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Abstract 

Background:  Current methods of high-dimensional unsupervised clustering of 
mass cytometry data lack means to monitor and evaluate clustering results. Whether 
unsupervised clustering is correct is typically evaluated by agreement with dimen‑
sionality reduction techniques or based on benchmarking with manually classified 
cells. The ambiguity and lack of reproducibility of sequential gating has been replaced 
with ambiguity in interpretation of clustering results. On the other hand, spurious 
overclustering of data leads to loss of statistical power. We have developed INFLECT, an 
R-package designed to give insight in clustering results and provide an optimal num‑
ber of clusters. In our approach, a mass cytometry dataset is overclustered intentionally 
to ensure the smallest phenotypically different subsets are captured using FlowSOM. 
A range of metacluster number endpoints are generated and evaluated using marker 
interquartile range and distribution unimodality checks. The fraction of marker distribu‑
tions that pass these checks is taken as a measure of clustering success. The fraction of 
unimodal distributions within metaclusters is plotted against the number of gener‑
ated metaclusters and reaches a plateau of diminishing returns. The inflection point 
at which this occurs gives an optimal point of capturing cellular heterogeneity versus 
statistical power.

Results:  We applied INFLECT to four publically available mass cytometry datasets of 
different size and number of markers. The unimodality score consistently reached a 
plateau, with an inflection point dependent on dataset size and number of dimensions. 
We tested both ConsenusClusterPlus metaclustering and hierarchical clustering. While 
hierarchical clustering is less computationally expensive and thus faster, it achieved 
similar results to ConsensusClusterPlus. The four datasets consisted of labeled data and 
we compared INFLECT metaclustering to published results. INFLECT identified a higher 
optimal number of metaclusters for all datasets. We illustrated the underlying hetero‑
geneity within labels, showing that these labels encompass distinct types of cells.

Conclusion:  INFLECT addresses a knowledge gap in high-dimensional cytometry 
analysis, namely assessing clustering results. This is done through monitoring marker 
distributions for interquartile range and unimodality across a range of metacluster 
numbers. The inflection point is the optimal trade-off between cellular heterogeneity 
and statistical power, applied in this work for FlowSOM clustering on mass cytometry 
datasets.
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Background
It has been widely accepted in (mass) cytometry that high-dimensional datasets are 
best approached through unsupervised clustering algorithms [1, 2], revealing structure 
in high-dimensional space that is not well identified through bivariate sequential gat-
ing. Prior to the introduction of unsupervised clustering into flow cytometry, the gold 
standard in cell classification of conventional flow cytometry data involved manual gat-
ing. In this approach, researchers use manually defined coordinates (gates) to group cells 
in bivariate plots. This process is repeated in a sequential manner until all desired pop-
ulations have been defined. Manual gating requires a priori knowledge, it is not easily 
scalable, it is susceptible to the observer’s experience and personal bias, and  it misses 
on untargeted populations. Therefore, there has been a keen interest in the cytometry 
community to develop automated data analysis methods, such as unsupervised cluster-
ing. Opposite to manual gating, unsupervised clustering algorithms do not prioritize any 
of the given input parameters. Interpretation and visualization of the clustering results 
is often aided by dimensionality reduction. Additionally, these data-driven algorithms 
provide more reproducible results, removing researcher bias that comes with manu-
ally setting gates in bivariate plots. Since the publication of the first clustering method 
for cytometry data in 2007, many clustering algorithms have been published and their 
performance thoroughly compared [3–7]. However, every high-dimensional analysis 
method makes assumptions on the underlying data that need to be understood by the 
researcher implementing these methods [8, 9]. The added complexity of clustering algo-
rithms has led to shifting of ambiguity from gating to ambiguity surrounding cluster-
ing results. The question of how many meaningful clusters exist in a high-dimensional 
dataset has proven to be very difficult to answer. Methods such as FlowGrid [7] or Phe-
nograph [10] have automated cluster detection relying on intra-cluster (dis)similarity. 
However, subsets of rare cells often have high clinical relevance with little phenotypic 
distance to other subsets. Clustering algorithms specifically designed to capture rare 
subsets [11, 12] or relying on over-clustering [9] present other limitations: a large num-
ber of (small) clusters leads to a loss of statistical power due to corrections for multi-
ple testing. Automated metaclustering, the grouping of phenotypically similar clusters, 
is a solution to over-clustering, but it is  in turn susceptible to the same challenges as 
one-step clustering methods. ConcensusClusterPlus, the default metaclustering method 
implemented in FlowSOM, often has a very conservative result, leading to broad clusters 
encompassing multiple cell types.

Manual identification and optional supervised metaclustering is a laborious process 
but currently unavoidable when analyzing over-clustered high-dimensional data. It has 
become common for mass cytometry data to be presented in a way that classifies mul-
tiple found clusters as a single phenotype. Clusters identified in an unsupervised man-
ner are grouped together, implying that these (sub-)clusters represent different states 
of the given phenotype [13–17]. If combined into a larger single cluster, few methods 
exist to evaluate the results that come from any given clustering algorithm [18, 19], 
meaning researchers visually inspect heatmaps of median cluster expressions or assess 
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concordance of unsupervised clustering results to dimensionality reduction techniques 
such as t-SNE or UMAP. Furthermore, none of these approaches address the question of 
how to set the limit to the number of clusters (or metaclusters) that is adequate for each 
dataset.

Here, we aim to address this question by a computational method, INFLECT, that 
iteratively evaluates metaclustering performance to find the highest level of parameter 
unimodality, and lowest expression spread per metacluster. Evaluating clustering results 
using these 2 characteristics is based on the assumptions that a multi-modal univari-
ate distribution contains multiple, possibly overlapping, cell populations. A wide marker 
spread similarly indicates poor clustering. These multiple cell populations can be related, 
but represent different activation states of a large cell phenotype, or transitional cells dif-
ferentiating. In turn this means that if a clustering process results in narrow unimodal 
marker distributions across all generated clusters, it has successfully captured the full 
cellular heterogeneity in the dataset. INFLECT uses FlowSOM [20, 21] for upstream 
clustering because of fast runtimes and widespread use. In concordance with the 
FlowSOM workflow, datasets are overclustered in initial SOM-clustering, and the sub-
sequent metaclustering steps are investigated. Results of the metaclustering are evalu-
ated based on the marker expression distributions within formed metaclusters. For each 
marker, INFLECT tests for unimodality and assesses marker expression spread. Uni-
modality is determined through the dip test [22], a statistical test. Marker distribution 
spread is evaluated through the interquartile range and fails if this range is too high.

Implementation
The aim of INFLECT is to provide a data-driven evaluation of metaclustering results 
and calculate the optimal metacluster number where marker distribution quality is bal-
anced with the number of identified clusters. It is written in R and made available here: 
www.​github.​com/​jnver​hoeff/​Garci​aVall​ejoLab/​INFLE​CT. The process of INFLECT is 
illustrated in Fig.  1. In summary, the method takes as input a high-dimensional data-
set clustered using the FlowSOM wrapper function, and a set of metacluster targets to 
be evaluated. The output consist of diagnostic graphs and a determined optimal meta-
cluster number. In the following sections we describe the steps implemented in the R 
package.

Iterative metaclustering automation

The process starts with calculating the metaclustering of clusters formed by self-organ-
izing maps of FlowSOM. To ensure capture of the smallest subset of interest, we rec-
ommend an initial number of SOM-clusters of at least 200. The subsequent maximum 
number of metaclusters k cannot exceed 90% of the number of SOM-clusters due to 
resampling within ConsensusClusterPlus. This is done according to either Consensus-
ClusterPlus[23] or hierarchical clustering based on Minkowski distance and Ward’s link-
age. To limit the computation time not every possible metacluster number is evaluated. 
Using the default settings, INFLECT increases the metacluster targets number by 5 from 
50 metaclusters on, and by 10 from 150 metaclusters on. Target numbers are sparser 
at higher metacluster numbers, due to increased computational load. In our experience 
the changes between metaclustering results at higher target numbers vary less and thus 

http://www.github.com/jnverhoeff/GarciaVallejoLab/INFLECT
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contribute less information. However, users can specify the amount of metacluster num-
bers to evaluate using the input vector set_i . This step can be multithreaded to expedite 
calculations.

Metaclustering evaluation step

Each metaclustering result is evaluated separately, again enabling multithreading. For 
each metacluster per metaclustering result, all relevant marker distributions are evalu-
ated for inter-quartile range and unimodality through the dip test. Results are collected 
in a matrix of m (= the amount of metaclusters) by n (= the amount of markers) on a 
pass/fail basis. A marker distribution fails if the inter-quartile range exceeds a given 
threshold or has a non-unimodal distribution. Default inter-quartile range threshold is 
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Fig. 1  Illustrated representation of the algorithms workflow. A A simple 2-dimensional example, based on 
a dataset containing two markers with 4 populations, 2 of which are connected, is clustered in 2 < m < k 
populations. Each clustering result is inspected by assessment of marker distribution through the dip test 
and marker spread test. B Result of metaclustering of the example dataset, split in 2, 4 or 8 populations. C 
Marker distributions in the formed metaclusters. Green density plots pass the dip test and marker spread 
test, red distributions denote failed markers due to non-unimodal distribution. D For every metaclustering 
result (denoted with i), all marker distributions for the m number of metaclusters are taken together and the 
fraction of passed distributions is taken. E Representative diagnostic plot for a larger dataset. The values of the 
Unimodality set Ui are plotted on the y-axis versus the number of metaclusters assessed on the x-axis in red. A 
sigmoidal curve (blue) is fitted to this data. A plateau is reached where the fraction of unimodal distributions 
scarcely increases with increasing numbers of metaclusters
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set at a value of 2 after hyperbolic arcsine transformation of raw data (the standard trans-
formation for mass cytometry data). The fraction of distributions that passed this quality 
control (QC) across all clusters is calculated and given as output U. Taken together the 
outputs form the set Ui , called the Unimodality set.

Diagnostic plotting

The values within the Unimodality set Ui , are plotted against the number of metaclus-
ters. Subsequently, an L-function is applied to find the inflection point, where dividing 
the graph in two halves using straight fitted lines results in the least error. This can be 
done on the Unimodality set itself, or a sigmoidal curve fitted to the data. This imple-
mentation of the L-method is based on work by Salvador and Chan [24]. The horizontal 
coordinate of this inflection point is the optimal metacluster number for this dataset.

Application to public datasets
We implemented INFLECT on multiple publicly available datasets to assess robustness 
and applicability. Characteristics of the datasets used are summarized in Table 1. Labels 
for the events are taken from the datasets directly. In direct comparison of labels and 
INFLECT metaclusters only labeled data is considered.

INFLECT requires a single input-parameter, k , for the amount of clusters generated 
in the initial SOM-clustering. In the 4 datasets included in this study, the plateau in 
unimodal marker distributions was consistently reached before k = 100 . For statistical 
power in the plateau we recommend a value of k of  circa 200. In our experiments, to 
ensure we reached the point of spurious over-clustering, we applied INFLECT to the 
datasets with k > 350.

All computations in this work were carried out using a 2X Intel® E5-2660 v3 comput-
ing cluster, clocked at 2.60 GHz and 128 GB of RAM. Where possible, processes were 
run in parallel in 10 threads.

Table 1  Dataset characteristics

a Bone marrow mononuclear cells
b Peripheral blood mononuclear cells
c Spanning-tree progression analysis of density-normalized events

Dataset Type of 
samples

Number of 
cells

Number 
of labeled 
cells

Clustering 
method

Number 
of labels

Number of 
markers used 
in clustering

Levine32 [10] BMMCa 161,443 104,184 Phenograph 14 32

Bagwell [26] PBMCb 101,963 901,559 Manual gating 26 29

KimmeyBM [25] BMMC 994,897 994,897 SPADEc 33 32

KimmeyPBMC 
[25]

PBMC 795,428 795,428 SPADE 9 12
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Validation
KimmeyPBMC used 12 markers for clustering into 9 major phenotypes, whereas the 
panel by Bagwell uses 29 out of 30 markers for manual gating into 26 phenotypes. This 
variability revealed the broad applicability of INFLECT, where a broad range of mass 
cytometry datasets show formation of a stable plateau in metacluster unimodality.

The labeled data allowed for comparison of the inflection point metacluster number to 
the labeled populations. The number of labels was treated as a measure of dataset het-
erogeneity. Deviations between INFLECT and the number of labels were further investi-
gated for causes and possible cellular heterogeneity within labels.

Results
Unimodal marker distribution of FlowSOM clusters reaches a plateau (for both methods 

of metaclustering)

Firstly, we investigated how the number of metaclusters related to cluster unimodal-
ity and if this could lead to an optimal metacluster number. To assess this we applied 
INFLECT to 4 publically available datasets. Because FlowSOM requires an input param-
eter defining the number of resulting clusters, we could iteratively increase the number 
of generated metaclusters in repeated runs.

By evaluating cluster uniformity as a fraction of unimodal markers across clusters, 
using the dip test for unimodality, we monitored clustering success. In the four labeled 
datasets we encountered a consistent formation of a plateau. At these plateaus, a (fur-
ther) increase of metaclusters yielded only a small improvement in cluster unimodality. 
The Unimodality set Ui is the combined set of cluster unimodality fractions for every 
metaclustering i. After fitting a sigmoidal curve we implemented the L-function [24] 
method to calculate the inflection point of the curve. To assess the effects of dataset size 
and different methods of metaclustering, we applied INFLECT with different combina-
tions of subsamplings of the Levine32 dataset and metaclustering methods as shown in 
Fig. 2. Different methods of metaclustering yield slightly different sets of Ui for the same 
dataset (Hierarchical clustering in Fig. 2A and ConsensusClusterPlus in 2C). The resam-
pling processes in ConsensusClusterPlus [23] are a computationally expensive step, lead-
ing to high runtimes for higher values of i . Run times are summarized in Table 2.

For hierarchical clustering i = (5, 6, 7 . . . 150, 155, 160 . . . 200, 210, 220 . . . 320) 
were calculated in sequence. ConsensusClusterPlus was calculated for 
i = (5, 6, 7 . . . 50, 55, 60 . . . 100, 120, 140 . . . 200, 225, 250, 275, 300) . Therefore, we applied 
the much faster hierarchical clustering in all subsequent analysis.
The metacluster unimodality results Ui are dependent on dataset size

To investigate the effect of the size of the data set, we generated smaller datasets by sub-
sampling Levine32 (Fig.  2B). For the full size dataset down to 25% size, the inflection 
points and unimodality score plots are very similar, ranging from 36 metaclusters for the 
full dataset to 34 for the 25% sample. At 10% size, which is 60,000 cells for this dataset, 
the inflection point shifts to 19 metaclusters, and to 26 metaclusters for 5% size. Of note 
is that the cluster unimodality fraction of the plateau for higher metacluster numbers 
seems to drop for the smaller dataset sizes.

In Fig. 2D we display the marker performance in the dataset across all the metaclus-
ter numbers. Several markers pass the unimodality and marker spread checks for all 
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metacluster numbers, such as CD13 or CD47. Other markers show a greater spread, 
having multi-modal distributions for lower metacluster numbers but rising to 100% 
for very high metacluster numbers (CD123 and CD16) or never reaching 100% (CD8). 
This graph can inform researchers on the clustering power of different markers in the 
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Fig. 2  Resulting diagnostic graphs of INFLECT on the Levine32 benchmark dataset. The Unimodality set ( Ui ) 
is plotted versus the number of metaclusters generated through metaclustering of SOM-clusters. Applying 
the L-function returns the inflection point where fraction of unimodal distribution plateaus for increasing 
numbers of metaclusters. A Diagnostic graph using hierarchical clustering for metaclustering. The L-function 
is applied to the fitted curve, resulting in an inflection point of 41 metaclusters. Value for U41 is determined at 
98.17%. B Diagnostic graph comparing results for the entire Levine32 dataset using hierarchical clustering to 
five smaller subsampled datasets, 75%, 50%, 25%, 10% and 5% of events. Unimodality plateaus and inflection 
points for dataset sizes of 25–100% are consistent. 10% and 5% sizes display a lower plateau and lower 
inflection point. Of note is that for these smaller datasets, the fraction of unimodal distributions at higher 
metacluster numbers is less stable. C Diagnostic graph using ConsensusClusterPlus metaclustering and 
L-function on the fitted curve. Due to the longer runtimes of ConsensusClusterPlus fewer Ui were calculated. 
Resulting inflection point is 33 metaclusters with U33 at 98.76%. D Marker performance diagnostic plot. For 5 
selected markers the fraction of metaclusters which passed the dip test and marker spread test is collected 
per number of metaclusters. Data is shown in a scatterplot, amount of FlowSOM-metaclusters on the x-axis 
and percentage of metaclusters that passed the unimodality and interquartile range checks. Some (CD8, 
CD123, CD16) fail the unimodality tests at lower metacluster numbers, while reaching 100% at a higher 
metacluster numbers. CD13 and CD47 prove very stable at 100%. CD8 displays the highest variability and 
does not reach 100%, indicating poorer clustering performance for this marker

Table 2  Runtime in seconds of metaclustering methods of FlowSOM. k = 375 SOMclusters

Time in seconds Total Ui U325

Processor time Elapsed time Processor time Elapsed time

Consensus cluster plus, 10 
core multithreaded

8853.69 2865.79 2559.75 2582.52

Hierarchical clustering 5.75 5.79 0.05 0.10
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dataset. In Additional file 1: Fig. S1, the performance of the remaining clustering mark-
ers is shown.

The L‑function provides a data‑driven Inflect point for unimodality scores and fitted curves

To investigate the robustness of INFLECT cluster unimodality and the implementation 
of the L-function, we subsampled 90% of the Levine32 dataset 15 times. INFLECT was 
applied on the 15 replicates. Resulting unimodality sets (Fig. 3A) exhibit little variation. 
In four out of the 85 metacluster numbers evaluated, all 15 replicates yielded the same 
cluster accuracy. Greatest variability between replicates was 0.69%, which occurred at 
m = 9 metaclusters. Applying the L-function on fitted curves (Fig. 3B) vary between 36 
and 42, with a mean of 38.90 and a SEM of 0.62. When applying the L-function directly 
on the Unimodality set Ui (Fig. 3C) data points, the position of the inflection point is 
more vulnerable to noise, with a lower mean of 28 but a higher SEM of 0.90. Repeats 
shown in Fig.  3 represent the greatest variability between the in total 15 replicates. 
Remaining repeats are shown in Additional file 1: Fig. S2. In addition to lower variability, 
fitting a sigmoidal curve to the data lowers the amount of metaclusters that need to be 
evaluated, further speeding up calculations. In Additional file  1: Fig.  S3 we show that 
even with lower amount of data points in the Unimodality set, the fitted curve provides a 
stable inflection point. Hence, applying the L-function to fitted curves gives more robust 
results.
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INFLECT captures underlying heterogeneity in labeled clusters of Levine32

For visualization purposes we sampled 40,000 events from Levine32 and performed 
a tSNE embedding (Fig. 4A). As can be expected, INFLECT splits several of the more 
abundant populations into smaller metaclusters, while matching smaller distinct cell 
types such as CD16- natural killer (NK) cells and Plasma B cells to one metacluster 
each. In this case INFLECT was run only on labeled data, which was 65% of total events. 
The optimal metacluster number for this data was higher, at 61 metaclusters, shown 
in Fig. 4B. In Additional file 1: Fig. S4, we compare INFLECT to two common cluster-
ing evaluation tools [27], and the default method of metaclustering in FlowSOM. The 2 
metaclusters most closely matching CD16 + NK cells were investigated (metacluster 60 
and 61) through visual inspection of marker histograms (Fig. 4C and D). 3 markers were 
selected for illustrating the greatest variability between the metaclusters. CD16 + NK 
cells show no multi-modality as a total population, passing the dip test for each marker 
distribution, however in Fig. 4D it is shown that metaclusters 60 and 61 have distinct 
levels of CD16 expression. This seems to correspond well to the tSNE mapping in 4A, 
where the light blue CD16 + NK cell population consists of two connected populations. 
Full concordance between labeled data and INFLECT metaclusters is summarized in 
Additional file 2.

Fig. 4  INFLECT identifies additional heterogeneity present within labeled data. A-B tSNE embedding of 
40,000 events from Levine32, in A colored for the 14 phenotypes as identified by Phenograph in the original 
paper. In B, 61 metaclusters identified through INFLECT. C Density plots of selected markers for CD16 + NK 
cells. X-axis denote Arcsinh(x/5) transformed expression values. D Density plots of selected markers 
highlighting heterogeneity within CD16 + NK cells, which was split into metaclusters 60 and 61. X-axis denote 
Arcsinh(x/5) transformed expression values. Metacluster 60 has a CD16-dim phenotype, whereas metacluster 
61 has high CD16 expression
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The inflection point is consistent across mass cytometry datasets

Wider applicability of INFLECT was investigated by applying the method to 3 other 
datasets (Fig. 5). In the Bagwell PBMC dataset (Fig. 5A) all 5 samples (which are techni-
cal replicates acquired at different sites) showed a similar pattern of cluster unimodality. 
The fraction of unimodal distributions rose rapidly to 95% for all 5 samples. The fraction 
of unimodal distributions increased at a lower rate for increasing numbers of clusters, 
reaching 99.02% unimodality for 300 FlowSOM metaclusters. Applying the L-function 
output a median of 53 metaclusters as the optimal number of metaclusters for this data-
set with a fraction of unimodal distributions U53 = 95.61% . Diagnostic curve for Kim-
meyBM (Fig.  5B) showed a similar pattern, U5...73 rising to 95.60% unimodality, then 
yielded diminishing returns up to 99.70% fraction of unimodal distributions. Inflection 
point, resulting from the L-function was at 74 metaclusters.. The KimmeyPBMC dataset 
had fewer markers used for phenotyping than the bone marrow dataset. This resulted in 
a lower optimal cluster number, determined at 41 metaclusters with a fraction of uni-
modal distributions of 98.89%. For higher numbers of metaclusters, the diagnostic curve 
had a nearly level unimodality plateau starting at inflection point = 42. Unimodality 
increases up to 98.37% at U42 , ultimately reaching 99.70% at U350.

Similar to the Levine32 dataset, the Bagwell and Kimmey datasets are labeled by the 
original authors. Comparisons between the original labels and INFLECT-informed 
FlowSOM metaclusters were made using tSNE embeddings, marker histograms, and 
concordance between original labels and INFLECT metaclusters are shown via match-
ing matrixes (Additional file 1: Figs. S5–S7, Additional file 3–5).

Fig. 5  INFLECT Unimodality plateaus are reached across mass cytometry data sets. A INFLECT Diagnostic 
curve for five replicate PBMC samples from Bagwell et al. Samples were clustered and evaluated separately 
and inflection points were determined. B KimmeyBM INFLECT diagnostic curve. Inflection point (= 74) is 
calculated on the fitted sigmoidal curve. C KimmeyPBMC INFLECT diagnostic curve. Inflection point (= 41) is 
calculated on the fitted sigmoidal curve
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For the Bagwell dataset labels were determined by a published sequential gating strat-
egy, though overlapping gates lead to events receiving multiple labels. INFLECT was 
able to identify a small population of CD16low and CD56high NK cells within the Early 
NK cell label (Additional file  1: Fig.  S5C-D). Concordance between event labels and 
INFLECT metaclusters is summarized in Additional file 3.

Both datasets in the paper by Kimmey et  al. were labeled by manually annotating a 
large number of SPADE clusters, 175 clusters for the bone marrow dataset and 150 clus-
ters for the PBMC dataset. Concordance between event labels and INFLECT metaclus-
ters are displayed in Additional file 4 and 5, and visualized in Figs. S6 and S7 (Additional 
file 1). In both datasets INFLECT was again able to identify phenotypically distinct pop-
ulations within labels.

Across all datasets considered in this work, the fraction of unimodal distributions 
reaches a plateau of diminishing returns. The start of this plateau can be determined by 
the L-function, providing an optimal metacluster number for the particular dataset.

Discussion
In this work we outline the use of overall cluster unimodality as a quality control 
measurement for FlowSOM clustering results. The goal of clustering is to determine 
and enumerate unique cellular subsets, or in other words grouping cells with uni-
modal distributions in all markers. By using cluster unimodality this clustering pro-
cess can be condensed to a single score for each set of FlowSOM results, collected in 
the Unimodality set Ui . The chosen datasets contain labels for known cell phenotypes 
through different analysis methods, each with its own advantages and assumptions. 
The datasets also vary in dimensionality and depth of phenotyping. This under-
scores the flexibility of INFLECT. The fraction of unimodal distributions for a dataset 
reaches a plateau, at an inflection point that is dependent on dataset size, number of 
markers, and expression patterns of markers. While use of marker unimodality has 
been described before in high-dimensional analysis [11], many rely on Gaussian mix-
ture modeling or expectation maximization [28–31]. These processes are computa-
tionally expensive, making them impractical for use in a quality control setting where 
we would want to evaluate iterative clustering runs. Moreover, unimodality testing 
through the dip  test has been described as more stable and less prone to errors in 
literature [19].

This work is inspired by quality control functions that are part of SPADEVizR [18] 
and work on the L-function [24]. The hyperparameters used in INFLECT, the thresh-
old for interquartile range (set at arcsinh(X/5) = 2 ) and the dip  test ( α = 0.05 ) are 
the same as in SPADEVizR. When combined into INFLECT we show that they pro-
vide a data-driven metaclustering endpoint for FlowSOM. Though not investigated 
in this study, the application of INFLECT should work for any clustering method 
where the user can determine the number of resulting clusters. This can be either 
in cases where the number of clusters is used as input, such as SCAFFoLD [32] or 
where the smallest acceptable cluster is determined as in Citrus [12]. Additionally, 
there are methods where input from the user more indirectly affects cluster composi-
tion and total number of clusters, such as bandwidth selection in density-based clus-
tering (ACCENSE [33] or Gaussian mean shift-based clustering [34]). INFLECT can 
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be utilized to iteratively evaluate these input parameters aside from visual inspection 
of tSNE embeddings. These approaches come with the caveat that they likely require 
take a longer time to compute. The design of FlowSOM allows for low runtimes also 
for larger datasets [21], making it very suitable for testing many iterations to deter-
mine the best clustering. Applying INFLECT to clustering algorithms other than 
FlowSOM was outside of the scope of this work and would have to be validated before 
implementation.

While INFLECT was developed for use in mass cytometry, the principle behind 
cluster unimodality would still hold true for high-dimensional cytometry techniques 
like spectral cytometry [35] or high-parameter flow cytometry. However, extra care 
should be taken in pre-processing of the data regarding distributions around zero 
(and lower). Since mass cytometry has no negative values, the unimodality test is per-
formed on positive distributions only. Unexpected minor cross-talk between mark-
ers in conventional flow cytometry could result in multi-modal negative peaks and 
will likely lead INFLECT to recommend an optimal cluster number that is too high 
[36, 37]. The distributions of gene expressions in scRNA-seq data are not comparable 
to protein expression in mass cytometry. Therefore we do not expect INFLECT to 
provide a benefit when assessing the clustering results of single cell RNA sequencing 
(scRNA-seq) data.

When comparing INFLECT clustering with the cluster definitions as originally pub-
lished for the dataset, the inflection point was consistently higher than the number of 
phenotypes determined by the authors. By visually inspecting histograms for representa-
tive INFLECT-metaclusters, we show that the clusters have distinct marker expression 
patterns. While it is unlikely that a wholly novel cell type is discovered, by splitting cell 
types into distinct sub-clusters INFLECT enumerates possible differentiation states or 
activation states. INFLECT thereby allows for differential abundance testing on these 
sub-clusters. However, it is still up to the researcher to determine if this cluster of events 
represents a biologically meaningful subset. For example the CD56bright population of 
NK cells identified within the BMMC dataset of Levine et al., while small, is an impor-
tant subset with a distinct function in the immune system [38]. The rationale for finding 
the data-driven endpoint of clustering is to limit the number of clusters, in turn to limit 
the number of statistical tests that will be performed and reduce occurrence of type 1 
errors. Therefore, manually merging clusters that were found in an unsupervised manner 
is a valid strategy. The diagnostic curves provided by INFLECT can aid in this process, 
showing at what number of metaclusters cluster unimodality will drop dramatically.

Conclusion
INFLECT addresses a knowledge gap in high-dimensional cytometry analysis, namely 
assessing clustering results. This is done through monitoring marker distributions 
for interquartile range and unimodality across a range of metacluster numbers. The 
fraction of unimodal distributions within metaclusters, collected in the Unimodality 
set Ui , plotted versus the number of clusters consistently reaches a plateau, providing 
a data-driven endpoint for metacluster number. The inflection point is the optimal 
trade-off between cellular heterogeneity and statistical power, applied in this work for 
FlowSOM clustering on mass cytometry datasets.
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Availability and requirements

The computational method proposed in this work is collected in the R package 
“INFLECT” and made available on github at www.​github.​com/​jnver​hoeff/​Garci​aVall​
ejoLab. Project name: INFLECT. Project home page: https://​www.​github.​com/​jnver​
hoeff/​Garci​aVall​ejoLab. Operating system(s): Platform independent. Programming lan-
guage: R. Other requirements: R4.1.2. License: GNU GPLv3. Any restrictions to use by 
non-academics: license needed for commercial use.

Abbreviations
QC	� Quality control
BMMC	� Bone marrow mononuclear cells
PBMC	� Peripheral blood mononuclear cell
NK	� Natural killer
SPADE	� Spanning-tree progression analysis of density-normalized events
scRNA-seq	� Cells, single cell RNA sequencing
tSNE	� T-distributed stochastic neighbor embedding
UMAP	� Uniform manifold approximation projection
SOM	� Self-organizing maps
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Additional file 1: Supplementary Fig. S1: Marker performance for Levine32 INFLECT. Marker performance diagnos‑
tic plots for remaining markers of Levine32. On the x-axis the amount of FlowSOM-metaclusters, and on the y-axis 
the amount of metaclusters that pass the unimodality and interquartile range checks as a percentage of total meta‑
clusters for the listed marker; Supplementary Fig. S2: All 15 repeats of 90% subsamples of Levine32. A L-function 
applied to the sigmoidal curve fitted to setUi . B L-function applied to the set Ui itself. Resulting inflection points for 
both panels denoted with vertical dotted line; Supplementary Fig. S3: With fewer datapoints in Unimodality set Ui 
INFLECT still produces a stable fitted sigmoidal curve. INFLECT diagnostic plots with different sizes of set Ui , from 81 
calculations down to 9 datapoints. Resulting inflection point is stable around 40 metaclusters. The values of the Uni‑
modality set Ui are plotted on the y-axis versus the number of metaclusters assessed on the x-axis; Supplementary 
Fig. S4: Traditional (meta)clustering evaluations perform poorly on Levine32 dataset. A Davies Bouldin (DB) Index 
on the y-axis versus the amount of FlowSOM-metaclusters. A lower score indicates better clustering. In this case the 
DB index does not form a plateau, making interpretation difficult. B Calinski-Harabasz (CH) Index on the y-axis versus 
the amount of FlowSOM-metaclusters. A higher score indicates better clustering. CH index drops with increasing 
FlowSOM-metaclusters, making CH index less suitable for evaluation. C Diagnostic plot of ConsensusClusterPlus on 
Levine32 dataset. Relative change in area under cumulative distribution function (CDF) curve compared to k − 1 
clusters. FlowSOM implementation of ConsensusClusterPlus indicates 14 metaclusters as optimalk . D tSNE embed‑
ding of Levine32, colored for the 14 ConsensusClusterPlus metaclusters. Multiple islands (CD4 T cells, CD8 T cells and 
monocytes) are grouped into 1 large metacluster; Supplementary Fig. S5: INFLECT reveals heterogeneity within 
labeled phenotypes of the replicate PBMC dataset from Bagwell et al. A tSNE embedding of 10,000 events from Bag‑
well dataset. Colored for the 26 manually gated phenotypes, plus light-pink for unlabeled cells and yellow for events 
with 2 or more labels. B Histograms of selected markers highlighting heterogeneity within the Early NK cells. X-axis 
denote Arcsinh(x/5) transformed expression values. C Same tSNE embedding of 10,000 events as in A, here colored 
for the 52 INFLECT metaclusters. D Histograms of selected markers highlighting the difference between metacluster 
24 and 29, which correspond to the 2 different cell populations within the Early NK label. X-axis denote Arcsinh(x/5) 
transformed expression values. Metacluster 29 is a smaller CD56bright CD16dim population, whereas metacluster 
24 has high levels of CD16 and intermediate CD56 expression; Supplementary Fig. S6: INFLECT applied to bone 
marrow dataset from Kimmey et al. reveals high degree of heterogeneity. A tSNE embedding of 10,000 events from 
KimmeyBM dataset. Colors denote the labels identified by the authors. Immature B cells are highlighted in rectangle. 
B Histograms of selected markers highlighting heterogeneity within Immature B cells. X-axis denote Arcsinh(x/5) 
transformed expression values. C Same tSNE embedding as in A, now colored for the 74 INFLECT metaclusters. High‑
lighted in the rectangle are the 4 different metaclusters of the Immature B cells, which were separated into meta‑
clusters 38, 41, 49, and 71. D Histograms of selected markers highlighting heterogeneity between the 4 metaclusters 
corresponding to the Immature B cell label. X-axis denote Arcsinh(x/5) transformed expression values. Metacluster 
71 has a CD38+ phenotype, metacluster 41 has a IgMdim phenotype and metaclusters 38 and 49 are differentiated 
in expression levels of CD24 and to a lesser extent CD45RA; Supplementary Fig. S7: INFLECT algorithm applied to 
PBMC dataset from Kimmey et al. captures underlying heterogeneity of labeled populations. A tSNE embedding of 
10,000 events from KimmeyPBMC dataset. Colors denote the labels identified by the authors. Rectangle highlights 
the cDCs label. B Histograms of selected markers highlighting heterogeneity within the cDCs label. X-axis denote 
Arcsinh(x/5) transformed expression values. C Same tSNE embedding as in A, here colored for the 41 INFLECT 
metaclusters. In the rectangle the metaclusters 7 and 15 are highlighted, which correspond to the cDCs label. D His‑
tograms of selected markers highlighting heterogeneity between metaclusters 7 and 15. Main difference between 
metaclusters 7 and 15 is the level of CD11c expression.
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Additional file 2: Matching matrix of Levine32 dataset.

Additional file 3: Matching matrix of Bagwell dataset.

Additional file 4: Matching matrix of Kimmey-BM dataset.

Additional file 5: Matching matrix of Kimmey-PBMC dataset.
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