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Introduction
Multiple instance learning (MIL) is a supervised learning task that includes a special 
structure called a bag in each entity. In MIL, a set of instances in the same bag and 
their explanatory variables are observed. Though they share an observed bag-level 
response (bag label), instances may not have an individual instance-level response 
that one observes in traditional single-instance learning. Supervised MIL tasks can 
be classified by types of the label; multiple instance classification (MIC) if the label 
takes its value on a discrete space, and multiple instance regression (MIR) if on a set 

Abstract 

Early detection of cancers has been much explored due to its paramount importance 
in biomedical fields. Among different types of data used to answer this biological 
question, studies based on T cell receptors (TCRs) are under recent spotlight due to the 
growing appreciation of the roles of the host immunity system in tumor biology. How-
ever, the one-to-many correspondence between a patient and multiple TCR sequences 
hinders researchers from simply adopting classical statistical/machine learning meth-
ods. There were recent attempts to model this type of data in the context of multiple 
instance learning (MIL). Despite the novel application of MIL to cancer detection using 
TCR sequences and the demonstrated adequate performance in several tumor types, 
there is still room for improvement, especially for certain cancer types. Furthermore, 
explainable neural network models are not fully investigated for this application. In 
this article, we propose multiple instance neural networks based on sparse attention 
(MINN-SA) to enhance the performance in cancer detection and explainability. The 
sparse attention structure drops out uninformative instances in each bag, achieving 
both interpretability and better predictive performance in combination with the skip 
connection. Our experiments show that MINN-SA yields the highest area under the 
ROC curve scores on average measured across 10 different types of cancers, compared 
to existing MIL approaches. Moreover, we observe from the estimated attentions that 
MINN-SA can identify the TCRs that are specific for tumor antigens in the same T cell 
repertoire.
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of (non-discrete) real numbers. Most MIL applications are MIC, including remote 
sensing [1, 2], computer vision [3], sentimental analysis [4], and especially biology 
[5–7]. In the meanwhile, MIR has relatively scarce literature. We refer readers to [8] 
for more examples in MIC and [9] in MIR. However, as pointed out in [8], benchmark 
MIL datasets have been still limited to predicting binding sites of molecules, image/
text classification in literature. For instances, [8, 10] have conducted a comparative 
study using typical real data examples so-called Musk [11], Text [12], Speaker [13], 
Corel [14], Birds [15], Letters [16], and Tiger/Elephant/Fox (TEF) [12] , which other 
MIL researches have also used [17–23]. In the light of it, there were recent attempts 
to bring brand-new data under the MIL framework [7, 24]: T cell receptor sequencing 
data for cancer detection.

The problem to distinguish normal and cancerous tissues/patients has attracted 
much attention due to its great significance in biomedical fields for cancer prognosis. 
To address this biological problem, past works have used medical images [25, 26], gene 
expressions [27–30], and single nucleotide polymorphisms (SNPs) [31–33], etc. As the 
basis for forming predictive models, the recent appreciation of the roles of the host 
immunity system in tumor biology has motivated researchers to study T cell receptors 
(TCRs) [7, 24, 34–36]. [7] predicted the tumor status of patients using TCR sequences. 
As multiple TCR sequences (instances) are observed together in different T cells in the 
same patient (tumor or normal), the observations naturally fall into the category of MIL. 
The authors conducted a benchmarking study to compare MIC algorithms, but they did 
not treat deep neural networks in depth, thus leaving the performance of neural net-
work models under-explored. Though [37]’s models are included in comparison, they 
are not complex enough to learn successfully the underlying structure of the TCR data, 
thus showing unsatisfactory performance. [24] investigated the multiple instance learn-
ing task that distinguishes T-cell repertoires between tumor and healthy tissues, but they 
assumed the standard MIL assumption which does not consider relative importance 
of instances. [34] proposed a deep learning model called DeepCat that utilizes tumor-
specific or non-cancer TCRs, but DeepCat ignores the bag-structure as well as possi-
bly different contributions of TCRs. Another deep learning model, named DeepLION, 
is proposed by [38], but DeepLION cannot completely remove unimportant instances in 
explaining the bag labels.

Towards bridging this gap, we introduce a novel neural network model, titled 
MINN-SA (Multiple Instance Neural Network based on Sparse Attentions), for can-
cer detection based on TCR sequences. The salient part of the proposal is the sparse 
attention structure that flexibly drops out uninformative instances, thus rendering 
model interpretation more achievable. Recent works from [39–42] also employed 
an attention structure in their neural networks. However, their attention scores are 
dense, meaning none of them is exactly 0, so that irrelevant information for bag clas-
sification could be involved in extracted features. Moreover, the sparsity pattern 
considered in [42] is based on a simple heuristic that keeps top-N instances with the 
largest scores, which lacks of optimality and stability in results. In contrast, equipped 
with the sparsemax function by [43], MINN-SA adaptively discovers the pattern of 
sparsity in attention scores. This flexibility is also beneficial to predictive perfor-
mance, which can be further enhanced by adding the skip connection by [44]. With 
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this state-of-the-art architecture, we achieve the highest overall AUC scores both in 
balanced and imbalanced datasets in the cancer detection problem. Our main contri-
butions are summarized as follows:

•	 We propose a sparse attention-based neural network that drops out uninformative 
instance per bag, achieving model interpretability.

•	 MINN-SA outperforms comparative methods in cancer detection based on TCR 
sequences, achieving the highest AUC scores both in balanced and imbalanced 
datasets.

The remainder of this paper is organized as follows. in “Methods” Section  gives the 
details of our method. in “Result” Section presents the experimental setup and results 
of TCR dataset. Finally, we end in “Discussion” Section with a summary and discussion.

Methods
Multiple instance learning for cancer detection using TCR sequences

In MIL, an observational unit is a bag (a sample). In bag i ( i = 1, . . . , n ), each of mul-
tiple instances is characterized by a vector xij of p features in Rp , j = 1, . . . ,mi , and a 
single label yi is tagged on it. The goal of MIL is to estimate a function f that predicts a 
bag-level label from a set of instances. Note that this function takes a set of instances 
as an input, so it should be adaptive to different number of instances for each bag.

In our application, tissue samples are collected either from normal or cancer patients 
and a set of TCR sequences are identified in each sample by using next generation 
sequencing technologies [7, 45]. The main task is to determine whether a tissue is can-
cerous or not based on its TCR sequences. Here, we treat the tissue type as a bag-level 
label and the set of TCR sequences as multiple instances, all of which are contained 
together in a patient, or a bag. Under this context, we focus on a binary MIC task and 
thus restrict a bag label in {0, 1} ; for example, 0 (a negative bag) is non-cancer and 1 (a 
positive bag) is cancer. The binary classification could be easily extended to the multi-
class setup simply by changing a score function to the softmax function and a loss func-
tion to the multi-class cross-entropy. To associate a series of unlabeled instances to a 
bag label, we adopt the primary instance assumption. In other words, it is assumed that 
a portion of instances, or primary instances, can explain the label while the remaining 
instances, or non-primary instances, are irrelevant to it. In our contexts, those selected 
TCRs represent specialized T cells that the human immune system develops against the 
tumor cells. More specifically, the TCRs recognize the tumor-associated antigens [46, 
47] or tumor neoantigens  [48–50] presented on the surface of the tumor cells, which are 
markers of the tumor cells and distinguish them from normal epithelial cells.

We utilize the sparse attention in the multiple instance neural networks to detect 
such meaningful TCRs. The proposed layer selectively reflects instances’ information 
to an extracted feature vector for final classification. The sparsity enhances the clas-
sifier’s performance and the explainability of classification results. Moreover, the pro-
posed method is computationally efficient. The details of the proposed method are 
presented in the following subsections.
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Numeric embeddings of TCR sequences

We describe the process of numeric embedding of TCR sequences carried out in [7]. 
TCR sequence is a text string comprising a series of amino acids, which is actually a text 
string. According to [51], each amino acid can be converted to five Atchley (latent) fac-
tors that sufficiently represent the attributes of the amino acid. This conversion of a set of 
TCR sequences returns a Atchley matrix, which is inserted into the TCR encoding algo-
rithm [36, 45]. The key part of the algorithm named TESSA is a stacked auto-encoder 
that takes Atchley matrices and returns a set of vectors of fixed length (30 dimensions) 
determined by the number of neurons in the bottleneck layer. The encoded numeric rep-
resentation facilitates the usage of TCR sequence data. Most MIL algorithms are only 
compatible with the numeric type of data, especially for those methods calculating a dis-
tance between instances (or bags). We refer to [7] for more information about the data 
and processing details. In particular, we do not claim any original contribution to the 
data.

We mention that there are other sequence processing methods such as [52]. The auto-
encoder TESSA offers satisfactory performance in our datasets. However, practitioners 
can always experiment on other methods for potentially better performance.

Neural networks based on sparse attention

We propose a neural network based on sparse attention to solve multiple instance classi-
fication problems. The overall structure of our model is illustrated in Fig. 1a, and we give 
details of each component in our neural network below.

The input size is fixed by m∗ × p for each of n bags where m∗ is the hyperparameter that 
decides the number of instances to be included in modeling. If a bag has fewer instances 
than m∗ , then an empty part is padded by zeros. Some of bags have larger instance size 
than m∗ . In the case, we determine the first m∗ instances as our bag instances. Also, we 
keep using this masking information across the whole process. For ease of handling, one 
can easily set m∗ by the largest bag size in data. In “Results” Section, we conduct a sensi-
tivity analysis for choice of the size m∗.

Each layer consists of m∗ × p neurons, but they are not fully connected to the acti-
vation functions in the previous layer as in the usual fully-connected layer. Instead, we 
build the full connections between neurons within each instance, but not across differ-
ent instances (see Fig. 1b). The weights for a fully connected layer are shared across the 
instances to handle the variable number of instances in each bag. Hence, the two consec-
utive layers are connected by a p× p weight matrix (or (p+ 1)× (p+ 1) if a bias term 
is included). The network deals with the non-linearity in data with the rectified linear 
unit (ReLU) [53]. Note that we used fully connected layers rather than convolution lay-
ers because the input features are not locally correlated between adjacent features.

We employed the dropout [54] and skip connection [44] to enhance the predictive per-
formance. The dropout layer is attached after each locally fully-connected layer appears. 
It randomly forces the output variables to be zero with probability 0.3 while training the 
network. It is well known that this layer prevents the complex neural network from over-
fitting on training data. The residual learning framework eases the training of networks 
with stacked layers. The skip connections in the framework explicitly let the layers fit 
a residual mapping instead of hoping stacked layers to directly fit a desired underlying 
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mapping denoted by H(x) . We let the stacked nonlinear layers fit another mapping of 
F(x) := H(x)− x . The bypassing path for a gradient mitigates the vanishing gradient 
issue in neural networks. The empirical studies show that it is easier to optimize the 
residual mapping than to optimize the original. Thus, we employ the skip connection 
to enhance the performance of the locally fully-connected neural network with multi-
layers. The effect of residual connection is demonstrated in  “Ablation study” Section.

The attention layer combines the attention weights {αj}m
∗

j=1 returned by the sparse-
max function [43] with the feature matrix Z ∈ R

m∗×p obtained from the last network 
layer, ending up with a weighted feature vector z̃ = m∗

j=1 αjzj where zj is the j-th row 
of Z and z̃ ∈ R

1×p (see Fig.  1c). The commonly used softmax function does not pur-
sue exact zeros in the output, but the sparsemax function permits zeros in it. Let 
�K−1 :=

{

p ∈ R
K |1Tp = 1, p ≥ 0

}

 be the (K − 1)-simplex. The sparsemax is a function 
mapping vectors in RK  to probability distributions in �K−1:

In our context, the sparsemax function takes attention scores and encourages some of 
them to be zero if they do not exceed some thresholding value. As shown in [43], the 
threshold is adaptively determined from the scores, not manually by users like hard/
soft-thresholding functions. The manual adjustment of the attention threshold uses an 
additional hyperparameter to determine redundant attention scores forced to be zero. 
If some of the attention scores are less than the threshold, we manually set the attention 
score equal to zero. A grid search algorithm usually optimizes the hyperparameter and 
depending on the grid, the optimal value can vary. However, adaptive thresholding with 
the sparsemax function finds theoretically optimal value without heuristic search, lead-
ing to better generalization performance of the prediction model by training with the 
optimal hyperparameter. Moreover, adaptive thresholding is computationally more effi-
cient than manual thresholding because it requires no validation procedure to optimize 
the threshold value.

For each bag, two scores, which correspond to classes of tumor and normal tissues, 
are converted to probabilities, which is easier to interpret. The transition is done by the 
sigmoid function. The input of classification layer is batch-normalized feature vector 
z̃∗ ∈ R

1×p and the output is a scalar. The aggregated feature vector z̃ may have different 
means and variances across components, which could hamper the network from learn-
ing data stably. Thus, we apply the batch normalization [55] to overcome this difficulty.

We should mention the difference between the proposed attention structure and the 
others from the previous works. Derived from [39–42], the attention scores are strictly 
larger than zero. Thus, it is challenging to discard unimportant or non-primary instances 
that have little to do with bag classification. In contrast, MINN-SA allows the attention 
scores to be sparse or have many zeros, meaning that strictly positive weights are only 
given to the primary instances responsible to bag classification. This is an attractive 
instance selection because it transparently shows which instances are chosen in model 
training and thus facilitates one to interpret classification results only depending on the 
selected instances. Moreover, our selection is more advanced than the elementary top-N 
rule [42] and free from tuning parameters often required in thresholding operators.

(1)sparsemax(z) := argmin
p∈�K−1

�p− z�2.
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Computation

We implement the method with a deep learning framework, PyTorch 1.8.1 [56] with 
CUDA 11.1 [57]. The computation system consists of Intel i9-10900 CPU, 32GB RAM, 
and RTX 3090 GPU. It takes 0.01 seconds for each epoch in the training stage. We stop 
the training after 100 epochs and determine the best performing model during the train-
ing procedure. Therefore, the whole training process approximately takes 1 second in 
our computation system setting. Referring to the computational time results from [7], 
the proposed method is more efficient than other multiple instances learning methods 
in computation.

Results
In this section, we showcase our novel model in distinguishing tumor and normal tis-
sue samples from different types of cancers. Different existing methods are compared 
against our model in terms of predictive accuracy. Moreover, we provide the instance 
selection result derived from the estimated attention weights. Lastly, we conduct an 
ablation study to examine contributions of individual components to our model.

The real datasets we analyze are from The Cancer Genome Atlas (TCGA) database, in 
whole generated by the TCGA Research Network1. Normal and healthy tissues are col-
lected for 10 types of cancers listed in Table 1. As mentioned in  “Numeric embeddings 
of TCR sequences” Section, these samples are processed through the next generation 
sequencing, TCR reconstruction techniques, and TCR encoding algorithms so that the 
genomic data from the donors are converted in numeric vectors.

Setting

To figure out how they behave in different scenarios, we test the comparative models 
under two scenarios: (1) the balanced case and (2) the imbalanced case. The former 
has an equal number of positive (tumor) and negative (normal) bags, while the latter 
sets about 10% of bags to be positive. The balanced data is commonly used and often 
preferred in machine learning literature. The other one is to capture characteristics of 
large population cancer screening where few patients have tumors [7, 58, 59]. To cre-
ate a dataset for each cancer type, we subsample normal and tumor tissues to keep the 
aimed proportion of positive (tumor) bags. The sample size of each dataset is tabulated 
in Table 1.

Table 1  The sample size for each cancer type

Half of the samples are tumor tissue samples for the balanced case, while about a tenth of them are for the imbalanced case

Cancer BRCA​ DLBC ESCA KIRC LUAD

Balance 404 90 332 404 404

Imbalance 225 225 225 225 225

Cancer LUSC OV SKCM STAD THYM

Balance 404 404 404 404 216

Imbalance 225 225 225 225 225

1  https://​www.​cancer.​gov/​tcga

https://www.cancer.gov/tcga
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For model training and validation, we conduct 10-fold cross validation (CV) to split 
training and testing datasets. On the testing dataset, the Area Under the Curve (AUC) of 
each method is calculated based on the Receiver Operating Characteristic (ROC) curve. 
We follow the same experimental design in the preceding work [7] for fair comparison.

Benchmarking on cancer detection

To benchmark the proposed model, 18 MIC methods are considered, which are listed in 
Table 2. We refer to Section 3 of [7] for a detailed exposition about these methods.

Figure 2 shows average AUC values by methods for the ten cancer types. Remarkably, 
MINN-SA dominates all methods in most of cancer types. Out of 10, MINN-SA wins 
in 7 types (BRCA, ESCA, KIRC, LUAD, OV, SKCM, STAD) for the balanced case and 
in different 7 types (BRCA, ESCA, KIRC, LUSC, OV, SKCM, THYM) for the imbal-
anced case. KIRC, LUAD, SKCM, LUSC are the four most immunogenic cancer types 
[72], meaning they have a lot of T cell infiltrations. It makes sense these cancer types are 
among the ones [72] for which our model performs the best, which investigates TCRs of 
T cells for classification. Generally, when the class distribution is balanced, each model 
shows more stable performance [72]. The gap between MINN-SA and the second best 
method is considerably big in BRCA and KIRC datasets for the imbalanced case.

Figure  3 shows the boxplots of all methods in an ascending order of median AUC. 
MINN-SA tops in both balanced imbalanced cases, with medians 74.40 and 81.80, 
respectively, followed by EMD-SVM with 72.20 and 75.40. To demonstrate the supe-
riority of the proposed method over comparative methods, we conducted Wilcoxon 
signed-rank test on the best and second-best methods with rank statistics. Our pro-
posed method achieves the best performance in terms of average rank over cancers. The 
average ranks of the proposed method are 2.3 and 2.2 in balanced and imbalanced cases, 
respectively. The second best method is EMD-SVM, whose average ranks are 2.7 and 5.2. 
In the balanced case, the p-value is 0.0372, and the p-value for the imbalanced case is 
0.0043. Our proposed method outperforms other approaches in both cases with statisti-
cal significance. For detailed AUC values averaged over cancer types, See Table 3.

Moreover, the proposed MINN-SA enjoys interpretable results from selected 
instances, which EMD-SVM does not afford. Also, MINN-SA is not very sensitive to 
class imbalance. Contrary to it, most MIL methods have degraded performance for the 
imbalanced case, calling for further modifications; for example, data generation or mod-
ifying the loss function of the classification model [73–75].

Table 2  Abbreviations of 18 comparative methods including the proposed method “MINN-SA” and 
their original references

18 comparative methods

ADeep [22] BoW [10] CCE [60]

CkNN [61] EMD-SVM [62] EMDD [63]

SI-kNN [8] MI-SVM [64] miGraph [65]

MILBoost [66] MILES [67] MInD [68]

mi-Net [69] MI-Net [69] mi-SVM [64]

NSK-SVM [70] SI-SVM [71] MINN-SA
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Attention of instances

In Fig.  4, attention weights of instances are displayed in heatmap. The heatmap is 
given in a n×m∗ matrix form where the weights are colored in blue-white spectrum 
and the masking area (no instances) in gray. The visual inspection demonstrates that 
the attention weights estimated by MINN-SA are sparser than those by the softmax-
based method. For the case based on the softmax function, all instances have strictly 
positive weights, which is depicted by smooth patterns in the heatmap. Consequently, 
the dense weights makes the aggregated feature vector from the attention layer 
depend on redundant information for classification. On the other hand, MINN-SA 
forces the attention weights of insignificant instances to be exactly zero, which makes 
decisions of MINN-SA independent of them. In our data, the selected instances are 
likely the TCRs that are specific for tumor antigens, such as tumor neoantigens or 
tumor associated antigens, presented on the surface of the tumor cells.

To prove this claim, another validation experiment is conducted. We extract all 
virus-related TCRs from http://friedmanlab.weizmann.ac.il/McPAS-TCR/. We embed 
the 31315 TCRs in 30-dimensional space via the TCR encoder TESSA mentioned 
in  “Numeric embeddings of TCR sequences” Section. Then, we measure Euclidean 
distances between all pairs of TCRs from the new database and TCGA database. By 
averaging the distances for each TCR from tumor/normal samples of TCGA, we can 
compare how close each TCR is to the virus-related ones. We focus on the three can-
cer types (ESCA, OV, STAD) where the classifiers considered show best performance. 
We show boxplots to compare distances. Recall that MINN-SA estimated weights of 
instances, so we know which are primary/non-primary.

In Fig.  5 above, tumor bags (Label=1) have larger distances in primary instances 
compared with non-primary instances (all p-values close to 0), which implies the pri-
mary instances responsible for bag classification are not virus-specific, but tumor-
specific. This is opposite in normal samples (Label=0), where the primary instances 
are specific to non-tumor immunologic events, such as virus infection but of course 

Table 3  The AUC for various methods averaged over cancer types

The number in parenthesis is the average standard deviation of AUC from 10-fold CV across cancer types. The last method 
(“Average”) shows the mean and the standard deviation of AUC values from all methods except MINN-SA. Numbers in 
boldface are the best 3 methods in each of balanced and imbalanced cases

Method ADeep BoW CCE CkNN EMD-SVM

Balance 66.44 (8.18) 68.74 (1.60) 69.89 (1.17) 51.97 (1.85) 72.67 (1.23)
Imbalance 70.48 (15.33) 64.28 (4.90) 61.91 (3.82) 52.33 (3.65) 70.19 (2.04)
Method EMDD mi-Net mi-SVM MI-SVM miGraph

Balance 56.98 (3.81) 67.66 (9.03) 67.08 (1.48) 67.87 (1.58) 63.88 (1.49)

Imbalance 62.67 (4.67) 63.79 (17.66) 64.69 (3.50) 66.55 (2.94) 59.50 (2.62)

Method MILBoost MILES MInD MINet MINN-SA

Balance 50.83 (2.31) 68.94 (1.40) 67.03 (1.66) 58.07 (14.25) 73.88 (8.82)
Imbalance 59.89 (2.45) 66.05 (3.90) 65.94 (2.85) 35.28 (16.10) 79.20 (17.18)

Method NSK-SVM SI-kNN SI-SVM Average

Balance 70.00 (1.31) 66.50 (1.48) 66.72 (1.61) 64.78 (12.39)

Imbalance 63.43 (3.12) 57.63 (5.16) 65.05 (2.94) 61.74 (16.80)
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Table 4  Comparison of the four models in the ablation study

Structural difference is checked in the second and third rows where “ × ” means absence of such structure and “ � ” means 
presence of it. Their average AUC values are summarized in the last two rows

FC Skip Sparse Proposed

Skip connection × � × �

Sparsemax layer × × � �

Balance 66.44 69.61 70.33 73.87

Imbalance 70.47 73.79 75.61 79.19

Fig. 1  Description of the proposed neural network
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other events as well. As a result, this additional analysis proves well the performance 
of instance selection using MINN-SA, which is directly related to its interpretability.

Extracted features

Figure 6 shows the extracted features before the last classification layer. The heatmap is 
given in a n× p matrix form colored in a blue-yellow spectrum. It can be seen that the 
extracted features using the sparsemax function (left) are more activated than using the 
softmax function (right). Hence, the difference between the features in each observation 
of the sparsemax case is more distinct than the softmax case. The results demonstrate 
that the extracted features using the sparsemax function are more informative to char-
acterize the characteristics of each sample. We believe that the sparsity in the proposed 
attention structure distinguishes the instances responsible for the bag classification so 
that the aggregated features can accurately discriminate bags in the classification layer.
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Fig. 3  Boxplots of the AUC values across different methods in comparison. They are ordered by median AUC. 
Each point is the average AUC values over 10-fold CV and different colors are used to show types of cancer

Fig. 4  Heatmap of estimated attention weights via the sparsemax (left) and softmax (right) function. 
Samples are reordered by the number of instances and the masking area (no instances) is colored in gray. Red 
and green labels indicate tumor and normal samples, respectively. Here, we show the balanced case for DLBC 
cancer data
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Ablation study

Firstly, we perform an ablation study to measure contributions of the two components 
to our neural network: (1) the skip connection and (2) the sparsemax function. Thus, we 
set a baseline model, denoted by “FC” (short for “fully-connected”), by removing the two 
components from MINN-SA, and we add each component one after another to “FC”. 
This leads to the four comparative models shown in Table 4. Note that “FC” is the model 
used in [22], and “Proposed” is MINN-SA.

Figure 7 shows AUC values of the four models for different cancer types. “Proposed” 
outperforms the others in most cases; otherwise it makes a close second. The superi-
ority of “Proposed” is less distinct in the imbalanced case, but it always takes the first 

p = 0.012 p = <2e−16 p = 0.42 p = <2e−16 p = 0.59 p = <2e−16
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Fig. 5  Boxplot of Euclidean distances (y-axis) averaged across virus-related TCRs. In x-axis, we indicate the 
bag label (1:tumor, 0:normal). The mean difference between primary/non-primary instances are tested by 
Wilcoxon rank-sum test, whose (raw) p-values are given

Fig. 6  Heatmap of extracted features via the sparsemax (left) and softmax (right) function. Values are 
min-max normalized and transformed in log-scale. Red and green labels indicate tumor and normal samples, 
respectively. Here, we show the balanced case for DLBC cancer data
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or second place, and thus achieves the highest AUC value 79.19 in average followed 
by 75.61 (see Table  4). These results lend strong support to the proposed method 
against the existing multiple instance neural network model by [22], a fully-connected 
neural network based on the softmax function without the skip connection. Accord-
ing to the known phenomenon of immunodominance in the field of immunology [76, 
77], not all instances own necessary information and thus such instances would be 
better removed for classification by the sparse attention structure. The skip connec-
tion also proves valuable for this specific application. Interestingly, the performance 
is the best when both skip connection and sparsemax function are utilized together. 
This phenomenon aligns with the previous study [78] that shows combining regulari-
zation tricks can achieve the best classification performance.

In the following ablation study, we assess the sensitivity to the maximum number of 
instances per bag. We have tried different maximum numbers by m∗ = 30, 60, . . . , 150 
and their AUC values are reported in Fig. 8.

The results show that there is no significant difference in classification performance 
according to the hyperparmeter m∗ . This implies that the absolute amount of data 
increases as m∗ increases, but useful information learned for classification could be 
limited. However, as shown in Fig. 9, bags with more than 30 instances belong to the 
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Fig. 7  The AUC of four models across different cancer types. Each bar denotes the average AUC values over 
10-fold CV
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minority of cases, calling for caution about generalization of this result to other appli-
cations. Hence, one should take characteristics of data in hand into account to decide 
which range of m∗ would be explored. The bag size m∗ is a hyperparameter for the 
machine learning model and can be optimized by validation procedures such as k-fold 
cross-validation.

Discussion
This paper shows that MINN-SA has improved performance on most cancer types com-
pared to the existing methods in predicting tumor vs. normal tissue samples using TCRs. 
The results imply that a deep neural network is suitable for multiple instance learning. In 
contrast, traditional statistical approaches may not work that well, and this is because 
the deep learning approaches can capture very complicated bag-instance structures. 
The flexible structures of deep neural networks reflect the bag-instance information 
efficiently through purely data-driven approaches. For statistical approaches, such bag-
instance relationships have to be assumed and sophisticatedly specified. We believe the 
hand-made specifications are vulnerable to data variations such as cancer types.

The prediction performance can be varied depending on data distributions which are 
different for each cancer type. The proposed method describes some cancer data distri-
butions well, but in some other cases, it shows worse performance than other methods. 
It is closely related to the “No Free Lunch” theorem in machine learning, [79]; that is, no 
algorithm can always perform better than others for any data distribution.

The proposed method achieves better performance in imbalanced cases. We believe 
that the sparse attention leads to the improvement. When the data are imbalanced, it is 
harder to determine the appropriate decision boundary for classification, and the bound-
ary between classes could be vague in empirical cases. The sparse attention removes 
noisy instances from blurring the decision boundary. We conjecture that such feature 
improvement effects are more significant in the imbalanced cases.

Setting m∗ as a hyperparameter is closely related to computational efficiency. Fig-
ure 9 of the revised manuscript shows that most bags have 30 or fewer instances. In 
this situation, if m∗ is set large, most of the bags have redundant padding instances, 
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Fig. 9  The distribution of bag sizes in the balanced dataset. Most of bags have less than 5 instances, 
expressing heavy-tailed features
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resulting in inefficiency in both memory and computation. Thus, our model is 
designed to allow the adjustment of m* according to an actual situation. The per-
formance comparison results on the different m∗ values can be seen in Fig. 8 of the 
revised manuscript. Overall, the performance difference does not seem to be signifi-
cant, and the performance variation pattern is unclear. Therefore, it is recommended 
to optimize performance by choosing an appropriate m∗ . Note that users can set it to 
the maximum instance number if they do not wish to tune m∗.

Potentially, the proposed model can be applied to various MIC problems where 
instances are naturally arranged in sets and weakly annotated. The applications 
include biology and chemistry, computer vision, document classification, web min-
ing, reinforcement learning, speech recognition, and time series classification [8]. 
Specifically to biology and bioinformatics, bags can consist of complex chemical 
or biological entities; e.g. protein-protein interactions [80–82] where a bag can be 
defined between two objects (proteins or protein complexes) and instances defined by 
pairwise combinations of sub-units in each object. Thus, a seemingly non-MIL prob-
lem can be reformulated into a MIL problem. We conjecture that MINN SA might 
be adapted to other prediction problems in bioinformatics, such as (lncRNA-miRNA 
association prediction [83]; drug-disease association prediction [84, 85]). Certainly, 
there is ample space for future research.

The instance selection procedure by the sparse attention could be considered a reg-
ularization technique commonly used in statistical learning [86]. The LASSO [87] is 
a representative method to select essential features with sparsity. Regression coeffi-
cients of LASSO have non-zero or exact zero values by a shrinkage constraint. The 
features with non-zero coefficients affect the response variations, but the features 
with zero coefficients have no influence. The sparsity removes redundant feature 
information in calculating responses. The proposed method and the LASSO share 
a similar concept of selecting important information from data. The difference is 
that LASSO selects important features, but the proposed method selects important 
instances in a bag. The relationship between the sparse and basic attention for MIL is 
demonstrated by the relationship between LASSO and Ridge regression [88]. Ridge 
regression is also a shrinkage method, but the coefficients are not forced to be exact 
zeros. Thus, it is hard to interpret the Ridge regression results regarding feature selec-
tion. In the MIL problem, previous methods based on attention are inappropriate for 
explaining classification results because all the attention values are non-zero.
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