVAFotate’s functionality 
by providing example analyses that categorize the rarity of SV calls based on their asso-
ciated AFs, as well as illustrate how SVAFotate annotations can be used to effectively 
filter SVs. We also describe optional SVAFotate parameters that generate additional 
annotations to further enhance SV filtering and prioritization. Finally, we provide rec-
ommendations for applying SVAFotate in rare disease studies.

Defining the rarity of SVs derived from CEPH families

We first highlight the utility of SVAFotate in classifying SVs based on their associated 
population frequency by creating SVAFotate annotations for SV calls derived from 603 
individuals belonging to 34 multigenerational CEPH families [27]. SVs were called for 
each individual and then merged into a single VCF using Smoove with the GRCh38 
reference genome and parameterized as recommended in the tool’s documentation 
(https://​github.​com/​brentp/​smoove). The resulting VCF reported nearly 40,000 total 
SV calls across all individuals with a total of 21,106 deletions, 7,021 duplications, 686 
inversions, and 10,702 unclassified breakend (BND) calls. SVAFotate annotations were 
then added using the provisional GRCh38 BED file corresponding to SV calls from the 
CCDG, gnomAD, and 1000G SV datasets while also requiring a reciprocal overlap of 
80% (-f 0.8). This annotation was accomplished with the following command:

Focusing on the deletion, duplication, and inversion calls and using the Max_AF anno-
tation provided by SVAFotate, each SV was classified as Common (Max_AF >  = 0.05), 
LowFreq (0.05 > Max_AF >  = 0.01), Rare (Max_AF < 0.01), or Unique (Max_
AF = 0.0). We find that just under half of all these SVs are unique or private to this 
CEPH dataset when compared to those reported by CCDG, gnomAD, and 1000G 
(Fig.  3a). Using this classification we identified family-specific SVs that are labeled as 
Unique and only observed in a single CEPH family (Fig.  3b). On average, each CEPH 
family harbors roughly 16 SV events that are private to that family and have no matches 
with any SVs of the same SVTYPE from CCDG, gnomAD, or 1000G. Family 1328 exhib-
its a higher number of unique SV events than any other family (146 total unique SVs), 
but is also an outlier with regards to the family size (83 total individuals compared to 
the median of 14.5 individuals per CEPH family). CEPH individuals are considered 
healthy with no clinically reported phenotypes so at this time these unique SVs are not 
considered as candidate variants for any specific condition. However, this analysis dem-
onstrates how SVAFotate may assist in identifying rare SVs that are unique to specific 
families and may contribute to observed phenotypes, including rare diseases.

https://github.com/brentp/smoove
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Using SVAFotate annotations to filter SVs in neonatal ICU cases

A primary motivation for developing SVAFotate was to enable filtering of SV calls 
using known population AFs. We further demonstrate the use of SVAFotate annota-
tions by applying them to rare disease cases from the Utah NeoSeq Project [28], a 
rapid WGS protocol to provide genetic diagnoses for critically ill infants in the Uni-
versity of Utah Hospital neonatal intensive care unit. Since the inception of the Utah 
NeoSeq Project, SVAFotate has been used in the SV analysis and prioritization pipe-
line. Here, we summarize the filtering of SVs from 22 NeoSeq cases, 19 of which are 
trios (proband and both parents) and 3 are duos (proband and a single parent).

SV calling was performed using the recommended parameters for both Smoove and 
Manta [29], using the GRCh38 reference genome, resulting in two SV-specific VCFs 
for each NeoSeq case. Smoove VCFs featured deletions, duplications, inversions, and 
BNDs while Manta VCFs included deletions, duplications, insertions, and BNDs. 
SVAFotate annotations were then added to each VCF with a required 80% reciprocal 
overlap. This was done using the provisional GRCh38 BED file corresponding to SV 
calls from the CCDG, gnomAD, and 1000G datasets. An additional SVAFotate anno-
tated VCF was also generated using the same parameters while replacing the provi-
sional BED file with a custom NeoSeq-specific GRCh38 BED file. This custom BED 
file was made using the same SV calls from the CCDG, gnomAD, and 1000G datasets, 
but also features SV calls and their AF related data from the aforementioned CEPH 
VCF as well as both Smoove and Manta calls derived from the 1000G samples. These 
additional SV calls were added to the custom BED file because they correspond to SVs 
derived from the same SV callers that are employed by the NeoSeq pipeline (Smoove 
and Manta). The inclusion of these additional calls should enable the identification of 

Fig. 3  Frequency of CEPH SVs. a Barplots representing the fraction of CEPH derived SVs per SVTYPE 
(deletions, duplications, and inversions) that are classified as Common (Max_AF >  = 0.05), LowFreq 
(0.05 > Max_AF >  = 0.01), Rare (Max_AF < 0.01), or Unique (Max_AF = 0.0). b The total number of Unique 
SVs identified per SVTYPE (deletions, duplications, and inversions) that are CEPH family-specific with the 
mean indicated as a solid, colored line
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SVs that are more prone to being identified by these specific SV detection tools, and 
thus may be more representative of technical artifacts rather than true SV events.

For each VCF, the total number of SVs where the proband was called as heterozygous 
or homozygous for the alternate allele was determined, and we then counted how many 
of these SVs would be retained after imposing an AF filter that ranged between 0 and 
1 using the Max_AF annotation provided by SVAFotate. For each AF cutoff value, the 
fraction of filtered SVs was determined by subtracting from one the number of retained 
SVs divided by the total number of variant SVs found in the proband. As expected, the 
fraction of SVs that are filtered increases as the AF cutoff is lowered (Fig. 4). For exam-
ple, using an AF cutoff of 0.01 and the SVAFotate annotations added using the provi-
sional BED file with SVs pertaining to only the CCDG, gnomAD, and 1000G datasets, 
we observe that nearly 60% of NeoSeq deletions, duplications, and inversions called 

Fig. 4  Filtering of NeoSeq SVs using AF cutoffs. The fraction of NeoSeq proband SV calls, per SVTYPE, that are 
filtered by using the Max_AF annotation added by SVAFotate and a range of AF cutoff values. SVTYPEs are 
abbreviated as follows: deletions (DELs), duplications (DUPs), inversions (INVs), and insertions (INSs). Plots on 
the left are SV calls derived from Smoove while the plots on the right are from Manta. Lines that are colored 
represent the resulting filtered SVs using the Max_AF annotation generated using the provisional BED file, 
while the gray lines represent the filtered SVs using the Max_AF annotation created by the custom NeoSeq 
BED file. Each line has the maximum and minimum amount of filtered SVs observed across all 22 NeoSeq 
cases analyzed plotted as a shadow surrounding the line
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by Smoove are filtered while more than 40% of Manta derived deletions, duplications, 
and insertions are removed. However, the same analysis using the custom NeoSeq BED 
file as an input when generating SVAFotate annotations results in over 95% and 85% of 
the same Smoove and Manta NeoSeq SV calls being filtered. These findings suggest an 
appreciable number of the SVs in the Smoove and Manta VCFs are likely the result of 
the SV detection softwares used rather than true SVs. Alternatively, these additionally 
filtered calls using the custom NeoSeq BED file may represent problematic SVs that were 
identified by the CCDG, gnomAD, and 1000G efforts, but failed to meet required stand-
ards and were subsequently removed from these study cohorts. Altogether, these results 
highlight the value of adding additional SV datasets to the provisional BED file to enable 
more comprehensive SV filtering. 

SVAFotate best practices

While SVAFotate’s default settings create a foundation of annotations that facilitate SV 
interpretation, we highlight additional options that provide more detailed annotations 
enabling deeper analyses and variant prioritization (Table 1). Based on use of SVAFotate 
in the previously mentioned Utah NeoSeq Project, which provides WGS of infants in the 
neonatal intensive care unit at the University of Utah, we describe in greater detail sev-
eral of these optional settings and provide “best practices” for using SVAFotate towards 
the filtering and prioritization of SVs, particularly in rare disease analysis.

Reciprocal overlap fraction (− f)

Ideally, when identifying matches for the same structural variants in the input VCF 
and those found in the BED file of known SVs, identical genomic coordinates would 
be shared. However, given a multitude of variables involved in the calling of SVs, some 
discrepancies in genomic breakpoints are expected even for the same event present 
in multiple datasets. SVAFotate recognizes this uncertainty, and while it will iden-
tify any overlapping SV loci, properly matching the same SV events between datasets 
often requires greater similarity in the amount of overlap that exists between potential 
matches. By requiring a reciprocal overlap fraction, SVAFotate is better enabled to make 
more precise matches and thereby its allele frequency annotations are more representa-
tive of the measurements provided by the input BED file. This option requires that the 
overlap created by each SV in a potential match meets or exceeds a specified fraction 
of the total size of the SVs (Fig. 5a). Higher required reciprocal overlaps correspond to 
fewer, but more specific SV matches (Additional file 1: Figs. S2, S3). Based on observa-
tions from comparing the SVs from the CCDG, gnomAD, and 1000G datasets with one 
another (Additional file 1: Fig. S4), a reciprocal overlap fraction of at least 80% is appro-
priate while still conservatively allowing some differences between potential matches.

Extra annotations; best matches (− a best)

Any given SV may have multiple potential matches in the reference datasets, with each 
exhibiting differing genomic coordinates and AF metrics. While the core functionality 
of SVAFotate will return the maximum values from all of these potential matches, it is 
possible to also create annotations that reflect the “best” match, per source, based on 
genomic coordinate similarity. This is accomplished by computing an Overlap Fraction 
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Table 1  SVAFotate Parameters and Options

Required SVAFotate parameters Argument Description

Input VCF  − v The input VCF to be annotated 
by SVAFotate

Input BED  − b The input BED of reported SVs 
to use for annotations

Output VCF  − 0 The name for the resulting, 
SVAFotate annotated VCF

Optional SVAFotate parameters Argument Description

Reciprocal overlap  − f The minimum amount of 
reciprocal overlap required for 
the matching of SVs (recom-
mended 0.8 or higher)

Extra annotations  − a Adds annotations correspond-
ing to all extra annotations 
(best, full, mf, mis, pops)

all: Adds all available informa-
tion from the BED file for all 
matches

best: adds the "best" match for 
each including source from the 
BED file

mf: adds male and female 
specific data

mis: Adds "mismatches" for 
matches with differing SVTYPEs

pop: Adds populations spe-
cific (AFR, AMR, EAS, EUR, OTH, 
and SAS) data, if available

Observed SV coverage  − c Creates annotation reflecting 
the amount of a given SV in the 
input VCF has been observed 
with the same SVTYPE from SVs 
in the BED file

Unique SV regions  − u Creates additional output file 
containing "unique" regions 
of a given SV that are not 
obersved to have any over-
laps with SVs in the BED file

SV size limit  − l Maximize size of SVs from the 
BED file to include alongside − c 
and − u parameters (recom-
mended 1,000,000)

Targets BED file  − t Identify overlaps with particular 
regions of interest reported in 
an additional BED file

Sources to annotate  − s Restrict matching of SVs to 
only those from specified 
sources in the BED file

Use CI boundaries  − ci Adjust the genomic break-
points in the input VCF by 
the reported inner or outer 
confidence intervals (CIP0S, 
CIEND)

 − ci95 Adjust the genomic break-
points in the input VCF by 
the reported 95% inner or 
outer confidence intervals 
(CIPOS95, CIEN D95)

Change SV size  − e Increase the size of the 
genomic breakpoints in the 
input VCF

 − r Reduce the size of the 
genomic breakpoints in the 
input VCF
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Product (OFP) between the input SV and all matching SVs from each source in the 
BED file. The OFP reflects the genomic similarity between matches by measuring the 
amount of overlap that is shared between the matches, calculating the fraction of each 
SV that the overlap covers, and then multiplying these fractions together (Additional 
file 1: Fig. S5). Resulting OFP scores will have a range between 0.0 and 1.0 where high 
OFP scores reflect matching SVs that are more identical in terms of both their genomic 

Table 1  (continued)

Optional SVAFotate parameters Argument Description

Output file type  − 0 Specify the output file type 
as VCF (vcf ), compressed 
VCF (vcfgz), BCF (bcf ), or 
compressed BCF (bcfgz)

CPU count  − cpu The number of CPUs to use 
for multi-threading

Required SVAFotate parameters are listed followed by optional SVAFotate parameters with all arguments and descriptions 
for each option included. Recommended optional parameters are listed in italics with accompanying recommendations, as 
applicable. For full descriptions and details, please refer to the SVAFotate repo: https://​github.​com/​faked​rtom/​SVAFo​tate

Fig. 5  Recommended SVAFotate Parameters. Each plot illustrates SVs from the input VCF as gray rectangles 
with colored rectangles representing SVs from various datasets, such as CCDG, gnomAD, or 1000G. In all 
examples, the SVs depicted by gray and green rectangles are of the same SVTYPE. a Requiring a reciprocal 
overlap with the -f parameter specifies that SVs being compared to one another must each have an overlap 
that meets a minimum fraction of the total size of the SV in order to be counted as a match and saved for 
future annotations by SVAFotate. On the top, the -f parameter is not being used and any overlap, regardless 
of size, is being counted as a match, while on the bottom, -f is being used with a value of 0.8 which 
reduces the number of matches to those with greater overlap similarity. b The OFPs for potential matches 
are calculated and listed as labels on each of the colored rectangles, representing SVs from three different 
datasets. The “best” match is determined by the match with the highest OFP value and metrics specific to that 
best match are saved and used for subsequent SVAFotate best annotations. If no match exists as illustrated 
for the SV on the left for Dataset 3, no best annotations are added for that dataset. c Gray rectangles represent 
deletions from the input VCF and colored rectangles represent different SVTYPEs, specifically deletions (red), 
duplications (blue), and inversions (purple). Matches are defined as SVs of the same SVTYPE that overlap one 
another while mismatches are SVs of differing SVTYPEs that share an overlap. d For each SV from the input 
VCF, all overlaps are saved and used to determine how much of the total SV region has also been observed in 
the datasets which is then reported as the SV_Cov annotation.

https://github.com/fakedrtom/SVAFotate
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sizes and the amount of overlap they share. Low OFP scores suggest a larger disparity in 
genomic sizes between matching SVs or a low amount of shared overlap between them 
(or both a discrepancy in sizes and low overlap). By reviewing the OFP scores from all 
matching SVs, a best match for each included source is determined by the matching SV 
with the highest OFP (Fig. 5b). In the event of multiple matches sharing the same OFP 
score, the matching SV with the highest reported AF is returned as the best matching 
SV. Regardless of whether a reciprocal overlap is requested at the command line or not, 
determining the best match will consider all genomic overlaps. Thus, if any overlap exists 
for a given source reported in the BED file, regardless of its size, this will be reflected in 
the resulting best annotations. We determined the best match for all SVs by comparing 
the CCDG, gnomAD, and 1000G datasets to one another and observed largely bimodal 
distributions for all comparisons, suggesting that most best matches are either rather 
poor or quite precise (Additional file 1: Fig. S6).

Once the best match is determined, multiple best annotations, including the OFP 
score for the best match, are saved to be added to the resulting output VCF. These can be 
used to help corroborate the values observed in the default annotations, but also provide 
more specificity with regards to which SVs from the input BED file are resulting in the 
SV matches. Furthermore, the best match allows for checking the precision of the match 
via the OFP annotation and the rarity or uniqueness of the input SV can be ascertained if 
no best matches exist.

Extra annotations; mismatches (− a mis)

By definition, SVAFotate requires matching SVs to share the same variant type 
(SVTYPE; e.g., deletion, duplication, etc.), but is also equipped to create annotations 
based on overlapping SVs with differing SVTYPEs when this option is used. SVAFotate 
refers to such overlaps as “mismatches” and are otherwise treated the same as tradition-
ally matching SVs (Fig. 5c). Mismatch annotations that are added include the differing 
SVTYPEs identified in the mismatches and also a series of best mismatch annotations 
similar to those created by the previously discussed best parameter in both methodology 
and content. Similar to the best annotations, mismatches are also determined for each 
source included in the input BED file.

Mismatches can reveal additional information for a given genomic region. For exam-
ple, copy number variable loci often give rise to some individuals harboring deletions 
with others having duplications. On the other hand, such regions may indicate techni-
cally problematic regions for many SV detection tools. Mismatches may also represent 
situations where the same SV has been categorized differently between SV callers or 
datasets. For example, while some callers may identify and label an event as an insertion, 
others may classify the same event as a duplication. The mismatches annotations can be 
helpful in identifying such instances. Lastly, interpreting the potential phenotypic conse-
quence of a rare or unique SV event might be influenced by the presence of a common 
SV of another SVTYPE that the mismatch annotations can reveal.

Observed SV Coverage (− c)

While overlapping SVs may represent distinct alleles, it may be informative to the inter-
pretation of the possible pathogenicity of an SV if it occurs in the same genomic region 
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as other SVs. The observed SV coverage (SV_Cov) annotation can help reveal these 
occurrences by describing the proportion of a given SV that overlaps SVs of the same 
SVTYPE from the input BED file. All overlaps with the same SVTYPE from all included 
sources, regardless of size, are considered when calculating this fraction and is reported 
as a number ranging from 0.0 to 1.0, where high scores reflect a larger proportion of 
the SV being “covered” or observed to overlap with known SVs (Fig. 5d). Additionally, 
similar coverage annotations that are source-specific are also added. This parameter also 
expects an AF cutoff value that will omit any SVs from the input BED file that fall below 
this AF threshold from the calculation of SV_Cov.

If any SVs in the BED file are exceedingly large, they may overwhelm the observed 
SV coverage, reducing its utility. For example, CCDG reports an exceptionally rare dele-
tion that is over 61 Mb in size. This event is likely to overlap with many putative dele-
tions that likely represent distinct SV events. Considering this may obscure meaningful 
coverage annotations and interpretations, a recommended additional parameter to use 
alongside the observed SV coverage option is provided with the SV size limit parameter 
(− l). This limits the size of SVs from the input BED file to include when computing 
the observed SV coverage annotation. Given that many excessively large SVs defined by 
many variant callers can be spurious, we recommend setting the size limit to a megabase 
(1,000,000  bp) which will not include any SVs over that size when computing the 
observed SV coverage.

Targets BED File (− t)

Especially in the case of rare disease analysis, there may be particular genomic regions 
(e.g., genes known to be associated with the phenotype) where an overlap with any 
reported SV event would be of interest. Using this option and supplying a simple BED 
file consisting of chromosome, start and end coordinates, and a column featuring a 
region identifier (such as a gene name) will create a Target_Overlaps annotation 
that lists the supplied region identifier for all overlaps between the SV and the regions 
in this BED file. Regions of interest may include any genomic features such as candi-
date genes, specific exons, promoters, enhancers, or any other set of user-determined 
genomic coordinates.

The following command details the use of these recommended options when using SVA-
Fotate with the previously described and provided BED file and results in a SVAFotate 
annotated VCF named svafotate.vcf: 

These SVAFotate annotations aid rare disease analysis by facilitating the identification of 
variants that are rare or unique to the affected individuals. As previously demonstrated, 
the default Max_AF annotation enables the classification of SVs based on their apparent 
rarity and therefore serves as the primary filter for categorizing SVs as rare or unique 
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(Max_AF < 0.01 and Max_AF = 0.0, respectively). However, there are important cave-
ats to consider when reviewing any SVs that have passed this initial AF filter.

First, while a single SV event may be regarded as rare, it may reside in a locus that has 
been observed to harbor more commonly occurring SVs of the same SVTYPE and is 
thus less likely to be causative or otherwise qualify as a candidate variant. The SV_Cov 
annotation can help identify such occurrences and may serve as an additional filter. Any 
rare SV with an SV_Cov less than 1.0 contains some amount of genomic space that 
has not been previously observed as variable for that SVTYPE and an SV_Cov of 0.0 
may be used to help identify rare SVs that are more independent of other variants. Sec-
ond, reviewing possible mismatch annotations can also help determine how much other 
structural variation occurs within or near the same genomic region. This may affect the 
possible functional interpretation of a rare SV, especially if those mismatches are more 
common in the included datasets. Mismatch annotations also include OFP scores which 
may help prioritize or exclude mismatches under review. Lastly, SVs with no matches 
of any kind to the included dataset SVs can be considered as unique. If no best matches 
exist for a given SV, then no overlaps of any kind with other SVs were found, meaning 
the SV is more likely to be unique. However, if any overlaps exist, these will be reported 
by the best annotations, where the exactness of the overlap is detailed in the best OFP 
annotation. These variants can possibly be disregarded if the OFP is not suggestive of 
a good match (OFP < 0.8). Even SVs with best annotations may still represent unique 
SVs provided the best OFP scores are low. Additionally, best match annotations can 
help identify the source and exactness of the matches that contribute to the AF reported 
by the Max_AF annotation. In this manner, the use of the Max_AF, SV_Cov, and the 
mismatch and best annotations provided by SVAFotate work in combination to better 
determine the rarity and uniqueness of SVs within a VCF. In most cases, filtering using 
these annotations can be performed sequentially or simultaneously using available com-
mand line tools or custom scripts.

Together, these suggestions are sensible starting points for the filtering of SVs, but 
depending on the datasets used and the context of the SV analysis, they are all adjust-
able. SVs that do not meet these requirements may still be considered for further review. 
Once rare and unique SVs have been determined using SVAFotate, further filtering can 
be done based on expected inheritance patterns (de novo or dominant versus reces-
sive) and other genetic features that are commonly included via additional annotation 
tools. If a priori there are genomic regions of interest, such as candidate genes, the Tar-
get_Overlaps annotation that can be included by SVAFotate can facilitate the iden-
tification of SVs that overlap these features and may be used as another filter. Otherwise, 
other gene annotation tools can enable the identification of SVs that overlap gene coding 
or other genic regions. Altogether, SVAFotate annotations are complementary to other 
genomic annotations and are meant to be used together in SV filtering and analysis.

Conclusions
SVAFotate is ideally suited to combining and converting data from multiple SV datasets 
that contain population AF information into discrete annotations that can then be used 
for categorizing the rarity of SV calls and filtering them based on AF-related expec-
tations. This is primarily accomplished by identifying matches based on user-defined 
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genomic overlaps between queried SV calls in the VCF format and known SVs with 
associated AF features that are provided as a BED file. Population AF information from 
these matches is saved and summarized by SVAFotate as new and easily filterable anno-
tations in a resulting output VCF file. SVAFotate is relatively fast, depending on the size 
of the input VCF and BED files, with most runtimes completing in less than 10 min for 
moderately sized VCF files (25,000 variant entries or less) and the provided BED files.

Rare disease analysis benefits from the ability to determine the frequency of variants 
in general or specific populations. Multiple methods and datasets are available to do this 
for common variant types, like SNVs and INDELs, but SVs can be more problematic in 
these types of analyses. SVAFotate enables the annotation of SVs with population fre-
quencies and other similar data obtained from previously identified SVs. As SV datasets 
continue to grow and become available, especially with accompanying population-level 
measurements, these can be added to the expected SVAFotate input BED file to provide 
more comprehensive SV annotations. Furthermore, SVAFotate is designed to allow for 
the addition of specific or custom types of SV datasets, such as those generated using 
specific variant callers, to allow for precise SV matching and subsequent filtering. In this 
manner, SVAFotate could also be used to annotate SVs derived from non-human data, 
provided a corresponding dataset of SVs from the appropriate species was also available. 
Altogether, this positions SVAFotate as a valuable resource for inclusion in current and 
future SV analyses.

While SVAFotate is not clinically diagnostic and does not rank SV calls itself, the 
annotations it creates provides the information necessary to rapidly sort through 
SV calls and determine their apparent rarity with regards to known SV datasets. 
Filtering based on these AF metrics can substantially reduce a given SV call set and 
thus, effectively prioritize SV calls, especially in the context of rare disease analy-
sis. Combining SVAFotate annotations with other common genetic features, such 
as various gene annotations or other SV prioritization tools, can further refine 
this list of SV calls resulting in manageable lists of variants for manual review and 
verification.

SVAFotate is an open-source software package and it is freely available. Source code 
and further documentation can be found at: https://​github.​com/​faked​rtom/​SVAFo​tate.

Availability and requirements

Project name: SVAFotate.
Project home page: https://​github.​com/​faked​rtom/​SVAFo​tate
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: None.
License: MIT.
Any restrictions to use by non-academics: None.

https://github.com/fakedrtom/SVAFotate
https://github.com/fakedrtom/SVAFotate
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AF	� Allele frequency
SV	� Structural variant
SNV	� Single nucleotide variant
INDEL	� Insertion-deletion
WGS	� Whole-genome sequencing
DEL	� Deletion
DUP	� Duplication
INV	� Inversion
INS	� Insertion
BND	� Unclassified breakend
OFP	� Overlap fraction product
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