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Background
Identifying genes and pathways associated with complex traits is a primary focus for 
advancing the scientific understanding in genomic studies, for which extensive clinical 
experiments and genetic counseling are required [1]. A major challenge is that genomic 
data is usually high-dimensional but with a limited sample size. Currently, there are rich 
public genomic data, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
https://​www.​genome.​jp/​kegg/), which provides gene-regulatory pathways including 
biological regulatory relationships between genes or gene products. These gene-regu-
latory pathways form a network that can be represented as a graphical structure, where 
the vertices are genes or gene products, and the edges are gene-regulatory pathways. 
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Results:  This article proposes a novel method named Grace-AKO for graph-con-
strained estimation (Grace), which incorporates aggregation of multiple knockoffs 
(AKO) with the network-constrained penalty. Grace-AKO can control FDR in finite-
sample settings and improve model stability simultaneously. Simulation studies show 
that Grace-AKO has better performance in finite-sample FDR control than the original 
Grace model. We apply Grace-AKO to the prostate cancer data in The Cancer Genome 
Atlas program by incorporating prostate-specific antigen (PSA) pathways in the Kyoto 
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fies 47 candidate genes associated with PSA level, and more than 75% of the detected 
genes can be validated.
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Inspired by the nature of genomic data, graph-constrained estimation (Grace) offers a 
novel perspective on variable selection for genomic data by taking graphical structures 
into account. The predictors in the network are gene-expression data linked by gene-
regulatory pathways for a specific clinical outcome, which can also be called graph-
structured covariates [2]. These graphical structures, such as gene-regulatory pathways, 
can improve the sensitivity of detecting pathways [3]. Therefore, [4] developed a Grace 
model, network-constrained regularization procedure by encoding the graphical struc-
tures into a Laplacian matrix to incorporate this kind of prior biological information 
into regression analysis. The network-constrained regularization procedure includes the 
Lasso [5], and the elastic net regulation procedure [6] as special cases. Particularly, the 
network-constrained penalty may be transformed to a Lasso-type problem by construct-
ing an augment dataset, which can also retain the automatic variables selection property 
[4]. The augment dataset can extend the sample size from n to n+ p , allowing the model 
to choose p variables despite the fact that n ≪ p . Moreover, because the loss function of 
the network-constrained penalty is a convex function, it can ensure the grouping effect 
of the regression in the case of identical predictors. In accordance with the theorem 
of [4], the quantitative description of the grouping effect is measured beyond a half of 
the elastic net model 1

2�2

√
2(1− ρ) , where �2 is a fixed scalar and ρ is the correlation 

between the vertices, which means that if two vertices are highly correlated (e.g., ρ = 1 ), 
the difference between their coefficient paths could be almost 0. According to [1], the 
optimal policy for this variable selection effort would be to identify significant relevant 
genes and provide error control for these discoveries (both genes and variants). How-
ever, these conventional regression approaches only control false discovery rate (FDR) 
asymptotically with no guarantee in finite-sample settings. Specifically, there is a lack 
of effective approaches for variable selection which can not only integrate the graphical 
structure but also provide a guarantee of finite-sample FDR control.

To address this challenge, we propose Grace-AKO, a novel method for identifying 
genes associated with complex traits of scientific interest that integrates the core concept 
of aggregation of multiple knockoffs (AKO, [7]) with the network-constrained regulari-
zation procedure [4]. The salient idea of knockoff inference is to generate knockoff varia-
bles by mimicking the correlation structure of the original variables without considering 
the response variable (conditionally on the original variables) [8]. Model-X knockoffs, as 
opposed to fixed-X knockoffs, regarded the original variables as random and relied on 
the specific stochastic properties of the linear model, thus extending knockoff inference 
to high-dimensional data [8]. These knockoff variables are applied to control finite-sam-
ple FDR served as negative controls so that the original variables are selected if they are 
considerably more connected with the response variable than their knockoff variables. 
Specifically, the knockoff inference uses various types of feature statistics to determine 
which variables are significant and which are not. The feature statistics impose a flip-sign 
property, which implies that swapping the variables and their knockoffs alters the sign of 
the feature statistics. The methods for constructing the feature statistics are i.i.d. random 
for the “null hypothesis” whose coefficients are zero [8, 9]. To control FDR, [9] devel-
oped a data-dependent threshold whose derivation formula may be regarded as an esti-
mate of the fraction of false discoveries. In addition, variables whose feature statistics are 
larger than the threshold may be selected, and estimations of the FDR can be converted 
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to provide finite-sample FDR control with a high degree of accuracy. However, model-
X knockoffs were generated using Monte Carlo sampling, which made it challenging to 
reproduce the results. Thus, multiple knockoffs were proposed to address this limitation, 
allowing for a more stable finite-sample FDR control and more reproducible findings 
[7, 10, 11]. In particular, statistical aggregation is a typical statistical approach to solve 
instability by aggregating model-X knockoffs inference. Aggregation of multiple knock-
offs (AKO) was proposed by [7], which rested on a reformulation of model-X knockoffs 
to introduce an intermediate feature statistic. It brought the idea from [12] to replicate 
model-X knockoff procedure multiple times, and then performed statistical aggregation 
to generate new intermediate feature statistics. Hence, it is more stable than model-X 
knockoff filter.

Specifically, the key contribution of our proposed Grace-AKO is that we integrate the 
graphical structure to conduct variable selection with finite-sample FDR control. Based 
on the knockoff inference property, we update the Laplacian matrix in the network-con-
strained penalty and perform variable selection with the original explanatory variables 
and their knockoffs. The primary steps of Grace-AKO are summarized as follows. First, 
we generate model-X knockoffs according to the correlation structure of the graph-
structured covariates [8] and encode the graphical structures into a Laplacian matrix 
[13]. Second, we simultaneously fit the graph-structured covariates and their model-X 
knockoffs into the network-constrained regularization procedure to multiple feature sta-
tistics: Lasso coefficient-differences (LCDs). Third, we repeat the above procedures mul-
tiple times and employ the statistical aggregation approach [12] to transform the LCDs 
into new intermediate feature statistics, Aggregated Grace Coefficients (AGCs). Fourth, 
we conduct the Benjamini–Hochberg (BH) procedure [14] on the multiple AGCs to 
select the candidate variables. In our simulation studies, we show that Grace-AKO has 
satisfactory performance, allowing for higher reproducibility of results, and can control 
the FDR in finite-sample settings. We further analyze a prostate cancer data set from 
The Cancer Genome Atlas (TCGA) program using Grace-AKO, and then identify 47 
candidate genes, of which 75% were also found in the previous literature.

The remainder of this article is organized as follows. In “Method” section, we describe 
the method of Grace-AKO under the linear regression framework. In “Results” section, 
we assess the performance of Grace-AKO using simulation studies. In “Application to 
the TCGA Prostate Cancer Data” section, we apply Grace-AKO to a prostate cancer data 
set from the TCGA program by incorporating the KEGG pathways as prior information. 
In “Conclusions” section, we briefly summarize our method.

Method
In genomic studies, we usually apply a regression model to identify genes and pathways 
associated with the trait of interest by linking high-dimensional data (e.g., microarray 
gene-expression data) to the trait. Consider the following linear model where X is a 
n× p design matrix with n observations and p predictors, and y is the response:

where the design matrix X = (x1, · · · , xp) and xj = (x1j , x2j , · · · , xnj), j = 1, · · · , p 
represents a vector of the graph-structured covariates from genomic data (e.g., 

(1)y = Xβ + ǫ,
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gene-expression data), and the coefficient β represents the contribution of the graph-
structured covariates to the trait of interest, and ǫ is a vector of random errors. We fur-
ther assume that the response is centred and the predictors are standardized,

where [p] denotes the set including {1, 2, · · · , p} . The main goal is to estimate 
β = (β0,β1, · · · ,βp) and select the predictors with nonzero contribution. The regulatory 
relationships of biological networks for some complex traits, represented as graphical 
structures between genes or gene products in genomic studies, shed light on underlying 
biological knowledge, where the covariates are the graph’s nodes and the edges indicate 
functional relationships between two genes. The biological networks can be utilized to 
identify the differentially expressed genes [15, 16]. Specifically, in such a graphical struc-
ture, the genes are linked by edges with certain probabilities, where the edge probability 
is interpreted as a weight in an undirected graph to form a weighted graph [2]. To incor-
porate the prior information about the biological networks, [4] proposed a network-con-
strained regularization criterion:

where L is a non-negative Laplacian matrix of a weighted graph containing biological 
networks information, and || · ||1 indicates the L1 norm, and �1 is the Lasso penalty [5], 
and �2 is the penalty for the Laplacian matrix L . Specifically, the Laplacian matrix was 
first introduced by [13], which included numerous properties of the graph by its con-
sistent set of the eigenvalues or spectrum. When p is large, the model (1) is treated as 
“sparse”, in which most elements of the coefficient β are zero [2]. In equation (2), the L1 
norm deals with sparse matrices, and βTLβ induces a smooth solution of coefficients of 
the graph-structured covariates. Additionally, L depicts the graphical structure assum-
ing that set V includes vertices corresponding to the graph-structured covariates, and 
W is the weights of the edges in which w(u, v) denotes a weight of the edge between 
the graph-structured covariates u and v, and the degree of vertex v is represented as 
dv = u∼v w(u, v) . In the genomic data, w(u, v) quantifies the uncertainty of the edge 
between two vertices, such as the probability of an edge connecting two graph-struc-
tured covariates when the graphical structure is constructed from data. Motivated by 
[13], we apply the normalized L [4]:

Therefore, we can rewrite the second penalty term βTLβ of Eq. (2) as follows [4]:

The network-constrained regularization procedure integrates the known biological 
network’s information for variable selection. By introducing the network-constrained 

n∑

i=1

yi = 0,

n∑

i=1

xij = 0 and

n∑

i=1

x2ij = 1, for j ∈ [p],

(2)L(�1, �2,β) = (y − Xβ)T (y − Xβ)+ �1||β||1 + �2β
TLβ ,

(3)L(u, v) =







1− w(u, v)/du, ifu = v and du �= 0;
−w(u, v)/

√
dudv , ifu and v are adjacent;

0, otherwise.

βTLβ =
∑

u∼v

(
βu√
du

− βv√
dv

)2

w(u, v).
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penalty, the network-constrained regularization procedure was able to identify more 
interpretable genes and sub-networks related with the outcome of interest, while simul-
taneously inducing sparsity and smoothness of the biological network and the coeffi-
cients. However it does not ensure false discovery rate (FDR) control in finite-sample 
settings [4]. The network-constrained regularization procedure only has the asymptotic 
property only when n → ∞ and p is fixed and suffers from identifying numerous false 
positive discoveries when p is large and the number of samples n is limited. To address 
this issue, we introduce knockoff inference and multiple knockoffs to control finite-sam-
ple FDR to achieve a stable performance. The knockoff filter procedure was first pro-
posed in [17], and [8] further proposed model-X knockoff filter to extend its application 
to high-dimensional data. Model-X knockoffs, X̃ are generated from the original data by 
Monte Carlo sampling and retain the same data structure as the originals X , in which X 
and X̃ are pairwise exchangeable. We summarize the properties of model-X knockoffs as 
in [8]: 

(1)	 Swapping the locations of related elements, xj and x̃j , would not change the joint 
distribution of (X , X̃) conditional on y.

(2)	 Once the original covariates X are known, their model-X knockoffs, X̃ provides no 
extra information on the response variable y.

The knockoffs filter is a cheap method to control finite-sample FDR since it does not 
require strong assumptions about the design matrix X  . Due of the random nature of 
model-X knockoffs sampling, however, the outcome would be unstable and cannot be 
guaranteed to be reproduced. To increase the stability, multiple knockoffs approaches 
were developed, and aggregation of multiple knockoffs (AKO) is one of them [7]. In 
this article, we present a novel method for variable selection termed Grace-AKO, 
which combines the biological network information for improved variable selection 
with finite-sample FDR control using knockoff filter technique. Our proposed Grace-
AKO has four major steps.

First, we generate model-X knockoffs, X̃  from the original data matrix X  using R 
package “knockoff” [8]. (X , X̃) is further regarded as a new design matrix of the pre-
dictors. Based on the properties of model-X knockoffs whose correlation structure 
is the same as that of the original variables, we generate a new normalized Lapla-
cian matrix L . In summary, we generate knockoff variables and update the Laplacian 
matrix to include the graphical structure of knockoff variables in this step. The knock-
off variables are introduced into the model based on their properties.

Second, the response variable y and the new predictors (X , X̃) are fitted in Eq. (2). 
Inspired by [4], a natural solution of Grace-AKO is equivalent to the following opti-
mization problem:

subject to:

(4)β̂ = argminβ{�y − (X , X̃)(β , β̃)T�2},
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where α = �2/(�1 + �2) , and t is a constant value, and (β , β̃)T is a vector of the new coef-
ficients. Furthermore, in the function (1− α)

∑p
j=1 �βj�1 + α

∑

u∼v(
βu√
du

− βv√
dv
)2w(u, v) , 

� · �1 deals with sparse data matrix consistent with its function in the network-con-
strained penalty, and the second term penalizes the weighted sum of the squares of the 
difference of coefficients between the graph-structured covariates, which is scaled by the 
degree of the associated vertices in the network. Specifically, when two genes are con-
nected, it is expected that their coefficients would be similar rather than identical, which 
is accomplished by applying the second term of the penalty [4].

To identify relevant variables, we compute the Lasso coefficient-difference (LCD) as 
the feature statistic to measure the evidence against null hypothesis ( βj = 0 ) [8]:

where β̂j , and β̂j+p are the estimated coefficients of xj and x̃j , respectively. Due to the 
symmetric distribution of Wj under the null, Wj equally takes on positive and negative 
values [8]. Moreover, a large positive value of Wj suggests that the distribution of y is 
statistically dependent on xj and that there is a strong probability that xj is a relevant 
gene associated with the response y . In this step, the network-constrained penalty is 
integrated with knockoff variables to control finite-sample FDR. The natural solution of 
Grace-AKO follows the same optimization problem as the network-constrained regular-
ization procedure. However, the model-X knockoffs procedure only generates knockoff 
variables once by Monte Carlo sampling, which leads to instability. To solve this chal-
lenge, we repeat the knockoff generation process multiple times and apply the statistical 
aggregation strategy to increase stability [12].

Third, following [7], Grace-AKO transforms the feature statistic Wj into a new inter-
mediate feature statistic qj:

We repeat the aforementioned steps B times, including the generation of knockoffs and 
the calculation of the intermediate feature statistic qj , to generate a B× p matrix of the 
intermediate feature statistics. Then, we propose a new feature statistic, Aggregated 
Grace Coefficient (AGC), which is derived by applying the quantile aggregation algo-
rithm [12] to the B× p matrix:

where γ is the quantile point, and Q(·) denotes the quantile function, and B is the pre-
specified replication times. To summarize the third step, we generate model-X knockoffs 
B times and then use the quantile aggregation procedure to yield AGCs, q̄ . The quantile 
aggregation approach introduces intermediate feature statistics and aggregated feature 

(5)(1− α)

p
∑

j=1

�βj�1 + α
∑

u∼v

(
βu√
du

− βv√
dv

)2

w(u, v) ≤ t,

(6)Wj = |β̂j| − |β̂j+p|,

(7)qj =
{

1+#{k:Wk≤−Wj}
p , Wj > 0;

1, Wj < 0.

(8)q̄j = min






1,

Qγ

��

q
(b)
j : b = {1, 2, · · · ,B

��

γ






,
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statistics, which are based on the concept of statistical aggregation [12] to improve 
stability.

Fourth, we apply the Benjamini–Hochberg procedure (BH) [14] to the AGCs, 
q̄ = (q̄1, q̄2, · · · , q̄p) to compute a data-dependent threshold:

where α is the user-specified nominal FDR level. We finally choose the candidate vari-
ables satisfying the following requirement:

In this article, we measure the performance using the modified false discovery rate 
(mFDR):

where S0 = {j ∈ [p] : βj = 0} includes the predictors that have no effect on the trait of 
interest. The implementation details are available in Algorithm 1.

As an illustration in [8], the primary objective of the knockoff filter procedure was to 
build an as permissive as possible data-dependent threshold. The threshold can provide 
a controllable estimation of FDR to ensure model-X knockoffs property. [7] was based 
on a reformulation of the original knockoff inference and developed an intermediate fea-
ture statistics to replace the feature statistics of [8]. Specifically, AKO still provided a 
data-dependent threshold based on the specification in [8] which is used by Grace-AKO.

Results
Simulation Studies

In this section, we performed a wide range of simulation studies to evaluate our pro-
posed method, Grace-AKO, and compared it to the network-constrained regularization 
procedure (namely Grace) [4]. We supposed that there were 10 transcription factors 
(TFs) and each regulated 10 genes. The graphical structure included g unconnected reg-
ulatory modules with p genes in total and edges linked each of the TFs and 10 genes 

tBH = max

{

k : q̄(k) ≤
k

αp

}

,

Ŝ = {j ∈ [p] : q̄(j) ≤ q̄(t̂BH )}.

mFDR = E

[

|{j ∈ Ŝ ∩ S0}|
|Ŝ| + 1/α

]

,
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regulated. Here we denoted the first 44 genes related to the response variable y . We 
assumed that the data were simulated from the following settings: 

(1)	 y = Xβ + ǫ , where

	

β = (5,

10
︷ ︸︸ ︷

5√
10

, · · ·, 5√
10

,−5,

10
︷ ︸︸ ︷

−5√
10

, · · ·, −5√
10

, 3,

10
︷ ︸︸ ︷

3√
10

, · · ·, 3√
10

,−3,

10
︷ ︸︸ ︷

−3√
10

, · · ·, −3√
10

, 0, · · ·0)

 , and ǫ 

was generated from N (0, σ 2);
(2)	 The noise level was denoted as σ 2 =

∑p
u β

2
u/4;

(3)	 For each expression level TF, X was drawn from normal distribution: X g ∼ N (0, 1) , 
and conditional on the TF, the expression levels of genes which regulated to the 
specific TF were drawn from a conditional normal distribution with correlation of 
0.7.

We set n = (100, 200, 300) , g = (10, 20, 40, 60) and p = (110, 220, 440, 660) , where g rep-
resented the total number of unconnected regulatory modules, to simulate 12 settings 
in total. Figure 1 shows the sub-matrix in order to provide a more accurate depiction 
of the graphical structure, given that every 11 of the first 44 variables form an identi-
cal sub-network. As the empirical research in [7] demonstrated, performance was sta-
ble and robust once the iteration B approached 25 times. In the meanwhile, FDR could 
be empirically controlled under the pre-specified level. Therefore, we fixed B = 25 , and 
γ = 0.1 in all scenarios. Additionally, we set the mFDR control level α at 0.1. Accord-
ing to [4], Grace performed better than the Lasso [5] and the elastic net [6] in term of 
the combination of � · �1 and � · �2 and the Laplacian matrix L . We thus focused on the 
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Fig. 1  Figure of 11× 11 sub-matrix of Laplacian matrix. The upper half of the matrix is color-coded to indicate 
correlation. The below half of the matrix is numeric-coded to indicate correlation
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comparison of Grace-AKO and Grace in our simulation studies. We assessed the regres-
sion performance using the average values of mFDR, standard errors (calculated by 
Monte Carlo method), and the number of variables selected.

To tune the parameters, we applied 10-fold cross-validation. The values of tuning 
parameter �L were specified from the range of 0.1 to 2.0 with a step size of 0.1, which 
ensured that the L matrix was non-negative. Moreover, the values of �1 were drawn from 
the range of 110 to 200 with a step size of 5. The validation set of �2 ranged from 1 to 10 
with a step size of 1. Each simulation setting was repeated for 30 times.

As Table 1 showed, the mFDR values of Grace-AKO were controlled at the pre-speci-
fied level, and Grace could not control mFDR in finite-sample settings. Furthermore, as 
the data dimension p increased with a fixed sample size n, the mFDR for Grace increased 
which even reached at 0.67. However, Grace-AKO could always control the mFDR under 
0.1. Moreover, the standard errors for Grac-AKO were always smaller than Grace’s, 
which indicated that Grace-AKO could also improve the stability. In Fig. 2, we depicted 
a boxplot for the findings when n = 300 . The upper figure’s black line represented the 
pre-specified FDR level. Grace, in particular, had inflated power at cost of high mFDR.

As shown in Table  2, the number of selected variables varied significantly between 
these two models. The number of true variables was fixed at 44. When n and p increased, 
Grace selected many false discoveries. Notably, when n = 300 and p = 660 , Grace iden-
tified 138 candidate variables. This was the reason why Grace’s power was inflated in 
Fig. 2. Grace-AKO showed considerably more stable performance, and it can guarantee 
finite-sample FDR control under all data settings with slightly conservative power.

We further assessed the robustness and single knockoff (model-X knockoffs) perfor-
mance on simulated data ( n = 100 , p = 110 , and a pre-specified mFDR = 0.1). To evalu-
ate the robustness of Grace-AKO, we randomly selected 20 vertices from the first 44 
elements (true candidate genes) of the Laplacian matrix and set their degrees to zero. 
Additionally, we set the first and third TFs to have false degrees of 1 and 4, respectively. 
The mFDR and TPP of Grace-AKO were 0.013 and 0.516, respectively. It indicated that 
Grace-AKO could still control the mFDR under the pre-specified FDR level (mFDR 
= 0.1 ), despite the fact that some information of graphical structure was misspecified 
for the true variables. Moreover, prior researches demonstrated that the findings might 
be robust to the misspecification of the graphical structure [4, 15, 16]. As there were 
few genes associated with the response variable, the majority of coefficients would be 
zero. In addition, we examined the performance of Grace incorporating with model-X 
knockoffs, termed as Grace-KO over 200 simulations. We conducted simulations with 

Table 1  The mean and standard errors (in brackets) of modified false discovery rate (mFDR) over 30 
replications for Grace-AKO versus Grace model with a pre-specified mFDR level at 0.1

p n = 100 n = 200 n = 300

Grace-AKO Grace Grace-AKO Grace Grace-AKO Grace

10 0.01 (0.018) 0.15 (0.032) 0.03 (0.032) 0.22 (0.049) 0.03 (0.025) 0.26 (0.053)

20 0.02 (0.027) 0.26 (0.045) 0.02 (0.023) 0.37 (0.045) 0.03 (0.040) 0.43 (0.010)

40 0.03 (0.030) 0.24 (0.062) 0.04 (0.030) 0.48 (0.040) 0.06 (0.047) 0.61 (0.030)

60 0.04 (0.026) 0.40 (0.053) 0.03 (0.026) 0.55 (0.032) 0.06 (0.034) 0.67 (0.018)
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200 replications when n = 100 and p = 110 . The results were reported in Table 3. We 
observed that Grace-KO and Grace-AKO were both able to control the mFDR under the 
pre-specified mFDR level, and Grace-AKO shown more stable performance with a lower 

p = 110 p = 220 p = 440  p = 660

0.0

0.2

0.4

0.6

mFDR Estimation

p = 110 p = 220 p = 440  p = 660

0.7

0.8

0.9

1.0

Power Estimation

methods Grace Grace−AKO
Fig. 2  Figures of mFDR and Power for Grace-AKO v.s Grace model when n = 300 . The upper figure plots 
mFDR and lower figure plots power. The red color represents our new method, Grace-AKO and the blue color 
represents Grace. Each setting has been replicated for 30 times. The black dashed line is the pre-specified 
mFDR level which equals to 0.1

Table 2  The average numbers of variables selected for Grace-AKO vesus Grace over 30 replications 
with a pre-specified mFDR level at 0.1

The number of true variables is 44

p n = 100 n = 200 n = 300

Grace-AKO Grace Grace-AKO Grace Grace-AKO Grace

10 24 45 33 56 37 62

20 25 52 32 71 37 83

40 24 59 34 90 39 118

60 24 63 32 101 39 138

Table 3  The mean and standard errors (in brackets) of mFDR, power and the number of variables 
selected over 200 replications for Grace-AKO versus Grace-KO model with a pre-specified mFDR 
level at 0.1

mFDR Power Number of 
variables 
selected

Grace-KO 0.018 (0.0277) 0.373 (0.2390) 17 (11)

Grace-AKO 0.015 (0.0204) 0.526 (0.0927) 23 (4)
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standard deviation. Moreover, Grace-KO performed more conservatively than Grace-
AKO, which was able to identify fewer candidate genes. Furthermore, we also assessed 
the computational cost of Grace-AKO when n = 100 and p = 110 . The knockoff genera-
tion and inference steps of Grace-AKO could be conducted by parallel running, which 
took about 30 seconds with a server of Intel Xeon Silver 4116 CPU 2.10 GHz and 64 GB 
RAM memory. Consequently, we concluded that Grace-AKO was robust to the incor-
rect information of the graphical structure and was more powerful in identifying candi-
date variables.

Application to the TCGA Prostate Cancer Data

To demonstrate the usefulness of Grace-AKO, we applied it to a gene-expression data of 
prostate-specific antigen (PSA) level from The Cancer Genome Atlas (TCGA) program. 
The TCGA program is a landmark cancer genomics program with over 11,000 cases of 
primary cancer samples spanning 33 cancer types [18]. Additionally, the Kyoto Ency-
clopedia of Genes and Genomes (KEGG), as a public database, contains rich informa-
tion about the graphical structures of genes [19]. It contributes to understanding various 
aspects of biological systems and pathways. Prostate cancer is the most common malig-
nancy in mid-aged males and the second leading malignancy [20]. This external graphi-
cal structure is represented by a penalty weight matrix, which is the Laplacian matrix L 
constructed in equation (3). Ref. [21] indicated that metastatic prostate cancer remained 
incurable even in patients who finished intensive multimodal therapy. It is an urgent 
challenge to propose a novel approach for disease management via identifying prognos-
tic determinant genes. Moreover, [22] indicated that the statistical significance of dif-
ferential expression might require abundant experiments, and the probability of type 
I error increased as the multiple hypotheses were tested. In this article, we thus were 
more concerned with the accuracy of gene selection in tumor investigations (assessed by 
mFDR) than the power of detection.

We first removed the samples with missing measurements and then encoded PSA 
pathways [23] from the KEGG to construct the normalized Laplacian matrix for Grace 
and Grace-AKO. We finally obtained the data with sample size n = 339 and dimen-
sion p = 5, 947 . We denoted the PSA level as our response. To reduce computational 
demands, we first performed variable screening via correlation learning following [24]. 
The final sample size and dimension were n = 339 and p = 600 , respectively, consisting 
of the data structure in simulation studies. We then standardized the explanatory vari-
ables and centered the response. The parameter �1 ranged from 1 to 40 length out as 4, 
and �2 was among 1, 2, 3, 4, and 5. We denoted the target FDR level at 0.2 and B = 25 for 
the iterations of AKO procedure. The quantile point was γ = 0.3 . For a fair comparison, 
we both conducted 10-fold cross-validation to select the tuning parameters. We showed 
the details in Fig. 3.

There were 90 genes selected by Grace in total, and 47 genes selected by Grace-AKO. 
Ref. [2] indicated that Grace might lose some accuracy when the coefficients’ signs are 
different. After checking the intersection of variable selection sets, we found that the 
genes selected by Grace-AKO were a subset of Grace’s. However, due to the inflated 
mFDR in the simulation studies, the results of Grace might identify some false discov-
eries. Moreover, previous studies confirmed 35 out of 47 candidate genes detected by 
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Grace-AKO were related to prostate cancer. Some details of them were listed in Table 4. 
For example, IL9 was recently assigned as an essential gene in tumor immunity, and AK6 
was already regarded as a biomarker in prostate cancer treatments [25, 26]. HLA-DRB5 
was highly related to MHC-II genes, which were the related genes of prostate cancer, 
and so was the CHRNB2 [27]. Moreover, a high concentration of IFNA2 was related to 
advanced prostate carcinoma [28]. PLK1 was over-expressed in many cancers, includ-
ing prostate cancer, and scientists found that translation of the PP2A-PLK1 SDL inter-
action caused the expression of PLK1 and PP2A, which were commonly regarded as a 

Fig. 3  Flowchart of Grace-AKO. These two procedures are differentiated by colors, in which the green one is 
Grace and the blue one is Grace-AKO. First, we encode the Laplacian matrix account for the network structure 
and sample model-X knockoffs. Second, we compute the feature statistics LCDs. Third, we aggregate the 
LCDs to get AGCs. Fourth, we select the variables whose AGCs satisfy the requirements
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Table 4  Genes Selected by Grace-AKO in the application of prostate cancer and PSA pathways

CHR stands for chromosome

Genes name CHR Genes Expression

ANAPC7 12 Ubiquitous expression in testis (RPKM 11.7), esophagus (RPKM 9.0) and 25 other tissues

AK6 5 Ubiquitous expression in testis (RPKM 18.6), adrenal (RPKM 17.2) and 25 other tissues

CHRNB2 1 Biased expression in brain (RPKM 9.5), adrenal (RPKM 0.7) and 1 other tissue

COL4A5 X Broad expression in endometrium (RPKM 21.7), skin (RPKM 10.8) and 20 other tissues

PRLR 5 Biased expression in placenta (RPKM 18.9), endometrium (RPKM 11.6) and 8 other tissues

CAMK4 5 Broad expression in brain (RPKM 7.0), lymph node (RPKM 3.7) and 21 other tissues

CHRNB2 1 Biased expression in brain (RPKM 9.5), adrenal (RPKM 0.7) and 1 other tissue

PPP2R2D 10 Ubiquitous expression in pancreas (RPKM 6.3), ovary (RPKM 5.9) and 25 other tissues

IFNA13 9 –

COL1A1 17 Biased expression in gall bladder (RPKM 850.7), urinary bladder (RPKM 497.1) and 11 other tis-
sues

RBPJ 4 Ubiquitous expression in placenta (RPKM 17.3), endometrium (RPKM 16.0) and 25 other tissues

PARD6G 18 Broad expression in skin (RPKM 15.6), esophagus (RPKM 5.7) and 15 other tissues

ZNF766 19 Ubiquitous expression in testis (RPKM 7.0), thyroid (RPKM 4.6) and 25 other tissues

PRKACG​ 9 –

SPDYE4 17 Restricted expression toward testis (RPKM 1.5)

PRKACA​ 19 Ubiquitous expression in heart (RPKM 62.0), adrenal (RPKM 43.9) and 25 other tissues

HLA-DRB5 6 Broad expression in lung (RPKM 275.5), lymph node (RPKM 163.3) and 14 other tissues

ZNF671 19 Ubiquitous expression in spleen (RPKM 4.7), lymph node (RPKM 4.6) and 25 other tissues

ZNF492 19 Broad expression in testis (RPKM 1.4), bone marrow (RPKM 0.9) and 16 other tissues

MAPK3 16 Ubiquitous expression in small intestine (RPKM 45.8), colon (RPKM 42.8) and 25 other tissues

ZNF461 19 Ubiquitous expression in testis (RPKM 1.8), thyroid (RPKM 1.6) and 25 other tissues

CCNE1 19 Biased expression in placenta (RPKM 16.5), bone marrow (RPKM 11.3) and 12 other tissues

CCR3 3 –

ZNF251 8 Ubiquitous expression in endometrium (RPKM 6.9), thyroid (RPKM 6.8) and 25 other tissues

CSH1 17 Restricted expression toward placenta (RPKM 9553.7)

ACTG1 17 Ubiquitous expression in ovary (RPKM 1227.2), esophagus (RPKM 970.4) and 25 other tissues

TH 11 Restricted expression toward adrenal (RPKM 42.8)

ANF853 – –

CDC27 17 Ubiquitous expression in thyroid (RPKM 20.3), testis (RPKM 11.6) and 25 other tissues

H2AC14 6 –

H2AC7 6 –

IL9 5 –

IL5RA 3 Biased expression in lung (RPKM 1.2), prostate (RPKM 0.7) and 13 other tissues

IFNA7 9 –

IFNA2 9 –

FARR2 - –

ZNF248 10 Ubiquitous expression in endometrium (RPKM 2.8), thyroid (RPKM 2.7) and 24 other tissues

IFNA17 9 –

ZNF331 19 Broad expression in adrenal (RPKM 22.0), placenta (RPKM 9.5) and 20 other tissues

ZNF473 19 Broad expression in testis (RPKM 14.8), spleen (RPKM 2.3) and 21 other tissues

ZNF713 7 Broad expression in brain (RPKM 2.1), testis (RPKM 1.9) and 25 other tissues

COL9A1 6 Biased expression in prostate (RPKM 6.1), testis (RPKM 1.3) and 6 other tissues

H2BC9 6 –

PDGFB 22 Broad expression in placenta (RPKM 18.6), fat (RPKM 12.7) and 23 other tissues

MYC 8 Ubiquitous expression in gall bladder (RPKM 49.6), esophagus (RPKM 44.6) and 25 other tissues
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biomarker in the cancer cells [29]. Ref. [30] indicated the percentage of the case with 
alteration of ANAPC7 achieved beyond 5.21 percentage points. The results demon-
strated that the APC/C had a profound effect on cancer survival. MYC in 2010 had 
already been confirmed to be affected by the loss of the tumor in [31].

Furthermore, there were also some subnetworks in our findings. H2BC9, H2AC14, 
and H2AC7 consisted of a small subnetwork. Moreover, IFNA7, IL9, IL5RA, IFNA2, 
PDGFB, and KIT comprised a subnetwork of validated pathways. Except for KIT, the 
remaining genes were investigated as possible prostate cancer therapy genes. Addition-
ally, there was a pathway between CAMK4 and PRKACF, where CAMKK2 was a signifi-
cant androgen receptor target for prostate cancer tumor growth, according to [32]. MYC 
was linked with RXRA. In [33], RXRA, which was discovered as a novel target of miR-
191, was conserved in a cell line derived from radio recurrent prostate cancer.

Conclusions
This article introduces Grace-AKO to perform variable selection by incorporating the 
network-constrained penalty [4] and AKO [7]. In contrast to the conventional vari-
able selection process, Grace-AKO applies a normalized Laplacian matrix to encode 
the graphical structures between the potential genes or the gene products. It applies 
the L1 penalty to selected variables and the L2 penalty to degree-scaled differences of 
coefficients concerning the graphical structure. Moreover, our proposed Grace-AKO 
guarantees of FDR control in finite-sample settings by identifying variable employing 
multiple knockoff variables. Grace-AKO addresses the instability of model-X knock-
offs by incorporating a statistical aggregation procedure and introducing a new fea-
ture statistics AGC. The simulation results indicated that Grace-AKO had superior 
performance in finite-sample FDR control in a wide range of simulation settings. In 
order to control the finite-sample FDR, Grace-AKO would be slightly conservative in 
terms of power [10]. Furthermore, the proposed general framework for variable selec-
tion with finite-sample FDR control can be broadly extended to other existing penal-
ties (e.g., the Lasso penalty [5] and the elastic net penalty [6]).
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