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involves applying the Oxford Nanopore Technologies (ONT) MinION sequencer for 
whole genome sequencing.

However, current SV detection tools including cuteSV [11], SVIM [12], NanoVar [13], 
and Sni�es [14] have several constraints. First, the accuracy of SV calling can only be 
guaranteed when the provided sequencing coverage is high, which is not always available 
in actual clinical settings. �e unsatisfactory performance of existing state-of-the-art 
tools for low-coverage sequencing data originates from their quality control methods. 
�ese tools identify false signals when the number (NSV) and the proportion (pSV) of 
supporting reads with SV marks are low [11–14]. �is approach works well for high-
coverage sequencing data where there are abundant number of supporting reads, and 
a clear gap in NSV and pSV between the true SV calls and the false signals, which can be 
observed and used for quality control. However, in low-coverage settings, it is common 
that there are only one or two supporting reads with SV marks for both true and false 
signals. Low-coverage data will generate SV candidates with low and very close pSV and 
NSV, which are hard to distinguish from true SVs and false signals based on this single 
feature. �erefore, novel supporting read signatures and novel features may add to the 
granularity of the quality control work�ow, which is promising for boosting the perfor-
mance of low-coverage SV calling.

Second, these tools can only distinguish the genotype of the detected SVs (SV geno-
typing). �e genotype can be assigned homozygous (1/1) or heterozygous (0/1) if the 
level of pSV and NSV is high or median, but the tools lose discriminative power when 
the sequencing coverage is low. Moreover, this method does not distinguish the pater-
nal (1|0) or maternal (0|1) haplotype of the heterozygous SVs (SV phasing), which is 
important for clinical applications. To achieve SV phasing and accurate SV genotyping 
in low-coverage, it is reasonable to solicit additional supporting read signatures, such as 
the haplotype tendencies of the reads potentially from single-nucleotide polymorphism 
(SNP) calling and phasing. �e additional signatures serve as the raw materials to derive 
novel features, which provide the granularity for SV phasing and quality control in SV 
calling at low-coverage.

In this paper, we introduce Duet, a tool for SV calling, genotyping, and phasing, opti-
mized for ONT data. Instead of relying solely on the SV signatures on the reads [11–14], 
Duet incorporates SNP signatures to observe paternal or maternal tendencies of each 
SV supporting read. �e tool further integrates both SV and SNP signatures into several 
novel features. �e features form as an interpretable and robust decision path, which can 
characterize SV haplotype from false signals, even when the number of SV supporting 
reads is moderate. �erefore, while most existing approaches for SV phasing, require 
both high-coverage [15] and multi-platform sequencing data [16–19], Duet can accu-
rately call and phase SVs with only 8� whole genome sequencing (WGS) ONT data, and 
has great performance in scaling when the sequencing coverage goes higher, which is 
promising in various clinical applications.

Implementation
�e schematic diagram of Duet is depicted in Fig.�1. Taking a long-read alignment 
[20] and its reference as input (Fig.�1A), Duet processes the data with four major mod-
ules, comprising (1) SNP calling (Fig.�1B), (2) SNP phasing and per-read haplotype 
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assignment (Fig.�1C), (3) SV calling (Fig.�1D), and (4) SV phasing (Fig.�1E, F) to output 
phased SVs. �e tool is designed to tolerate false positives of low-coverage ONT WGS 
data while retaining a high level of accuracy, although the use of a high-coverage dataset 
(i.e., � 20�) can enhance its performance.

SNP calling

SNP calling generates heterozygous SNPs that can be used as a proxy to infer the reads’ 
haplotypes. We applied the ONT model of Clair3 [21], a fast and accurate long-read 
small-variant caller, with “--snp_min_af 0.25 --pileup_only --call_snp_only” options 
after experimenting with di�erent settings. �e settings were �ne-tuned in Duet, which 
increased the overall processing speed, in addition to providing su�cient variant-calling 
accuracy for phasing.

Fig. 1 Work�ow of Duet. A First, ONT long reads are aligned using Minimap2. B, C To obtain the per-read 
phasing information (green or brown) with its con�dence level (luminance of the color), SNPs (indicated in 
circles) are called using Clair3 and then phased using WhatsHap. Based on the phased SNPs, the haplotypes 
of the reads are determined by WhatsHap. D The SV marks on each read are detected by cuteSV. E Three 
signatures from previous steps are integrated as the signature of the supporting reads. F Duet phases SV 
and �lters out false signals based on the features derived from the signatures in step (E). Description of the 
signatures and features at step (E) and step (F) is presented in Table 1. T1 to T5 are thresholds for each feature

Table 1 Signatures and features used by Duet

Supporting read signature

HP Haplotype

PC Con�dence score of the haplotype predic-
tion

VC Count of SV marks

Feature for SV phasing

pSV � � VC>0/� VC � 0 Proportion of reads with SV marks

pHP � � VC,HP>0/� VC>0 Proportion of phasable reads with SV marks

� PC � � VC*PC per HP Total PC for read set from each haplotype

� PC � � VC*PC per HP Average PC for read set from each haplotype

p�PC � � PC1/� PC2 Ratio of �PC for both haplotype



Page 4 of 12Zhou�et�al. BMC Bioinformatics          (2022) 23:465 

SNP phasing and�per-read haplotype assignment

Using the SNP-calling results, Duet applies WhatsHap [22] with “whatshap phase 
--distrust-genotypes” to generate the two parental haplotypes. �e settings provide 
WhatsHap with higher tolerance for false positives, especially when working with 
low-coverage datasets. �e haplotag “whatshap haplotag --tag-supplementary” sub-
function is then called to assign haplotype to each read. In addition, each read is 
assigned a con�dence score by WhatsHap, which is positively related to the number 
of accurately phased variants. Duet will use the haplotype and the prediction con�-
dence of the reads. We employ GNU Parallel [23] to allow parallel processing of all 
chromosomes.

SV calling

It is essential to apply a base SV caller that is sensitive even when using low-coverage 
data to reduce the initial false-negative rate, as a large proportion of false positives 
can be �ltered out after SV phasing. After performance evaluation, cuteSV [11] with 
the setting “-s 2 --max_cluster_bias_INS 100 --di�_ratio_merging_INS 0.3 --max_
cluster_bias_DEL 200 --di�_ratio_merging_DEL 0.5” provides the best output to �t 
the purpose of Duet, where the SV marks detected are loosely clustered for down-
stream analysis.

SV phasing

Duet integrates the SV and SNP signatures obtained from the above modules to rep-
resent each supporting read, i.e., haplotype (HP), con�dence of the haplotype predic-
tion (phasing con�dence, PC), and the number of SV marks (VC). For each SV call 
set with multiple supporting reads, several novel features are derived from the signa-
tures, and an empirical rule-based decision path with corresponding cut-o� values is 
derived accordingly.

�e decision path contains three layers:
First, an initial �lter is applied to �lter out SV calls that contain too small a propor-

tion of phasable reads (pHP) with a very high average phasing con�dence (�PC).
�e remaining SV calls will go through a subsequent characterization based on the 

proportion of reads containing SV marks (pSV), to identify false positive SV calls (0/0) 
if with too low pSV, and homozygous variants (1|1) if with high pSV.

�e further remaining SV calls with moderate proportion of reads with SV marks 
will be �nally distinguished between being homozygous or heterozygous, where the 
phasing con�dence is taken into meticulous consideration: Duet classi�es the sup-
porting reads into paternal group and maternal group based on their haplotype. �en 
the sum of the phasing con�dence for each haplotype group is calculated (�PC1, � PC2). 
If these two values have no huge di�erence (i.e., a moderate p�PC ), the SV call will be 
classi�ed as homozygous (1|1). Otherwise, if there is a huge di�erence between the 
total phasing con�dence, the SV call will be classi�ed as heterozygous and assigned to 
the haplotype with the dominant total phasing con�dence (0|1 or 1|0).
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Evaluation methods and�metrics

We have an integrated evaluation method for SV calling, genotyping, and phasing, 
with code available at [https:// ​github.​com/​yekai​zhou/​duet/​blob/​main/​src/​scrip​ts/​
evalu​ation.​py]. �e evaluation criteria of SV calling and genotyping is adapted from 
Truvari [https:// ​github.​com/​ACEng​lish/​truva​ri ].

In the evaluation of SV calling, an SV candidate is determined as a true positive (TP) if 
it meets the following conditions:

where comps, compL and compt are the start coordinate, length, and the class of an 
SV prediction, respectively, while the bases, baseL and baset are the starting coordi-
nate, length, and the class of an SV recorded in the truth set, respectively. An SV call is 
counted as a false positive (FP) if it does not satisfy Eq.�1. A ground truth SV is assigned 
as a false negative (FN) if there is no SV call that satis�es Eq.�(1) with it.

With the above de�nition, precision (or the ratio of TPs to total calls in predictions) is 
de�ned as:

Recall (or the ratio of TPs to total calls in the truth set) is de�ned as:

F1 score is de�ned as:

When considering the performance of SV genotyping, each TP SV call in SV calling 
gets further evaluated if its genotype is the same as the corresponding base call. If so, 
it is assigned to be a TP call, otherwise, it will be assigned as an FP call. All the FP calls 
in the SV calling evaluation procedure remain FP in SV genotyping. Each of the ground 
truth SVs will be evaluated and assigned TP if there is at least one TP call corresponding 
to it, otherwise it is assigned false negative (FN). Equations�(2)–(4) are used to calculate 
the statistics of SV genotyping.

Switch error rate is a standard metric to evaluate the phasing accuracy of abundant 
and adjacent genome variants such as SNPs. However, this metric fails to be a reason-
able metric for SVs, which are large and distant [24]. �erefore, we adapted and adjusted 
the standard evaluation method of SV genotyping for SV phasing. SV phasing will sepa-
rately evaluate every phase block produced by WhatsHap: For each phase set, the haplo-
type prediction of TP SV calls in SV calling will have two versions, one remains original 
and the other was �ipped (0|1 to 1|0; 1|0 to 0|1; 0|0 and 1|1 remains unchanged), and 
their haplotypes will be separately compared to the ground truth set: If the haplotype 
matches, it will be a TP call, otherwise, it will be an FP call. All the FP calls in the SV 

(1)comps − bases ≤ 1 kbp

min(compL, baseL)/max(compL, baseL) ≥ 0.4

compt = baset

(2)Precision = TPs/(TPs+ FPs)

(3)Recall = TPs/(TPs+ FNs)

(4)F1 = 2× Precision× Recall/(Precision+ Recall)

https://github.com/yekaizhou/duet/blob/main/src/scripts/evaluation.py
https://github.com/yekaizhou/duet/blob/main/src/scripts/evaluation.py
https://github.com/ACEnglish/truvari
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calling evaluation procedure remain FP in SV phasing. �e evaluation will record the 
version with more TPs for every phase set. Each of the ground truth SVs will be evalu-
ated and assigned TP if there is at least one TP call corresponding to it, otherwise it is 
assigned false negative (FN). Equations�(2)–(4) were used to calculate the statistics of SV 
phasing.

Results
We compared Duet against four state-of-the-art SV callers, SVIM [12], cuteSV [11], 
NanoVar [13], and Sni�es [14], for SV calling and genotyping. We also compared Duet 
against LongPhase [24], an algorithm that can phase SVs based on an existing SV call set 
generated from other programs. We use the SV call set from cuteSV, and the SNP call 
set from Clair3 and WhatsHap as the input for LongPhase. In addition to the default 
setting of using cuteSV as the base SV caller of Duet, we evaluated the performance of 
Duet using SVIM as the base SV caller. �e benchmarking was on HG001, HG002, and 
HG00733, three standard human samples from the Human PanGenomics Project [25], 
with available high-con�dence haplotype-resolved SV truth sets from HGSVC2 [18]. We 
tested the performance on three sequencing coverages: 8� (low-coverage), 20� (mid-
dle-coverage), and 40� (high-coverage).

�e F1-scores are shown in Fig.�2a. At 8� sequencing coverage of the three human 
samples, Duet achieved up to 0.85 precision, 0.72 sensitivity, and 0.78 F1-score genome-
wide for SV calling; 0.74 precision, 0.66 sensitivity, and 0.70 F1-score for SV genotyping; 
and 0.65 precision, 0.57 sensitivity, and 0.61 F1-score for SV phasing. Duet outper-
formed other tools in SV calling, genotyping, and phasing at the low coverage of 8�.

�e performance of Duet has stable improvement when the sequencing coverage is 
increased to 20�, and achieved up to 0.87 precision, 0.79 sensitivity, and 0.82 F1-score 
genome-wide for SV calling; 0.81 precision, 0.75 sensitivity, and 0.77 F1-score for SV 
genotyping; and 0.77 precision, 0.72 sensitivity, and 0.74 F1-score for SV phasing. Duet 
showed increased improvement compared to other tools in SV phasing. Duet still out-
performed other tools in SV calling and genotyping and the second in place is cuteSV 
and LongPhase, respectively.

�e performance of Duet has slight improvement when the sequencing coverage is 
increased from 20� to 40�, and achieved up to 0.87 precision, 0.79 sensitivity, and 0.83 
F1-score genome-wide for SV calling; 0.82 precision, 0.75 sensitivity, and 0.78 F1-score 
for SV genotyping; and 0.78 precision, 0.73 sensitivity, and 0.75 F1-score for SV phas-
ing. Duet still has a great competing edge in SV phasing. Duet still outperformed other 
tools in SV calling and genotyping and the second in place is cuteSV and LongPhase, 
respectively.

We further benchmarked Duet against the other tools at all three sequencing cov-
erages on speci�c SV types including insertion and deletion. �e results are shown in 
Fig.�2b, c. Similar to our previous observations on all SVs, Duet outperformed the other 
tools on both insertion and deletion. Compared to using cuteSV as Duet’s base SV caller, 
the performance of using SVIM is comparatively lower on our benchmarking samples, 
albeit Duet with either caller outperformed the other tools. As it is possible for Duet 
with SVIM to outperform Duet with cuteSV on di�erent samples, we allow users to 
choose to use either caller in the Duet, with cuteSV as the default option.



Page 7 of 12Zhou�et�al. BMC Bioinformatics          (2022) 23:465 	

�e runtime of Duet using 40 CPU threads ranged from 1.3 to 2.2�h at 8�, 1.6 to 
2.3�h at 20� , and 2.0 to 3.6�h at 40� sequencing coverage across the three samples 
(Fig.�3a). Duet uses either cuteSV or SVIM as its base SV caller, therefore it runs 
longer than both callers. However, Duet still ran faster than LongPhase, NanoVar, 
and Sni�es. While the average memory usage was lower, the peak memory of Duet 
ranged from 34 to 45�GB at 8�, 41 to 56�GB at 20�, and 73 to 79�GB at 40� (Fig.�3b).

Fig. 2 Benchmark results of SV detection tools for ONT data. a Benchmark results on all SVs. b Benchmark 
results on insertions. c Benchmark results on deletions. Rectangles in green, yellow, and purple colors are 
performance of SV calling, genotyping, and phasing, respectively
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To demonstrate why SNP signatures are informative for SV detection, we compared 
the ratio of false and true SV signals with di�erent phasing con�dence of the sup-
porting reads. We ran SVIM, Clair3, and WhatsHap on 8� of HG001, HG002, and 
HG00733 to gather the raw SV call set, haplotype, and phasing con�dence of each 
sequencing read. Each SV candidate was tagged either false positive or true positive 
using the evaluation method above. Each supporting read of each SV candidate was 
tagged with a phasing con�dence. All the supporting reads of all SV candidates from 
the three samples were pooled together to derive the relationship between SV sig-
nal correctness and the phasing con�dence of the supporting read. �e results are 

Fig. 3 Runtime and peak memory usage of SV detection tools for ONT data with 40 CPU threads. a 
benchmark results on runtime. b Benchmark results on peak memory usage

Fig. 4 Relationship and distribution of the con�dence of the SV signal and the phasing con�dence of the 
supporting read. The x-axis represents phasing con�dence in ranges of 0: [0, 300), 300: [300, 900), 900: [900, 
1500), 1500: [1500, 8100), 8100: [8100, 72,600), 72,600: [72600, ��)
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shown in Fig.�4. We found that a true SV signal happened more often when support-
ing reads are with a moderate phasing con�dence (300 to 2100), but less happened 
when with a low phasing con�dence (0 to 300). Conversely, excessively high phasing 
con�dence (8100 or above) is associated with more false SV signals. �e above com-
plications comprise Duet’s decision-making procedure to distrust SV calls with sup-
porting reads having either too low or too high phasing con�dence.

To demonstrate the advantage of Duet’s novel features compared to the traditionally 
used features, we additionally compared Duet to using either pSV or NSV for removing 
false signals. For SV genotyping, we set SV candidates with pSV < 0.2 as false, pSV > 0.8 
as homozygous (1/1), and in between as heterozygous (0/1). For SV phasing, we set 
NSV �  2 for both haplotypes as homozygous (1|1), NSV �  2 for only one haplotype as 
heterozygous (0|1 or 1|0), and NSV < 2 for both haplotypes as false. �e results are 
shown in Fig.�5. Duet outperformed using the traditional features for false signal 
detection with all three coverages and three samples.

Fig. 5 Benchmark results of Duet against two approaches using pSV and NSV. pSV is the approach that 
uses pSV as the threshold to determine SV genotype. NSV is the approach that uses NSV as the threshold 
to determine SV haplotype. Rectangles in green, yellow, and purple colors are performance of SV calling, 
genotyping, and phasing, respectively
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Discussion
In this study we developed a tool for SV calling, genotyping, and phasing, which we 
named Duet. We demonstrated that Duet is more accurate and powerful than other 
state-of-the-art tools in resolving genomic SVs, particularly those that lead to disease, 
when only low-coverage data is available, which is very useful in clinical settings and 
resource-constrained lab settings where su�cient genomic data coverage may not be 
available. At higher coverages, Duet’s performance in SV phasing is further improved in 
comparison to other competing tools used for the purpose, while maintaining a greater 
performance in SV genotyping and SV calling. �e benchmark results of Duet further 
demonstrate that by incorporating SNP calling, SNP phasing, read haplotagging, the tai-
lored decision tree is bene�cial to SV detection, especially in accurate SV phasing and 
the quality control for low-coverage SV calling. Although Duet was optimized for ONT 
data, it has no restriction applying to PacBio data, albeit some thresholds need to be 
tuned to achieve the best potential.

�ere are still some limitations in Duet:

1.	 Starting from middle-coverage, the competing edge of Duet in SV calling becomes 
less significant. The main reason is that when the sequencing coverage goes higher, 
the feature pSV used by other tools has recovered its discriminative power to remove 
false signals. Duet’s current quality control method has clear improvement at low-
coverage, and will generally be caught up by other state-of-the-art methods when the 
coverage goes higher.

2.	 The performance improvement of Duet from middle-coverage to high-coverage 
is moderate. All the benchmarked tools have similar situation. This is because our 
highly accurate truth sets are derived from multi-platform sequencing, and some 
genome regions are hard to map using single-strand sequencing technology, even 
with high coverage. Despite this objective explanation, there is possibly room to 
improve the performance of Duet at high-coverage data by updating the quality 
control method to fit both low- and high-coverage sequencing data in a coverage-
dependent manner.

Conclusions
In this study, we introduced Duet, a long-read-based tool for accurate SV calling and 
phasing. Duet showed promising results that the incorporation of SNP signatures will 
largely boost the performance of SV detection, especially when there is constraint in 
sequencing coverage and when there is a need for accurate SV phasing. �e tool’s great 
adaptability and scaling performance in SV calling and phasing promise its usefulness in 
routine clinical applications.
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