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Abstract 

Background: The expression changes of some proteins are associated with cancer 
progression, and can be used as biomarkers in cancer diagnosis. Automated systems 
have been frequently applied in the large‑scale detection of protein biomarkers and 
have provided a valuable complement for wet‑laboratory experiments. For example, 
our previous work used an immunohistochemical image‑based machine learning 
classifier of protein subcellular locations to screen biomarker proteins that change 
locations in colon cancer tissues. The tool could recognize the location of biomarkers 
but did not consider the effect of protein expression level changes on the screening 
process.

Results: In this study, we built an automated classification model that recognizes pro‑
tein expression levels in immunohistochemical images, and used the protein expres‑
sion levels in combination with subcellular locations to screen cancer biomarkers. To 
minimize the effect of non‑informative sections on the immunohistochemical images, 
we employed the representative image patches as input and applied a Wasserstein 
distance method to determine the number of patches. For the patches and the whole 
images, we compared the ability of color features, characteristic curve features, and 
deep convolutional neural network features to distinguish different levels of protein 
expression and employed deep learning and conventional classification models. 
Experimental results showed that the best classifier can achieve an accuracy of 73.72% 
and an F1‑score of 0.6343. In the screening of protein biomarkers, the detection accu‑
racy improved from 63.64 to 95.45% upon the incorporation of the protein expression 
changes.

Conclusions: Machine learning can distinguish different protein expression levels 
and speed up their annotation in the future. Combining information on the expression 
patterns and subcellular locations of protein can improve the accuracy of automatic 
cancer biomarker screening. This work could be useful in discovering new cancer bio‑
markers for clinical diagnosis and research.
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Background
Protein biomarker screening is important for the early diagnosis of cancers [1]. Pro-
tein biomarkers are usually identified by detecting the difference in protein expression 
between normal and cancerous tissues [2] and are generally grouped into two catego-
ries, i.e., expression biomarkers and location biomarkers [3]. The former is based on the 
changes in protein expression patterns, and the latter is based on the changes in protein 
subcellular locations. Both can reflect different disease states and have played remark-
ably roles in disease diagnosis. For example, protein HE4 (Human Epididymis Protein 
4) is not expressed in normal surface epithelium and highly restricted in normal tissues 
but is overexpressed in ovarian cancer and lung adenocarcinoma cells [4–6]. GOLPH2 
expression is significantly higher in prostate cancer glands than in normal glands, so this 
protein is regarded as a promising candidate biomarker for prostate cancer diagnosis [7]. 
For the location biomarkers, protein cyclin D1 is mainly localized in the cytoplasm and 
nucleus of normal tissues but is only detected in the nucleus of ovarian cancer cells [8]. 
The translocation of protein FOXO3 from nucleus to cytoplasm is associated with poor 
survival among patients with breast cancer [9].

The large-scale screening of cancer biomarkers has provided a critical reference for 
wet-laboratory, where machine learning is the core tool of automated screening [3, 10–
12]. For example, Murphy’s group simultaneously considered protein expression level 
and subcellular location, and used the numerical features of image patches to detect dif-
ference between normal and cancerous tissues [3]. Their work simultaneously consid-
ered both factors and effectively identified biomarker proteins; however, they did not 
train classification models and cannot determine the exact changes of protein distribu-
tion in cancer tissues. We previously described a classification model that can recognize 
the subcellular location of proteins in immunohistochemical (IHC) images and detect 
location biomarkers [13]; however, the detection performance was largely affected by the 
variations of protein expression. Hence, an automated system that can comprehensively 
and accurately detect the changes of protein distribution is needed.

In this work, we constructed an automated classifier for that recognizes protein 
expression levels in IHC images, and then incorporated it with our previously built loca-
tion predictor to detect cancer biomarkers. Image patches were used as input in the clas-
sifier, and a Wasserstein distance strategy was applied to determine the patch number. 
Color features, characteristic curve features and deep learning features were employed 
to describe the protein expression levels in the images and patches and then incorpo-
rated into three different classification models. Classification and application results 
demonstrated that the model can accurately recognize the protein expression levels and 
greatly improve the biomarker identification.

Results and discussion
The flow chart of the experiments in this study is depicted in Fig. 1, which includes two 
stages, i.e., training classifiers and screening cancer biomarkers. In the first stage, we 
built machine learning models that can classify three protein expression levels in IHC 
images, i.e., high, medium, and low. The model building has three steps, i.e., extract-
ing patches, calculating the features of patches or images, and training deep learning or 
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conventional classification models (METHODS). In the second stage, we incorporated 
the best protein expression level classifier with the previous protein subcellular location 
predictor to test whether the screening of protein cancer biomarkers can be improved.

Determining the patch extraction parameter

In protein expression prediction, whole IHC images are difficult to directly analyze 
because of their unstained stromal and unspecific backgrounds. Assuming that the 
highly stained cellular regions can represent the protein expression patterns of the whole 
images, we used a low-pass filter to slide on protein channels. We then separated these 
channels from the IHC images by linear spectral unmixing (LIN) to extract the square 
patches of interest with the highest protein expression levels. on the basis of our previ-
ous work about IHC image processing, the patch size was set to 224 × 224 pixels [13].

To determine the number of patches extracted from each IHC image, we conducted 
a preliminary experiment by randomly selecting 100 proteins for each expression level 
from the modeling dataset to search for the patch extraction parameter. For each patch 
number in range [11, 21,…, 201], we calculated the protein fraction values for the 
extracted image patches, and used the Wasserstein distance between the distribution 
values of different protein expression levels to measure the classifier’s ability to distin-
guish the protein expression levels. We repeated the random selection of proteins for 
five times to reduce bias, and the average calculated distances are shown in Fig. 2.

The sum of Wasserstein distances (the red line) showed an increasing first and then 
decreasing trend with the increase in the number of image patches. This finding indi-
cated that in distinguishing the expression levels in the images, sufficient patches must 
be extracted to obtain information. However, when the patches are excessive, overlaps 
would occur and lead to information redundancy and noise introduction. The results 
showed that the maximum Wasserstein distance can be obtained when the number 
of patches from one image was 81 (Fig.  3); therefore, we adopted this number in the 

Fig. 1 Framework of the experiments in this study
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Fig. 2 Wasserstein distances between different protein expression levels. The black dotted box represents 
the maximum value of the combined Wasserstein distance. WD: Wasserstein distance

Fig. 3 Some example IHC images and positions of extracted patches
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following experiments. As illustrated Fig.  2, the distance between high and low levels 
was roughly equal to the sum of the distance between high and medium levels and the 
distance between medium and low levels. This result reflected that the Wasserstein dis-
tance method could accurately describe the difference and distance among the three 
expression levels.

Investigating classification ability of statistics of protein expression

The above experiments for determining the patch parameter applied the protein fraction 
values of patches to represent the three expression levels. We also investigated whether 
these values or the intensity of the protein channels can be used to directly distinguish 
the expression levels.

For the protein fraction values, we extracted 81 patches from each image in the ran-
domly selected preliminary dataset and then calculated the protein fraction values. 
We fitted the protein fraction values of all image patches under each expression level 
with Gaussian distribution, and the Gaussian distribution results for the three levels are 
shown in Fig. 4a. Two thresholds can be obtained from Fig. 4a. When the protein frac-
tion value is less than 52, we classify the patch into the low class. When the protein frac-
tion value is greater than 52 but less than 68, we classify the patch into the medium class. 
When the protein fraction value is greater than 68, we classify the patch into the high 
class. Finally, these patches served as the basis to determine the label of the image. We 
applied these two thresholds to the test set of 10-fold cross validation, and the evaluation 
results were 37.23% for accuracy, 51.20% for recall, 45.48% for precision, and 32.89% for 
F1-score. For the intensity of the protein channels, we firstly removed the background of 
all the protein channels, and then computed the mean intensity of each channel. Gauss-
ian distribution was also used to fit the intensities for the different protein expression 
levels (Fig. 4b).

The performance of classification by directly using the protein fraction values or inten-
sity was not ideal probably because the fractions of protein regions or the color in the 
image patches cannot fully reflect the protein expression levels. The expression levels 
also considered other factors like cell types in the images. In view of the unsatisfactory 
classification using the two statistics, we resorted to other solutions for classification.

Fig. 4 Gaussian distribution of a protein fraction values and b intensity of protein channels for high, medium 
and low expression levels
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Classification results obtained using the whole images and interest patches

To classify the protein expression level patterns in IHC images, we extracted 
1247-dimensional handcrafted features, including color features and characteristic 
curve features, and deep learning features from the selected patches and the whole IHC 
images. The most representative features were selected by stepwise discriminant analysis 
(SDA), and then applied to train support vector machine (SVM), random forest (RF), 
and deep neural network (DNN) classifiers. The deep learning features used pre-trained 
networks including ResNet18, ResNet50, ResNet101, and DenseNet201. The whole IHC 
images and patches were fed into those networks to get feature maps. The features of 
patches in one image were averaged to obtain the image features, and then after the SDA 
step, the features were fed into the different classification models to perform 10-fold 
cross validations. For the DNN model, a feedforward artificial neural network was used 
in this experiment. The DNN network architecture was determined by searching the 
number of layers and the number of neurons in each layer (Additional file 1: Table S1). 
Finally, we employed two hidden layers with 200 neurons per layer. Given that the fea-
ture extraction step has obtained abundant information on protein expression levels 
from the images, the network does not need to be deep.

Figure  5a shows the 10-fold cross validation results of the classifiers. The deep 
learning feature method only presented the results of the ResNet101 network, 
and results of other networks were shown in Additional file  1: Table  S2. Accord-
ing to these findings, the whole IHC image-based and patch-based classifiers could 

Fig. 5 Classification results of different protein expression levels. a Classification results of SVM, RF, and DNN 
models based on images and patches. b Confusion matrices calculated based on results of the image‑based 
SVM model and patch‑based DNN model
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distinguish different protein expression levels to some extent. Their performances 
were comparable, except for those based on deep learning features. The RF and 
DNN methods achieved a great performance when using the patches as input, and 
the SVM models performed well when using the image handcrafted features. But in 
the deep learning features from pre-trained network, The SVM, RF and DNN meth-
ods achieved higher performance when using the patches as input. It points out that 
the deeper layers of the network can capture the local features of the image. Con-
sidering that the protein expression levels of images are manually annotated by spe-
cialists, who tended to focus on the global image staining, rather than the local cell 
regions with high protein expression, we chose the image-based SVM classifier as 
the tool to detect protein expression changes in cancerous tissues.

The SVM models achieved the highest accuracy, and the DNN obtained the best 
F1-score. This inconsistency was due to the imbalance of data. In our dataset, the 
number of images in the high or medium class was over three times more than that 
in the low class; this imbalance caused many images in the low class to be misclas-
sified into the medium class (Fig. 5b). As a consequence, the SVM models obtained 
high accuracy but low F1-score. Given its classification performance and simple 
image preprocessing, the image-based SVM classifier was still the optimal model for 
further application.

Results of cancer biomarker screening

Our previous work screened cancer biomarkers using changes in the subcellular 
locations of proteins between normal and cancer tissues [13]. However, this method 
was not sensitive to the biomarkers that change their protein expression levels but 
do not translocate. Therefore, the protein expression patterns must be considered 
for a comprehensive biomarker screening. We applied the final SVM model to pre-
dict the literature biomarker dataset (LBD) and test its ability to distinguishing pro-
tein cancer biomarkers (METHODS). The LBD includes 770 images of 22 proteins 
in normal and cancerous colon tissues, and the accuracy of the predicted expression 
levels for images of normal and cancer tissues were 72.32% and 68.69%, respectively. 
We performed an independent sample t-test based on the predicted score vectors 
and used the P values to assess the significance of protein expression changes.

Table 1 shows the predicted protein expression levels and the P values of protein 
expression patterns. For comparison, we also listed the P values of the screened loca-
tion biomarkers based on protein subcellular locations [13]. The results showed that 
14 out of the 22 proteins can be detected as cancer biomarkers based on their expres-
sion levels. Comparison revealed the detection rate could be improved from 63.64% 
(screening using only subcellular locations) to 95.45% (considering expression level 
and subcellular location), that is, 21 of 22 proteins in the LBD dataset could be iden-
tified as cancer biomarkers. In particular, proteins NDRG1, BCL2 and CYSLT1 do 
not largely change their subcellular locations but show significant changes of expres-
sion level in cancer colons, so they can be correctly identified by our method. Hence, 
the combination of prediction methods for protein subcellular location and expres-
sion level could provide an effective way to screen cancer biomarkers.
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Conclusions
In this work, we proposed a method that can automatically classify the protein expres-
sion patterns in IHC images and proved that it can improve the practicability of cancer 
biomarker screening. The feature descriptors can be effectively used in classification to 
automatically score the protein expression patterns in IHC images. For cancer biomarker 
screening, the combined information of protein subcellular location and expression pat-
tern can be used to precisely and efficiently identify cancer biomarkers.

At present, the research on cancer biomarkers screening requires automatic meth-
ods for improved accuracy. Our future research will focus on analyzing additional tex-
ture features representing the morphological features of membrane staining to improve 
the classification accuracy, and help reduce the overlap between low and medium 
and between high and low classes. Additionally, accurate data labeling is necessary to 
improve the classification performance. However, the labeling of protein expression 
information is a time-consuming and laborious project. The labeled data are limited and 
may contain labeled noise and unlabeled data. Therefore, our future work will consider 
using weakly supervised learning, semi-supervised learning or unsupervised learning to 
improve the classification of protein expression patterns.

Table 1 Results of identifying protein biomarkers

The bold are the screened cancer biomarkers

Protein Predicted expression level 
change

Expression level change (P 
value)

Subcellular 
location change (P 
value)

BCAR1 Medium → Low 0.5437 Nucl.: 0.0455
ELAVL1 Medium → High 0.7435 Cytopl.: 3.6e-5
NDRG1 High → Medium 3.37e-4 PlasMem.: 0.1675

Nucl.: 0.1005

CCNEL Medium → Low 0.0706 Nucl.: 0.8563

AHR Medium → Low 0.0094 Nucl.: 0.0158
p68 Medium → Low 0.0029 Cytopl.: 4.6e-7
EBP50 High → Medium 0.1086 Nucl.: 0.0076
CDKN1B Medium → Low 2.14e-3 Cytopl.: 6.65e-8
CACYBP Medium → High 2.85e-7 Nucl.: 1.03e-5
ARRB1 High → Low 0.5986 PlasMem.: 1.12e-3
p53 High → Medium 9.34e-3 Cytopl.: 0.0498

Nucl.: 0.0365
BRD4 High → Low 0.0376 Nucl.: 1.3e-5
AKT1 Medium → Low 1.04e-3 Cytopl.: 0.0204
PRKCA Medium → Low 2.13e-3 PlasMem.: 4.04e-11
SMAD3 Medium → Low 0.0225 Nucl.: 0.0249
HNRNPK High → Low 0.1058 Cytopl.: 3.46e-4

Nucl.: 0.0110
PRKCB Low → High 0.3276 PlasMem.: 0.0240
ß‑catenin Medium → Low 0.6826 Cytopl.:1.65e-4

Nucl.: 2.86e-4
STAT3 Medium → Low 5.88e-4 Nucl.: 5.2e-5
TET2 Medium → High 0.0491 Cytopl.:1.86e-3
BCL2 Low → Medium 0.0203 Nucl.: 0.2644

PlasMem.: 0.1820

CYSLT1 Low → Medium 0.0178 Nucl.: 0.5582
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Methods
Datasets

In this study, our image datasets were collected from the human protein atlas (HPA, 
https:// prote inatl as. org) database, a public online database containing more than 1 
million IHC microscopy images showing the distribution of proteins in healthy and 
cancerous human tissues [14, 15]. Each IHC image is a colored RGB image and has 
approximately 3000 × 3000 pixels. For quality assurance, all the images in the HPA are 
generated under the same imaging conditions, and the expression levels were anno-
tated by trained experts. In the HPA, all the IHC images are manually annotated by 
a specialist and then verified by a second specialist to provide an overview of protein 
expression. Basic annotation parameters for each image include the evaluation of stain-
ing intensity (negative, weak, moderate, or strong) and fraction of stained cells (< 25%, 
25–75%, or > 75%). In this work, we selected IHC images according to two criteria to 
ensure the quality of data: (a) staining intensity was annotated as strong or moderate, 
and (b) the fraction of stained cells was annotated as greater than 25%. The protein 
expression level of each image was annotated as high, medium, low, or not detected in 
the HPA. The last level means that no protein expression can be detected in the image, 
so we excluded the images classified this level. Therefore, the images in our datasets have 
three expression levels, i.e., high, medium, and low (Fig. 6).

Using the above criteria, we collected two datasets, i.e., modeling dataset and litera-
ture biomarker dataset. The former consists of 6509 IHC images of 1638 proteins in nor-
mal colon tissue, and was used to build classifiers for protein expression level patterns. 
The latter has 22 proteins that have been reported as cancer biomarkers, and was used to 

Fig. 6 Example IHC images with different protein expression levels. a Example images. b An example of 
expression biomarker (TET2) for colon cancer

https://proteinatlas.org


Page 10 of 13Xue et al. BMC Bioinformatics          (2022) 23:470 

validate the performance of the models on screening biomarkers [13]. Additional details 
of the two datasets are shown in Table 2 (modeling dataset) and in Ref [13] (LBD).

Image preprocessing

IHC images are a major source of data in proteomics research. Each image shows a mix-
ture of brownish diaminobenzidine staining and purple hematoxylin staining, where 
regions of a specific protein are stained brown, and nuclei and cell bodies are stained 
purple. Given that the distribution of proteins is the key factor in protein expression 
classification, separating the protein channels is critical in building the classifiers. Our 
previous work showed that LIN performed well in separating protein and DNA channels 
[13], so we continued to use this method to obtain the protein channels.

Patch extraction

To determine how many patches should be extracted from one image, we searched this 
parameter over a range of 11–201 in steps of 10 using a small part of data containing 
randomly selected IHC images labeled with high, medium, and low protein expression 
levels. For each image, we extracted a certain number of patches according to the sepa-
rated protein channel, and calculated the fraction of the areas occupied by protein in 
each patch. Thus, each of the three expression levels would have various fraction values, 
which we then fitted to a gamma distribution. The fraction value distributions of the 
three expression levels are expected to be different, so the criterion for searching the 
patch number was that the optimal number would present the largest distances among 
the three distributions. Here, we used Wasserstein distance to measure the distribu-
tion differences [16] because it has been widely applied and could maintain the origi-
nal feature distributions. For a certain patch number, we can calculate the Wasserstein 
distances between protein expression patterns as described above. If the Wasserstein 
distance could reach the maximum, then the corresponding number of image patches 
would be regarded as the optimal.

Feature extraction and selection

We extracted color features and characteristic curve features from the selected patches 
and the whole IHC images to build classifiers. The color features included image statisti-
cal features color histogram, color moment, color coherence vector, and color correlo-
gram. We extracted the color histogram features to represent image color distributions. 
This step partitioned the underlying color spaces into a fixed number of bins, and each of 
color spaces corresponded to a bin in the histogram [17]. Color moment is a simple and 
effective color feature and uses the mean, variance, skewness, and kurtosis in RGB and 

Table 2 Information of the modeling dataset

Protein expression level Number of proteins Number of 
IHC images

High 573 3211

Medium 488 2675

Low 137 833
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HSV spaces to describe color distributions in images. In the calculation of color coher-
ence, spatial information is first considered to classify each pixel in a given color bucket 
as either coherent or incoherent based on whether it is part of a large similarly colored 
region; the numbers of coherent and incoherent pixels with each color are then used as 
features [18]. Color correlogram calculates the proportion of pixels of a certain color in 
the whole image and reflects the spatial correlation between different color pairs [19].

We also employed a novel feature encoder called characteristic curves, as percentage 
of membrane staining perceived in an image is an important factor for the expression 
level [20].  Specifically, the images were firstly converted to the Hue-Saturation-Value 
(HSV) space, where [h, s, v] represent the stain color components in the HSV space. 
Then the hue and value thresholds were fixed, and only the lower bound for the satura-
tion was specified. The p(slow) denotes the percentage of staining with color in the range 
given by the following inequalities:

In the process of calculating the percentage, the p(slow) was progressively increasing 
typically from 0.1 to 0.5. The distribution of saturation in a certain range was plotted and 
discretized to be the curve features. Thus, the handcrafted features were extracted for 
each patch and for each IHC image, including 1012 color histogram features, 33 color 
moment features, 54 color coherence vector features, 128 color correlogram features, 
and 20 characteristic curve features.

Here, we also extracted deep learning feature from pre-trained networks, i.e., 
ResNet18, ResNet50, ResNet101, and DenseNet201. The feature maps in the last fully 
connected layers of the pre-trained networks were extracted as patch features or image 
features. Each of the pre-trained networks produced an output of 1000 features.

Each patch or the whole image has a high-dimensional feature vector, which will inevi-
tably lead to a disaster of dimensionality if the features are directly fed into classifiers. 
Therefore, we used a feature selection method, i.e., SDA, which has been proved to be 
effective in this field [21], to reduce the feature dimensionality.

Building classifiers

To construct the protein expression level classifiers, we employed SVM, RF, and 
DNN. We the performed 10-fold cross validation and divided the training and test 
sets at the protein level. One protein usually has multiple images, and the protein-
level division would ensure that all the images from the same protein are either in the 
training set or in the test set. In each fold experiment, we fed the features selected by 
SDA into SVM (LIBSVM-3.23 toolbox, https:// www. csie. ntu. edu. tw/ ~cjlin/ libsvm/) 
and RF models to train the classifiers, where the model parameters g and c of SVM 
and the number of trees in RFs were determined by grid search. We also constructed 
a simple DNN model to classify the protein expression levels. The network contains 

(1)h1 ≤ h < h2

(2)

s > slow

(3)
v1 ≤ v < v2

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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two hidden layers, and each fully connected layer contains 200 neurons. In addition, 
the network uses Adam optimizer and a mean square error loss function to optimize 
the weights. We performed 10-fold cross on the network to obtain achievable perfor-
mance estimates, with each fold being trained for 200 epochs.

Screening cancer biomarkers

We explored the performance of the automated model in screening cancer biomark-
ers in LBD. In this study, we utilized the constructed protein expression level clas-
sifiers to identify protein cancer biomarkers, and combined the results with the 
translocation biomarkers. Assuming that a protein has n images of normal colon and 
m images of colon cancer tissue, the expression patterns of this protein in normal and 
cancer colons were separately determined by voting based on the prediction outputs 
of images. We measured the expression changes by conducting an independent sam-
ple t-test for each protein between the n outputted probability vectors of the normal 
tissue images and the m vectors of the cancer tissue images. The t-test would output a 
P value representing significant expression change. A protein was considered to be an 
expression biomarker only when its P value was less than 0.05. These expression bio-
markers served as supplementary to the location biomarkers detected in our previous 
work.
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