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Background
In recent years, researchers have discovered specific yet complex links between the 
human gut microbial ecology and diseases such as colorectal cancer [1–3] and inflam-
matory disorders [4–6]. According to a widely recognized model for the microbe-human 
interaction,  dysbiosis of gut microbiota is associated with the development of illnesses 
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[7]. Different microorganisms will thrive or decline depending on the host illness pro-
gression, medicine, food, and other variables. Studies on the essential bacteria linked 
with a disease have shown various integral microbes that play vital roles in illness pro-
gression. These findings aided in the development of predictive models and targeted 
therapies. 16S ribosomal RNA amplicon sequencing is the most cost-effective and acces-
sible way to obtain microbial compositional data. It is supported by established down-
stream taxonomic classification pipelines/software, curated 16S ribosomal reference 
databases, and statistical methods designed to analyze microbial compositional data [8].

Currently, two of the frequently used methods for detecting important microbes are 
differential abundance (DA) analysis and co-occurrence network analysis. DA method 
is a popular choice for finding specific microbial taxa associated with ill or healthy peo-
ple, and co-occurrence networks aim to decipher the taxa–taxa co-occurrence patterns 
for unique disease- enriched or depleted pattern discovery. The concordances of identi-
fied differentially abundant taxa are one of the main challenges in DA approaches. While 
numerous methods can be used to evaluate consensus taxa, the results are influenced 
by sample/study variances and filtering criteria [9]. Thus, one of the optimal solutions 
for maximizing DA methods is to utilize different DA results as a guide to investigate 
the structural difference between the disease and control co-occurrence network struc-
ture. Previous co-occurrence networks provided helpful information about taxonomic 
and phenotypic associations [10–12], and found significant taxa–taxa correlations, and 
the resultant networks are usually condensed and highly connected. In addition, the 
resulted nodes/taxa are usually concentrated on a specific taxonomic level (E.g., species, 
genus, or operational taxonomic units (OTUs)).

Depending on the sample size and experimental design, the resolution on more refined 
taxonomic levels, such as genus and species assignment, might be negatively affected 
due to missing or unknown classification. Thus, studying a single taxonomic level might 
only offer a single aspect of the microbial community, and it is of utmost importance to 
study the structure from cross-taxonomic count matrices that encompass many taxo-
nomic levels to ensure we capture the relationship among and between the parent and 
their children taxa. Our results from C3NA have shown that it is not necessary for the 
more refined taxonomic assignment of a particular taxon to share common higher taxo-
nomic assignments. This differential assignment based on the abundance pattern moti-
vated us to persuade a cross-taxonomy approach to categorize the taxa into different 
modules from the taxa–taxa correlation patterns.

To account for the cross-taxonomy design and the unique microbial compositional 
structure, we utilized the Sparse Correlation for Compositional data (SparCC) cor-
relation to obtain the cross-taxonomy correlations [13]. We also employed a consen-
sus-based approach to combine the modular information from a range of patterns to 
strengthen our confidence in the optimal number of taxa clusters, which suggests shared 
functional inferences. In addition, C3NA calculates the modular information from each 
of the conditions (e.g., colorectal cancer and control) independently, and the retained 
modular information will then be compared interactively on our built-in Shiny applica-
tion. This approach intends to minimize the study-dependent correlations, as the high 
taxa–taxa correlation that is shared between the disease and control samples might not 
be the important taxa that enriched or depleted caused by the disease.
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Lastly, C3NA is able to encounter many of the challenges we have mentioned, and it is 
developed as a user-friendly and open-source R-package that includes data processing 
and interactive visualization functionalities. The goal of the C3NA is to maximize the 
available biologically inferable information in terms of taxonomic assignments across 
Phylum, Class, Order, Family, Genus, and Species levels via co-occurrence network anal-
ysis to extract optimal numbers of co-occurring taxa modules with similar taxonomic 
abundance patterns. With the ability to concurrently view the DA and modularized co-
occurrence network, C3NA demonstrates great potential for identifying and assigning 
taxa and groups of taxa that are positively or negatively related to a particular disease.

Methods
Raw 16S rRNA data source and analysis pipeline information

We evaluated C3NA using two colorectal cancer (CRC) datasets and two inflammatory 
bowel diseases with Crohn’s Disease (CD) 16S rRNA datasets. The first CRC dataset 
labeled as “cancer” was from PRJNA290926 [14], and the second CRC dataset labeled as 
“cancer2” was extracted from PRJEB6070 [15]. For both CRC datasets, we only used the 
samples labeled as “Cancer” and “Normal.“ The first Crohn’s disease dataset was down-
loaded from PRJEB13679 [16], and we used the “CD” and “no” as the case and control, 
respectively. The second Crohn’s disease dataset was from the IBDMDB [17] website, 
and we used the “CD” and “non-IBD” as the case and control, respectively. The data were 
loaded to QIIME2 according to their respective study design following the DADA2 algo-
rithm pipeline [18]. All assignments used the same SILVA 138 [19] reference under the 
QIIME2 (version 2021.4) environment [8]. The dataset information is shown in Addi-
tional file 1: Table S1.

Microbial data processing

Many established pipelines are available for processing the 16S rRNA amplicon sequenc-
ing to summarize the raw sequencing data into taxonomic profiles, such as the opera-
tional taxonomic units (OTUs) and amplicon sequencing variants (ASVs). For C3NA, 
we utilized the QIIME2 pipeline with the DADA2 algorithm to generate the ASVs from 
each of the four datasets [18, 20]. Regardless of the methods and reference database, the 
resulting taxonomic profile includes an ASVs table, a taxonomic table, and a metadata 
table. To ensure the accuracy of these data prior to loading into the C3NA pipeline, we 
utilize the Phyloseq R package to ensure the correct formatting of these tables, and the 
Phyloseq object is the initial input for the C3NA pipeline [21]. Lastly, the user needs to 
run different conditions separately by sub-setting the Phyloseq object and running the 
pipeline described in Fig. 1 individually. The C3NA pipeline is split into the following 
five sections.

Generating condition‑specific stacked‑taxa count matrices

Prior to generating the condition-specific stacked-taxa count matrices, the user 
should utilize the Phyloseq functions to filter out a single condition. Also, we recom-
mended removing samples with a library size of fewer than 1000 reads as these samples 
are known to suffer from low-quality issues in terms of microbial diversity as well as 
sequencing-related issues [22]. Generally, there should be six levels of taxonomic levels, 
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Phylum, Class, Order, Family, Genus, and Species for each of the ASVs, and for each 
of them, we will sum the ASV count matrices to their respective assignments and then 
stack them to form a stacked-taxa table. Lastly, as we are focusing on higher taxonomic 
levels than OTUs/ASVs by summing the OTUs/ASVs counts, we filtered out the taxa 
that did not present in at least 10% of the samples to remove rare taxonomic assign-
ments [13]. This filtering criteria coincide with one of the assumptions for SparCC in 
which the kept taxa are assumed to be present among samples, and this approach also 
drastically reduces the computational complexity with the reduced number of taxa. For 
each of the conditions within the study, a condition-specific matrix is created by apply-
ing the aforementioned filtering procedures.

Condition‑specific SparCC correlation

We employed Sparse Correlation for Compositional data (SparCC) correlation with 
1000 bootstrap settings employed using the SPIEC-EASI R Package [13, 23]. The boot-
strap resulted in a correlation value between each taxa pair and a p-value, and the Benja-
mini-Hochberg (BH) method will subsequently be applied to adjust for multiple testing. 

Fig. 1  C3NA framework illustrated for two conditions comparison examples. For every phenotype/diagnosis, 
a condition-specific Phyloseq will be used as input to generate the condition-specific stacked-taxa count 
matrix by combining Phylum, Class, Order, Family, Genus, and Species-level raw count matrix. Then, the matrix 
undergoes SparCC correlation calculation with 1000 bootstraps followed by the topological overlap matrix 
(TOM) calculation under the “signed” network setting. Next, the dissimilarity TOM matrix (1-TOM) is used 
for hierarchical clustering with a range of minimal taxa per module (3–40) to extract a range of clustering 
patterns. A selected range of patterns is used to generate a consensus matrix, in which the intra-modular 
connections are the key taxa–taxa correlations we focus on in the subsequent network analysis. When 
comparing two conditions, module preservation analyses and other statistical methods are performed
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We also investigated the effects of different numbers of bootstraps in Additional file 1: 
Fig. S10, and undertaking at least ten bootstraps is recommended.

We further validated the stability of the SparCC on how the stacked-taxa affects the 
taxa–taxa correlations (detailed in Additional file 1: Results and Fig. S1). We investigated 
the impact of using the stacked-taxa correlation compared to the single-taxonomic 
level correlations and found minimal differences for the taxa–taxa pairs, especially for 
the correlations above 0.2. There is no drastic difference between the stacked-taxa and 
single-taxonomic level correlations. As a result, we recommended a minimal correlation 
cutoff at 0.2 to remove uncertain and weak correlations, and the users can further filter 
the correlation strength in the shiny application.

We also compared SparCC results with COAT [24] and Pearson [25]. The Pearson 
results are drastically different from that of the COAT and SparCC as Pearson correla-
tions could not natively handle compositional data (detailed in Additional file 1: Results 
and Fig. S12). The comparison between COAT and SparCC reveals a high correlation (r 
of 0.904), with COAT generally having slightly higher correlation values than SparCC 
for the same taxa–taxa pairs (Additional file 1: Fig. S13A). Moreover, we compared the 
incorporation of DESeq2 methods to balance the Case and Control samples prior to 
running the correlation methods, and different correlation methods can generate differ-
ent results, with most of the highly correlated taxa–taxa pairs shared among all methods 
(detailed in Additional file 1: Results, Supplementary Tables S2, Figs. S13A, B and S14A, 
B). The users are advised to investigate the resulting correlation distribution before set-
ting the minimal correlation cutoffs.

Condition‑specific topological overlap matrix (TOM)

The Topological Overlap Matrix (TOM ) is constructed from the correlation matrix 
under the signed network setting using the WGCNA R package [26]. The signed network 
is chosen because negative correlations should not be interpreted the same as positive 
correlations, as they carry different biological meanings. The result in the TOM matrix 
represents the network connections’ strength, especially for spurious connections [27]. 
As a result of this procedure, our analyses will focus on positive taxa–taxa correlations, 
which will be used to generate modules, and all correlation values are stored and avail-
able for extraction if needed for other analyses.

Consensus‑based module determination and optimization

We obtained the dissimilarity TOM via (1-TOM) and used the complete linkage hier-
archical clustering to classify the taxa into different modules. We examined a range of 
a minimal number of taxa per module (3 and 40), displayed as different color patterns 
in box  2 of  Fig.  2. There is an apparent and dynamic change with decreasing number 
of unique modules. The module became more stable as the number of unique modules 
reduced to less than 10, where more repetitive module patterns emerged. By default, 
C3NA combines all the unique module patterns equal to or greater than ten modules 
(Fig. 2, Additional file 1: Results and Fig. S8). Our investigation from C3NA has shown 
that it is important to focus on the region in which the resulted in different modular 
patterns (with decreasing number of unique modules) with each incrementing mini-
mal module size. We investigated the difference between choosing different numbers of 
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unique patterns and the optimal number of clusters and discovered that positive correla-
tions within modules are stable when the user selects modules that still undergo shift-
ing in terms of the number of resulting modules. A more detailed investigation is in the 
Additional file 1: Results.

Once the module patterns are generated, the consensus-based module determination 
uses the Cluster-based Similarity Partitioning Algorithm (CSPA) [28]. We extract each 
taxa–taxa modular assignment and create an individual binary similarity matrix with the 
presence of taxa–taxa pairs in the same module as 1, otherwise 0. The consensus matrix 
is obtained via averaging all these similarity matrices.

The next step is to obtain the optimal number of clustering based on the consen-
sus matrix. Two parameters are used to determine the optimal number of cluster-
ing. Firstly, we utilize the proportion of zeros per module; this proportion should be 
below 10%. Secondly, we calculated the average silhouette width for each clustering 

Fig. 2  Consensus-based approach guide for module identification shiny application. 1. Shiny panel 
navigation, including the ‘Consensus-Based Evaluations’ and ‘Download Panel’. 2. Unique patterns of the 
modules based on a range of a minimal number of taxa per module. The darkened columns highlighted 
the duplicated patterns which are not included in the consensus-based evaluations. 3. Manually select the 
pattern columns. The default will select all unique patterns with modules greater or equal to ten. 4. Manually 
select the optimal number of modules based on the silhouette, consensus, and correlation plots below. (5) 
Generate the code the user should run after confirming the optimally selected patterns and the optimal 
number of modules. (6) Plot display panel including silhouette, consensus, and correlation plots. Note: the 
font size in the image has been adjusted for this publication
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based on the consensus matrix, and we will choose the first local maximum, repre-
senting the first drop in the average silhouette score. We use the corresponding mod-
ular membership to construct the intra-modular taxa modules. The module patterns, 
silhouette results, consensus, and correlation matrices for our examined datasets with 
different taxonomic assignment methods are illustrated in Additional file 1: Fig. S9. 
Once the module is determined, the user can utilize our shiny application to investi-
gate the single condition taxa–taxa relationship or compare two conditions to deter-
mine the preserved or perturbed modules.

The user will be guided through this investigation on our built-in shiny application, 
as shown in Fig. 2.

Single condition extraction and two conditions comparison

The results from the previous step will be stored in a single R object representing 
the modular information from a single condition. We will combine both conditions’ 
results to evaluate disease and control samples and use module preservation analysis 
to assess the differential taxa in network structure alteration between the two condi-
tions. We use the ZSummary, a composite preservation statistic proposed by Langfelder 
et al., to evaluate the module preservation between the disease and control. ZSummary 
compared the connectivities of the intramodular nodes and the highly connected 
nodes between the comparison groups. The medianRank, which is less sensitive to 
module size, is also selected to assist the definition of preserved modules [29–31]. 
Ideally, the higher the ZSummary and the lower the medianRank, the more preserved 
the module is.

Moreover, as microbial modules can be tiny, users should distinguish a more exten-
sive and more diverse module from a smaller taxon with very similar phylogenetic 
information, i.e., taxa from the same phylogenetic branch. From a biological point 
of view, high and low preservation modules are critical. The high preservation mod-
ule contains the connections between two conditions, and the standard preservation 
modules have modules and elements that are either of no interest or condition-spe-
cific perturbation. However, it is essential to evaluate all modules, and modules with 
differentially abundant taxa are often significant.

Once the two conditions comparison results are calculated, the users can utilize 
another Shiny application, as shown in Fig. 3, to evaluate the results interactively.

(See figure on next page.)
Fig. 3  Shiny application for two conditions comparison. 1. Shiny panel navigation, including the ‘Compare 
Two Conditions’ and ‘Download Panel’. 2. Condition-based information from the two conditions, including 
shared and different taxa from various taxonomic levels. 3. Module-based taxa comparison between the two 
conditions. 4. Module preservation investigation, the left plot shows the Median Rank Vs. Z Summary with 
the node size reflects the number of taxa in the respective module. The right plot is an interactive table from 
reacting to the click of the module preservation plot. 5. Taxa selector for the interactive display in Panels 6–8. 
The user can select multiple taxa from the left columns (including all significant taxa from both conditions). 
To remove a selected taxon, the user can click the taxon from the right column. 6. Bar plot for the taxa 
membership among the modules from either condition. The user can switch between viewing all taxa or the 
selected taxa from the ‘Taxa Selector’. For better display, the bar plot will only display the select taxon and 
its children’s taxonomic level taxa. Please click on the left filter icon to view plot-based options. 7. Network 
plot based on the selected taxa. Multiple options are available from the top left filter icon. 8. Single and 
sequentially clicked taxa and their respective log2-transformed count from both conditions. Note: the font 
size in the image has been adjusted for this publication
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Evaluation of the optimal number of clusters

Two significant considerations determine the appropriate number of clusters. The first 
is the distinct patterns of modules picked from a different minimum number of taxa 
per module for building the consensus matrix. The silhouette width evaluation of the 
consensus matrix with hierarchical clustering is the second factor. We investigated how 
different selections of these two parameters affect the downstream analysis in terms of 
intra-modular correlations, and our results show that it is essential to select a pattern 

Fig. 3  (See legend on previous page.)
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with less dynamic region of the module patterns, around ten modules (Additional file 1: 
Fig. S8). Moreover, for optimal cluster selection, it is vital to choose a minimum number 
as the curve turns into a plateau region. Once these two are selected carefully, the result-
ing intra-modular correlations are very similar and should not drastically affect the pres-
ervation and network analysis. A complete investigation is in Additional file 1: Result.

Network centrality metrics

There are three network centrality metrics used by the C3NA, degree centrality, close-
ness centrality, and transitivity using the igraph R package (version 1.2.8) [32]. The pur-
pose of these parameters is to infer the significance of the taxon between the comparing 
conditions. We choose the normalized version for the degree and closeness to account 
for the total number of vertices in the graph, making the results more comparable. We 
also calculated the local transitivity for the node’s importance within the local network. 
We extract the corresponding intra-modular members from the two conditions for each 
taxon to construct a network. We subsequently calculated the three parameters with and 
without the selected taxon, then used the paired-sample Wilcoxon test to compare the 
changes among these three network metrics. We define the influential taxon as one with 
at least one statistically significant difference after BH-adjusted p-values ≤ 0.05.

Intra‑modular evaluation

For each of the modules, we will keep the taxa–taxa correlation greater or equal to 0.2 
with a BH-adjusted p-value no higher than 0.05. Next, we obtain the threshold by com-
paring correlations at the stack-taxonomic and single-taxonomic levels (Additional 
file 1: Results). The combination of these two parameters will help estimate the influen-
tial taxa within each module.

Differential abundance analyses

In our analyses, we chose three validated DA methods and executed them on each of 
the six taxonomic levels, including ANOVA-Like Differential Gene Expression Analy-
sis (ALDEx2) [33], Analysis of Compositions of Microbiomes with Bias Correction 
(ANCOM-BC) [34], and Multivariable Association Discovery (MaAsLin2) [35]. As 
expected, only a small number of taxa were consistently identified by the methods 
from different clustering methods, and the proportion of the consensus taxa among 
the OTUs/ASVs clustering methods is much larger (Additional file 1: Results). We uti-
lized the recommended 10% prevalence filtering for each of the Phylum to Species-level 
assignments prior to running the methods on our dataset to obtain more robust results 
[36]. Each differential abundance analysis was performed between the disease and con-
trol samples with a binary outcome. The DA methods’ settings are detailed in the Addi-
tional file 1: Results.

Results
Differential abundance analyses

There is a clear pattern of inconsistency in which taxa are DA among the three DA 
methods evaluated, and they are summarized in Additional file  1: Figs. S2–S5 for the 
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four datasets we examined. In addition, ANCOM-BC obtained the most  DA taxa com-
pared to the other methods.

Filtered taxa comparison

We apply 10% sample prevalence filtering is used to remove rare taxa from each condi-
tion. We  investigated the filtered taxa across all studies shown in Additional file 1: Figs. 
S6 and S7. The remaining taxa showed consistency and specificity toward the disease. 
There are more taxa left with CRC than CD, which conforms with the lower bacterial 
diversity in CRC compared to CD (Fig. 4) [35].

Identification of condition‑specific taxa–taxa correlations

One of the critical findings from C3NA among these four datasets is the connection 
between the Genus Bacteroides and Parabacteroides, which has an intra-modular cor-
relation found among CRC and is absent among CD datasets (Fig. 5a, b). This correla-
tion between Bacteroides and Parabacteroides is 0.641 and 0.416 for CRC and Healthy 
samples, respectively. The consensus-based clustering groups them into the same 
module in CRC with a consensus of 1 and 0 for the control and an indication that their 
abundance patterns are altered between colorectal cancer and control samples. The 
interactive network plot illustrated in Fig. 5a highlights condition-specific taxa–taxa 
correlations by using blue, red, and gray for disease-only, control-only, and shared 
taxa–taxa correlations. Bacteroides are known to be enriched among colorectal can-
cer cases among other Genus-level assignments, including Bilophila [37], Coprobac-
ter[37], and Acidaminococcus [38]. For the Bacteriodes-related Genus assignments in 
Crohn’s disease, C3NA identified three related Genus-level assignments, including 

Fig. 4  The shared taxa patterns among the studies and taxonomic assignment methods. The top bar plot 
illustrates the relative number of taxa from each of the six taxonomic levels. The bottom upset plot and 
the interaction plot illustrate the number of shared taxa and patterns among the examined datasets and 
taxonomic assignment methods
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Bilophila [39], Parasutterella [40], and Lachnospiraceae [41]. In each of the diseases, 
C3NA clustered these Genus-level assignments into the same module (same inner 
node colors) with disease-only correlation connecting between them, indicating simi-
lar abundance patterns among them in the respective diseases. These modules with 
the corresponding disease-only correlations can assist researchers in validating and 
identifying new biomarkers based on known taxa related to a given disease.

To further illustrate the usefulness of C3NA to discover unique and solving dis-
crepancies from multiple studies, we extracted known functions from a number of 
studies and evaluated if the C3NA effectively categorizes the taxa into the correct 
functional categories. In Fig.  6, we extracted the modular information, DA results, 
and C3NA disease-only intra-modular correlations from the Baxter et al. analysis and 

Fig. 5  The networks were created from selective Taxa. a Taxa related to Genus Bacteroides from Baxter 
et al. with the condition comparison between colorectal cancer and control. b Taxa that related to Genus 
Bacteroides from Gevers et al. with the comparison of the conditions between Crohn’s disease and control
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matched them to some of the known functions from the phylum, genus, and species 
level assignments. Firstly, the DA analyses were unhelpful for this dataset as there 
are only three genus-level taxa that were labeled as differentially abundance between 
colorectal cancer and control samples among 27 phylum, genus, or species-level taxa 
with reported functional roles related to colorectal cancer. Secondly, C3NA was able 
to group taxa with known and similar functions together and categorize them into the 
same modules. There is also a clear indication of different healthy (control) categori-
zations of the taxa groups as indicated by the “Healthy” column in Fig. 6. Lastly, we 
have expanded the correlation to include additional taxa with disease-only intra-mod-
ular correlations with one of the 27 reported taxa, and this approach can be under-
stood as discovery study where potential functions can be assigned to less-studied 
taxa [14, 42, 43]. For example, Genus Anaerostipes [44, 45], which is a probiotic bac-
teria, is known to deplete among colorectal cancer or adenoma patients, which has a 
0.32 correlation with Aldercreutzia, which has been recently identified as a microbial 
biomarker that has more abundance in the Adenoma patients but not so much among 

Fig. 6  Functional inferences among taxa with disease-only intra-modular correlations. The Colorectal 
“Cancer” and “Healthy” columns represent the clusters to which the taxa belong if present. The ANCOMBC, 
ALDex2, and MaAsLin2 with TRUE represent the taxa that are differentially abundant. The C3NA column 
shows if the taxa are influential in the network between colorectal cancer and healthy control. The known 
function is obtained from a selection of publications. The disease-only intra-modular correlations identify the 
important taxa and their corresponding correlation values on the connecting arcs
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colorectal patients by Olovo et al. [46]. Olovo et al. commented on the importance of 
further studying Aldercreutzia, which produces equol that is associated with a lower 
risk of colorectal cancer. The similar abundance patterns of these two Genus-level 
assignments also suggested a similar behavior of them in the colorectal patients, sug-
gesting the potential of an important biomarker to monitor colorectal patients and 
their disease progression.

Lastly, C3NA enables an interactive comparison of taxa across multiple taxonomic 
levels between conditions. For instance, Order Burkholderiales, the higher taxonomic 
level for the genera Parasutterella [38] and Sutterella [43], both known to be enriched 
in CRC samples, had an exceptionally high intra-modular correlation with Bacteroides 
solely in Cancer samples (Fig. 6 and Additional file 1: Fig. S11).

Discussion
In this paper, we presented a correlation and consensus-based investigation of microbial 
sequencing data to extract and refine the taxa–taxa co-occurrence network for infer-
ring biological relationships between the microbes. C3NA has a wide range of applica-
tions, including detecting specific co-occurrence patterns and identifying, confirming, 
and assigning functionality to microorganisms. By comparing the co-occurrence pat-
terns that differ between the two conditions, C3NA was able to detect unique microbial 
patterns that represent condition-specific and study-specific key taxa–taxa interactions. 
These interactions can be examined further regarding their functional potentials; C3NA 
can assist in resolving disagreements regarding the contribution of a single microorgan-
ism to a given condition by examining the relationship of all its biologically inferable 
taxonomic categories.

The main advantage of the co-occurrence network approach with the ability to inte-
grate a range of differential abundance analyses is to broaden our understanding of the 
microbial contribution towards a particular condition. Given the variability of the results 
from DA methods, C3NA enables the incorporation of as many DA as possible for con-
cordant analyses to extract the most valuable groups of taxa that are differentially abun-
dant or connected between conditions. The functional inference can then be made for 
the taxa that share high correlations with a well-studied taxon, thus paving the road for 
discovery studies to validate the potential functions of the less-studied taxa.

In the C3NA pipeline, we utilized on the SparCC algorithms for handling composi-
tional microbial data to output a correlation matrix. SparCC is a validated method for 
compositional data (e.g., microbiome), and the data do not require any preprocess-
ing, and the resulting taxa–taxa correlations are based on bootstrapped methods with 
empirical p-values for the statistical significance of the inferred taxa–taxa pairs. When 
incorporating other correlation-based methods, data transformation and normalization 
techniques suitable for microbial data should also be examined to allow the input data to 
better represent the composition of the original microbial samples.

In conclusion, we presented a novel microbial data analysis pipeline for enhanced and 
methodological investigation of microbial communities and their compositional differ-
ence between conditions.
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