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Background
Analysing high-dimensional (HD) data is an important challenge in a wide variety of 
fields. In particular, Dimensionality Reduction (DR) techniques have been increasingly 
used for visualising high-dimensional data by projecting the data onto a low-dimen-
sional (LD), usually 2D, space. The aim is to reveal the key hidden structures in the HD 
data, such as clusters or other geometrical arrangements of the data points. One of the 
most frequently used methods for this purpose is the t-distributed Stochastic Neighbor 
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Embedding (t-SNE) [1]. The t-SNE is able to create compelling visualisations of data with 
hundreds of dimensions in fields as diverse as image processing [1], speech recognition 
[2], immuno-profiling of COVID-19 patients [3], etc. One further important area of 
application is cell biology where data is collected on gene expressions in individual cells 
[4–7]. Cells are often characterised by expressions of thousands of different genes, where 
the t-SNE has enabled visual analysis of the data in the LD embedding. One of the main 
successes of t-SNE is its ability to capture discrete patterns even for data with very high 
dimensions compared with traditional DR methods [1], such as principal component 
analysis (PCA) [8], locally linear embedding [9], ISOMAP [10] and Laplacian eigenmaps 
[11], etc. The approach taken by t-SNE focuses primarily on preserving local structures, 
usually characterised by Euclidean distances (ED), but not on the global arrangement 
of points. Despite its merits, several drawbacks of t-SNE have been identified in the lit-
erature. Specifically, the t-SNE requires the user to define what is meant by local. This is 
often difficult to assess in practise and an incorrect notion of locality can result in spuri-
ous patterns appearing in the LD embedding. Furthermore, global patterns are impor-
tant in many cases, but they are not guaranteed to be preserved by the t-SNE.

To alleviate these limitations, we propose to incorporate graph-based distances into 
the framework of t-SNE. The first step of the method is to construct a graph represent-
ing the HD data in a data-driven way by only connecting points in small local neigh-
borhoods. Information about the global structures of the constructed graph are then 
captured by shape-aware graph distances (the biharmonic distance [12] in this study). In 
contrast to conventional distance measures, such as the ED, shape-aware graph distances 
are able to learn the global shapes of the underlying manifold or structure on which the 
HD data reside. This has an advantage for dimensionality reduction based on distance 
preservation. For example, if the underlying manifold is a 2D structure embedded in a 
3D Euclidean space, then an ED-based algorithm would have to give up global distances 
to reduce dimension. A DR technique based on a shape-aware distance that respects the 
curvature of the manifold, on the other hand, can reduce dimension without distorting 
global structure. We term the t-SNE embedding shape-aware distances SASNE, short for 
Shape-Aware Stochastic Neighbor Embedding. The original t-SNE that embeds conven-
tional distances, e.g. ED, is hereafter simply referred to as t-SNE.

Some recent methods have also been proposed that claim to solve the shortcomings of 
t-SNE; in particular the Potential of heat diffusion for affinity-based transition embed-
ding (PHATE) [13] and the Uniform manifold approximation (UMAP) [14, 15] methods. 
In this study, we compare SASNE to t-SNE, PHATE and UMAP and show that these 
competing methods are not able to consistently (i) reveal true discrete structures, (ii) 
avoid creating spurious discrete structures, and (iii) preserve global and hierarchical 
structures as well as SASNE. In order to confirm the advantages of SASNE compared to 
t-SNE, PHATE and UMAP, we apply the methods to embed both synthetic and real data 
sets that demonstrate imbalanced, nonlinear, hierarchical and developmental trajectory 
structures. The real data sets are the MNIST data set of handwritten digits and gene 
expressions from cells of a mouse brain.

In some previous works [3–7], judging the embedding performance is often done 
simply by visual inspection where the embedding quality is assessed by the amount of 
discrete structures appearing in the LD embedding. However, the discrete structures 
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that appear in the LD embedding may be spurious and do not necessarily reflect the 
true underlying organisation of the HD data due to, e.g., inappropriate choice of hyper-
parameters or failure to capture global structures in the LD space. Here, we scrutinize 
the embedding quality in terms of quantitative validation methods for both clustering 
(the silhouette indices and plots) and dimensionality reduction (rank-based methods). It 
is found that SASNE not only shows significant improvement in preserving both cluster-
ing and hierarchical structures at all scales, but also allows us to fix the hyper-parameter 
of the method in a data-driven way, which is commonly chosen by default [4].

The outline of the paper is as follows. The theoretical concepts of the SASNE are intro-
duced in the “Methods” section. These include an overview of the t-SNE method, the 
motivation and evaluation of graph-based distances, and the validation methods moni-
toring the quality of clustering and dimensionality reduction in the LD embedding. In 
the “Results” section, we demonstrate the superior performances of SASNE in capturing 
nonlinear and hierarchical structures compared to the original t-SNE and UMAP based 
on ED, as well as the PHATE based on the potential distance (PD), in terms of both syn-
thetic and real data sets.

Methods
Overview of t‑SNE

The t-SNE [1, 2] is a dimensionality reduction method that takes as input a HD data set 
X and returns the LD (usually 2D) coordinates Y for the purpose of visualisation of data 
patterns and organisations. The basic idea of the method is to transform the distances 
between data points in both of the HD and LD spaces into probability distributions. 
How well the distances are preserved is then quantified in terms of a dissimilarity meas-
ure (or cost function), with the Kullback-Liebler divergence commonly used, between 
the two distributions. Variants of t-SNE [16–18] differ from each other in the probability 
distributions and the dissimilarity measure used in the methods.

The t-SNE directly takes as inputs the distances between points without the need to 
know the coordinates of the HD feature space. It proceeds by first converting the HD 
distances into a probability distribution pij , usually defined by a Gaussian kernel, over 
all pairs of points xi and xj , such that close points have high probability. A key parameter 
to be set in t-SNE is the ‘perplexity’ which corresponds to the effective number of neigh-
bors covered by the Gaussian kernel (See Additional file  1: Appendix for details). The 
perplexity therefore controls the variable widths of the Gaussian kernel (or the neighbor-
hood ranges) around different data points in the HD space such that points separated 
beyond this range are considered to be faraway.

Another key idea of t-SNE is the use of long-tailed t-distribution for the probability 
distribution qij associated with yi and yj in the LD space. As a result of the mismatching 
of the two distributions pij and qij at large distances, faraway points beyond the neigh-
borhood ranges set by the perplexity in the HD space tend to map to much larger dis-
tances in the LD space. This mismatch is claimed to mitigate the crowding problem in 
dimensionality reduction [1]. Moreover, points within the neighborhood ranges set by 
the perplexity in the HD space tend to map to points also close in the LD space. These 
together amplify and better reveal discrete cluster structures provided that an appro-
priate value of perplexity is chosen. In practice, a default perplexity value of around 30 
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is often used with the hope that it defines reasonable neighborhood ranges that match 
with the spatial extents of clusters in the data.

On the other hand, the Kullback-Leibler divergence, given by ij pij log
pij
qij

 , as the cost 

function is asymmetric in pij and qij . This means that short distances in the HD space 
with large pij contribute significantly to the cost function, whereas long distances with 
small pij contribute less. Consequently, this asymmetric property of the cost function 
tends to prevent close points in the HD space from getting separated in the LD space 
(i.e., extrusions are discouraged). However, it does not prevent distant points in the HD 
space from being mapped close in the LD space despite the mismatching of pij and qij at 
large distances mentioned above (i.e., intrusions can occur). The optimisation of t-SNE 
to find the configuration of points Y that minimizes the cost function are generally per-
formed using gradient-based methods. The mathematical details of t-SNE and its opti-
misation procedures are given in the Additional file 1: Appendix.

Graph distance motivation

The t-SNE schemes [1, 4] are commonly employed to embed HD data based on, for 
example, the Euclidean distance (ED) in the HD space. However, many conventional 
distance measures in the HD space, such as the ED, Hamming distance for data string 
comparison [19], negative binomial distance for comparison of gene count vectors in 
single-cell RNA sequencing research [17], etc., are often good distance measures only 
in local neighborhoods that are small compared to the extents of nonlinear structures in 
the data. For instance, the ED can only be used locally for data points lying on a hemi-
sphere since it fails to capture the curved shape of the underlying manifold when com-
paring remote points. In other words, conventional distance measures fail to capture 
the global shape and organisation of the data structures. This poses a problem when the 
common perplexity value of 30, which can connect moderately remote points, is used 
to produce LD embedding of distinct clusters, e.g., for the MNIST data set [1]. On the 
other hand, a choice of small perplexity that focuses only on preserving small local struc-
tures could result in a LD embedding composed of many small spurious clusters that do 
not exist in the HD data [20]. Furthermore, global structure and hierarchical organisa-
tion of clusters are likely lost when a small perplexity is used [4, 20].

It is therefore generally difficult to choose an appropriate perplexity that is small 
enough for conventional distance measures to be useful, but large enough to be able to 
capture global structures in the HD data. Here we propose to employ the graph distances 
of the HD data as inputs to t-SNE to resolve the above shortcomings. Graph distances, 
sometimes called shape-aware distances, better capture the global nonlinear structures 
where the HD data reside. As will be shown later in the “Results” section, this naturally 
leads to a choice of large perplexity value that cannot only mitigate the problem with 
spurious clusters, but also largely preserve the global and hierarchical structures of the 
HD data.

Graph construction

The first step in evaluating the graph distances is to construct a graph to represent the 
HD data, where a node in the graph corresponds to a data point and edges represent the 
local relationships between points. We define local neighborhoods by only connecting 
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each data point xi to its k nearest neighbors (kNN) based on, e.g., the ED. A graph simi-
larity matrix wij with i, j = 1, . . . , n between data points xi and xj is defined as the inverse 
of the squared ED, 1/�xi − xj�

2 . Some studies also use the Gaussian kernel for wij [1, 
13, 21]. The inverse of squared ED is suggested in this study to avoid introducing the 
Gaussian width as an additional parameter. The similarities of disconnected data points 
are simply set to zero. With the similarity matrix wij , the constructed graph can also be 
viewed as a Markov network with transition probability wij/

∑
k wik for a transition from 

node i to node j.
Different from the perplexity, the parameter k in the graph construction specifies the 

extent of the local neighourhoods where conventional distance measures, e.g., ED, can 
be used. We therefore choose a value for k that is as small as possible, just to keep the 
graph connected, that is, for each point xi one can reach any other data point xj using 
only the local connections. Commonly k is found to be around 5 with this method. If 
the data consists of highly disconnected regions, k may end up being very large to main-
tain connectivity in the graph. Nevertheless, this case can be handled by first finding 
the k just large enough for the graph to be connected, then identifying the disconnected 
components for the ( k − 1)NN graph, which can be done efficiently in linear time by 
a depth-first search [22]. By keeping the links between the components from the kNN 
graph, one can then re-run the above algorithm recursively on the disconnected compo-
nents until a lower value of k, e.g. around 5, is reached.

Biharmonic distance

Various graph distances, such as the geodesic distance [23], commute time distance 
(CTD) [12], diffusion distance [21], etc., exist in defining relationships between nodes 
that capture the intrinsic geometry of the data. In this study, we employ the biharmonic 
distance (BHD) [12] to measure distances between points.

Several advantages of employing the BHD are as follows: (i) The BHD between points 
from the same clusters are usually very small due to the strong within-cluster connec-
tivity in the graph, whereas the BHD between points from different clusters could be 
very large due to the weak connectivity between clusters. This property of BHD makes 
discrete structure exaggerated and easier to detect. (ii) Compared with the geodesic 
distance, the BHD is robust to random noise [12]. (iii) The BHD can be expressed and 
computed in terms of the eigenvalues and eigenvectors of the graph Laplacian, one of 
the most fundamental concepts in graph theory [24]. (iv) Unlike, e.g., the diffusion dis-
tance, the BHD involves no additional parameter and therefore reduces the subjective 
input from users. (v) The CTD is similar to the BHD in its computation and points (i)-
(iv) holds for the CTD as well. However, a different weighting of the eigenvalues when 
computing the BHD compared to the CTD leads to a higher stability in estimating large 
distances [12].

Validation of the low‑dimensional embedding

In order to monitor the preservation of cluster and hierarchical structures by SASNE, 
t-SNE, PHATE and UMAP, we advocate the use of quantitative validation indices to 
compare and evaluate the quality of the LD embedding. In previous studies [1, 2], quality 
of the embedding are often carried out by simple visual inspections but this may lead to 
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misleading conclusions about the data by interpreting spurious patterns created by the 
methods. To provide a quantitative account of the merits of SASNE compared with the 
competing methods at the point-wise, cluster-wise (or intermediate), and inter-cluster 
(or global) scales, we introduce two complementary validation indices, one for clustering 
and another for dimensionality reduction as follows.

Cluster validation

In this study, we evaluate how faithfully the embedding preserves the underlying clusters 
using the silhouette index [25]. For a given point xi assigned to the cluster Ck 
( k = 1, . . . ,K  with K the number of clusters) containing Nk points, the cohesion ai is 
defined as ai = 1

Nk

∑
j:j∈Ck

δij where δij denotes the distances between points xi and xj 
and the sum runs over all points in the same cluster Ck . Here δij is the conventional dis-
tance measure, e.g. ED, when the t-SNE or UMAP are used, the BHD when the SASNE is 
used and the PD when PHATE is used.

To quantify separation, we first define a point-to-cluster distance 
δ(xi,Cl) =

1
Nl

∑
j:j∈Cl

δij where the sum runs over all points in the cluster Cl . For a given 
point xi in the cluster Ck , the separation bi is defined as the distances from xi to the clos-
est cluster that xi does not belong to, i.e., bi = minl �=k δ(xi,Cl) . Combining the cohesion 
and separation, the point-wise silhouette value si for point xi can then be defined as

One can see that −1 ≤ si ≤ 1 and si is close to 1 ( −1 ) for a good (bad) clustering with 
large (small) separation bi and small (large) cohesion ai . Furthermore, the cluster-wise 
silhouette score sk can be naturally evaluated as the average silhouette value over all 
points in the cluster Ck,

Finally, an overall silhouette coefficient S is evaluated by averaging over all clusters,

We first note that the silhouette index is primarily designed to validate clustering (i.e., 
unsupervised learning) methods in which the data do not come with labels. Neverthe-
less, we will apply the silhouette index in “Results” section below to our test and real 
data sets whose clusters Ck are known, to evaluate how well clustering structures are 
preserved from the HD space to the LD embedding.

To correctly evaluate clustering results with non-spherical clusters, conventional dis-
tance measures, e.g., the ED, which does not contain any shape information, should not 
be used as the distances δij in the silhouette index. Instead, we will show in “Results” 
section that the use of the BHD is more appropriate. On the other hand, the separation 
bi in the silhouette index only considers the closest cluster to the data point under con-
sideration. This means that the silhouette index cannot validate how well hierarchical 

(1)si =
bi − ai

max(ai, bi)
.

(2)sk =
1

Nk

∑

i:xi∈Ck

si

(3)S =
1

K

K∑

k=1

sk .
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organisations of clusters at the inter-cluster scales are preserved by the LD embedding. 
This leads us to introduce a complement validation method that takes the relative place-
ment of the data points into account.

Dimensionality reduction validation

We complement the silhouette index by quantifying how well the relative placement of 
points in the LD space agrees with those in the HD space. In dimensionality reduction, 
preservation of exact distances is too restrictive that can seriously hamper the flexibility 
of the nonlinear mapping from the HD to the LD space [26]. Instead, it is more desirable 
for the embedding to only impose a monotonic relationship between the HD and LD 
distances that corresponds to the preservation of distance rank ordering [27–29]. Unlike 
classical methods such as PCA and multidimensional scaling, t-SNE and UMAP do not 
aim at preserving exact distances.

In this study, a rank-based validation scheme for dimensionality reduction is for-
mulated as follows. For each point xi in the HD space, the rank vector rix = (rxij)j �=i is 
defined, where rxij = r if xj is the rth closest point to xi . The rank vector ryi  is defined in 
the same way for the LD space. We then define a point-wise quality measure, ri , for the 
point xi as the mean absolute rank error (MARE),

to quantify how well the embedding from the HD to LD space preserves the distance 
ordering relative to the point xi . Here the MARE is normalised to lie between 0 (per-
fect rank preservation) and 1 (complete distortion of ranks). Likewise, an overall quality 
measure of preservation of rank ordering that we term ‘average rank error’, R , can be 
evaluated by averaging the point-wise quality over all data points,

In addition to the quality measures, it is informative to create the rank residual plot 
(RRP) that allows us to visually inspect the distribution of the rank residuals rxij − r

y
ij . 

The RRP is a 2D density plot whose ordinate and abscissa are the value of the normal-
ised rank residuals (rxij − r

y
ij)/(n− 1) and the normalised original rank index j/(n− 1) 

( j = 1, . . . , n− 1 ), respectively. As we will see in the “Results” section, the RRP also 
tells us at what scale and to what degree the distance orderings are distorted in the 
embedding.

Results
Simulation studies

To demonstrate the advantages and provide insights for our graph-based approach, 
we apply the t-SNE, PHATE, UMAP and the SASNE to four simulated test data sets 
whose clustering structures are known beforehand. These test sets aim to represent 
different types of data with features that are often found in real data, allowing us to 

(4)ri =
1

n− 1

∑

j:j �=i

| rxij − r
y
ij |

n− 1
,

(5)R =
1

n

n∑

i=1

ri.
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highlight the merits of using graph distances in cluster separation, dimensionality 
reduction quality and visual clarity.

We show in Fig. 1a the first test case of ‘imbalanced clusters’. Two clusters are gener-
ated from 3D Gaussian distributions with the same variance but with different means 
and number of points. A good LD (2D) embedding is expected to clearly separate the 
two clusters.

The second test case where clusters have ‘nonlinear structure’ is shown in Fig. 1b. 
Each cluster contains 400 points that are sampled along the two underlying 1D curves 
with Gaussian noise added. A good LD embedding is expected to not only reveal the 
1D underlying structures, but also place the data correctly into two distinct groups.

The third test case shown in Fig. 1c simulates a data set with ‘hierarchical structure’, 
where clusters 1 to 3 and clusters 4 to 6 form two distinct ‘super-clusters’, respectively. 
A good LD embedding is expected to reveal this hierarchical structure where the rank 
ordering of the distances between the six cluster centers is preserved.

We show silhouette plots in Additional file 2: Fig. S1 for the three test cases above 
comparing the BHD, ED and PD before any embedding. It is informative to see the 
advantage of using the BHD over ED and PD in highlighting clustering structures.

The fourth test case, also studied by Moon et al. [13], is illustrated in Fig. 1d. This 
data set contains no discrete structure. Instead, the data mimics continuous develop-
mental trajectories that branch off in various directions. This structure is common 
in single-cell data, for example, where cell types continuously differentiate into other 
kinds of cells. A good LD embedding should therefore reveal the different develop-
mental branches and correctly maintain their continuous structures.

Fig. 1  Four synthetic data sets. a Data sampled from two Gaussians with equal covariance matrix but 
different means. The red and blue clusters contains 1000 and 50 points, respectively. b Data sampled 
uniformly along two non-overlapping 1D nonlinear curves with Gaussian noise added. Each cluster contains 
400 points. c Data contains 6 clusters with 100 points each. Data are sampled from Gaussians with equal 
covariance. The cluster means are arranged in two major groups, each containing 3 sub-clusters. The green 
lines are included for clarity. The numbers next to the lines indicate the ED between the cluster means. 
d Schematic illustration of data set containing 1440 points sampled on piece-wise linear manifolds in 60 
dimensional space with Gaussian noise added to all the 60 dimensions
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Choice of hyper‑parameters

The usual rationale in choosing low perplexity around 30 in the t-SNE is to preserve the 
local neighborhoods as well as possible. It was also claimed that the t-SNE results are 
fairly robust against a change of perplexity value [1]. However in terms of distance rank 
preservation, a low perplexity is in fact a poor choice, whereas choosing large perplex-
ity value, such that the Gaussian kernel can cover remote points, consistently results 
in significant improvements (see Additional file  2: Fig.  S2), especially for the SASNE. 
We therefore propose a natural choice of perplexity to be around 90% of the number of 
points for SASNE, and use this large perplexity value in all the following analyses as a 
default value. Choosing 90% also allows us to exclude outliers that can result in extremely 
wide Gaussian kernels. We note that perplexity equal to the number of points is not pos-
sible since this would correspond to an infinite bandwidth of the Gaussian kernel with 
all neighbors weighted equally (see Additional file 1: Appendix).

As apparent cluster structures frequently appear in the LD embedding, it may be 
tempting to choose a lower perplexity when assessing the performance of t-SNE or 
SASNE qualitatively by eye. However, due to the possible appearance of spurious clus-
ters and the loss of relative placement of clusters, we do not suggest for such choice to 
avoid making misleading conclusions about the data. For t-SNE, UMAP and PHATE, we 
follow the default hyper-parameter settings proposed in the original works (see Addi-
tional file 1: Appendix).

Dimensionality reduction validation

Figure 2 shows the RRPs and the average rank errors, R , for the four test cases embedded 
by the methods. The RRPs show the distance rank preservation at all scales. In particu-
lar, distortion of small (large) ranks corresponds to error on the local (global) scale. The 
local and global scales locate on the left and right sides in the RRP, respectively.

In case of the imbalanced data set (first column in Fig. 2), many rank orderings, espe-
cially at the intermediate scales located in the middle portion of the abscissa in the 
RRP, are not accurately preserved. This is expected since three variables are required to 
describe the relationship between the points from a 3D Gaussian distribution. Never-
theless, the SASNE and PHATE show high rank preservation at the large (inter-clus-
ter level) and small scales are comparable in this test case with simple spherical cluster 
structures. In contrast, UMAP and t-SNE show poor rank preservation for the larger 
distances with slightly better preservation for the local neighborhoods. They have a high 
average rank error compared to SASNE and PHATE.

From the second column of Fig.  2, we observe for the nonlinear case a significant 
improvement of the distance rank preservation in the SASNE compared to all other 
methods, especially t-SNE and UMAP. The RRP shows that the rank ordering at all 
scales are highly preserved in SASNE (Fig. 2b). This is a direct consequence of using the 
shape-aware distance, BHD, that is able to capture the underlying nonlinear structure 
where the data points reside on.

The RRPs of the embeddings of the hierarchical data set by t-SNE, PHATE and 
UMAP (Fig. 2g, k, o) show that mainly the small ranks are preserved while the large 
ranks are distorted to a higher degree. This means that the hierarchical organisation 
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of the clusters is lost in these embeddings. On the other hand, the high preservation 
of distance ranks by SASNE is shown in Fig. 2c. The main improvement is from the 
preservation of the large distance ranks, meaning that the hierarchical organisations 

Fig. 2  Rank residual plots (RRP) for the four simulated test cases. The perfect situation in which all distance 
rank orderings are preserved in the embedding implies that all residuals equal to zero. In that case, the RRP 
shows a shape peak along the horizontal line in the middle of the plot. The residuals are visualised via a 2D 
histogram, where each bin is colored according to the relative density of points, according to the color bar at 
the bottom of the plot. Unreachable regions are colored white. The values on the top of each RRP correspond 
to the average rank error R . The test cases are arranged per column with the same order as in Fig. 1
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of the clusters are well preserved in the embedding. This also results in a significantly 
lower average rank error compared to the other methods.

The RRPs evaluating the embeddings of the artificial tree test are shown in the fourth 
column of Fig. 2. The t-SNE and UMAP preserve mainly the small distance ranks with 
poorer preservation of the large distance ranks compared to SASNE and PHATE, which 
results in the higher average rank errors. The SASNE achieves the lowest average rank 
error with slightly better preservation of the large distance ranks compared to PHATE.

Evaluation of the LD embeddings

The RRPs in Fig. 2 show that the preservation of the distance rank is best for SASNE 
compared to other methods in all test cases. Next we gain more insights on this supe-
rior performance by looking at the corresponding LD embeddings. The resulting LD 
embeddings of the imbalanced data is shown in the first column of Fig. 3. The SASNE 
gives very distinct cluster separation that clearly reveals the discrete structure. Indeed, 
the silhouette coefficient and average silhouette value shown in Fig. 4a for the embed-
ding confirm the superior ability of SASNE in highlighting clusters. Furthermore, the 
cluster separation in the UMAP plot is comparable to SASNE. The t-SNE and PHATE 

Fig. 3  2D embeddings of the test cases in Fig. 1. The color scheme of the clusters are the same as in Fig. 1. 
The insets in c magnify the cluster structures separated far apart from the embedding
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demonstrate less clear separation of the clusters, where it could be difficult to visually 
identify the clusters and distinguish it from spurious patterns created by the algorithm.

For the nonlinear data set shown in the second column of Fig. 3, one can see one 
limitation of the t-SNE that it fragments one of the two clusters into two spurious 
clusters. This results in a low silhouette score and average silhouette value shown in 
Fig. 4b. The SASNE, UMAP and PHATE successfully untangle the two shapes. Fur-
thermore, the SASNE (Fig. 3b) achieves better denoising of the data, thereby clearly 
revealing the underlying 1D structures of the clusters. This improvement in the clus-
tering quality is further confirmed by the silhouette coefficient in Fig. 4b.

The embeddings of the hierarchical data set are shown in the third column of Fig. 3. 
At first glance, the t-SNE and UMAP may be preferred as the spherical shapes of the 
clusters from the original 3D data (Fig. 1c) are retained. However, the RRPs in Fig. 2g, 
o show that both t-SNE and UMAP introduces distortions in distance ranks at most 
scales except for the very local scale, implying their failure in retaining the global 
arrangements of the clusters. On the other hand, the SASNE achieves much lower 
distance rank distortion at all scales as shown in the third column of Fig. 2b, implying 
that the hierarchical structure of the clusters is well preserved. In terms of cluster val-
idation, the t-SNE correctly separates the individual clusters within each group. The 
method is however not able to clearly distinguish the reddish group (clusters 1–3) 
from the bluish group (clusters 4–6) as shown in Fig. 3g. The UMAP is also not able 
to preserve well the distance ranks of cluster separations when comparing to Fig. 1c. 
Similarly, PHATE depicts the two groups symmetrically that does not reflect the true 
structure. A better separation of the clusters within each group is obtained by the 
SASNE, confirmed by the silhouette coefficient shown in Fig. 4c.

The embeddings of the artificial tree data is found in the fourth column of Fig. 3. 
The SASNE embedding clearly shows the different branches of the tree while also 
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Fig. 4  Barplot showing the average silhouette value for each of the simulated test cases, where clusters 
are present, and for each method. The dashed lines corresponds to the silhouette coefficient. a Barplot 
showing average silhouette value together with silhouette coefficient for each method for the imbalanced 
test. b Barplot showing average silhouette value together with silhouette coefficient for each method for 
the nonlinear test. c Barplot showing average silhouette value together with silhouette coefficient for each 
method for the hierarchical test
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keeping the trajectories intact. Furthermore SASNE denoises the data and clearly 
shows the 1D structure of the trajectory. Despite having less denoising compared to 
SASNE, the t-SNE also performs well on this data set by keeping the tree connected. 
Crucially, UMAP shatters the tree and produces several spurious clusters. Although 
PHATE is able to keep the tree connected, some branches are merged together, mean-
ing that the relative positioning of the branches is lost from the embedding.

In summary, the above test cases demonstrate that the SASNE can reliably embed and 
reveal clusters with imbalanced, arbitrarily shaped and hierarchical structures based on 
the qualities of both clustering and preservation of distance ranks. It also prevents creat-
ing spurious discrete structures that shatter continuous trajectories in the data. Since the 
shape-aware BHD provides us with a valid global distance measure, the choice of a larger 
perplexity value, e.g., 90% of the number of points, allows us to consistently fix the only 
hyper-parameter of the embedding method in a data-driven way. To demonstrate the 
superior performance of SASNE for real HD data, we consider the following two data 
sets.

Gene expression data

We consider a data set of gene expressions from 3663 cells taken from the hippocampal 
area of a mouse brain [17]. Each cell is characterised by a gene count vector, indicating 
the expression frequency of the sequenced genes. With the gene count vector as coor-
dinates of the HD space, the data set allows us to identify groupings of cells that cor-
respond to distinct cell types based on their gene expression profiles. In contrast to the 
simulated data sets and the MNIST data discussed in the next section, the gene expres-
sion data is unlabelled, i.e., the corresponding clusters, or cell types, to which the cells 
belong to are unknown beforehand. Therefore, an additional clustering procedure (not 
performed here) is needed to group the data points in the LD embedding. Since no clus-
ter label is available, we focus only on how well distance ranks are preserved in the LD 
embedding and do not consider cluster validation in this case.

Before applying the methods, we follow the same procedures performed by Kobak 
et  al. [4] to reduce the number of features that produce comparable results to those 
reported by the original works [17] where the data set was obtained. Specifically, we 
select 1000 representative genes out of 27998 in total that show high expression levels 
in a smaller subset of cells, indicating their capability of being good molecular features 
to distinguish cell types (see Additional file 1: Appendix). The resulting embeddings of 
the gene expression data are shown in Fig.  5a–d. For comparison, the data is colored 
according to a previous clustering result performed by Harris et al. [17] that gave rise to 
a total of 49 clusters by fitting a mixture of binomial distributions using the expectation 
maximisation algorithm. It has been reported that these cell clusters form hierarchies, 
where clusters close to each other are indicated by similar colors, often with continuous 
transitions between clusters. Therefore, a better preservation of distance ranks in the LD 
embedding is important to correctly embed these hierarchies and to preserve continu-
ous developmental trajectories in order to provide meaningful biological interpretations.

From Fig. 5a, the SASNE corroborates the previous clustering result that cell groups 
colored similarly also fall into nearby regions in the SASNE space. For the preservation 
of hierarchical structures, the RRP shown in Fig. 5e confirms a relatively low degree of 
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rank distortion across all scales. Moreover, SASNE shows a pronounced improvement 
compared to the t-SNE and UMAP according to the RRPs and average rank errors 
shown in Fig. 5f, h. Although clustering validation was not performed for this data set, 
one can still see from Fig. 5b, d that the t-SNE and UMAP displays better discrete data 
structures, but with a large distortion of distance ranks across all scales, likely shattering 
continuous transitions between clusters. Moreover, the PHATE achieves a comparable 
average rank error, but with a higher distortion of the intermediate distance ranks, as 
can be seen in Fig. 5e, g. By examining the PHATE embedding in Fig. 5c, we note the 
similar shape compared to the artificial tree embedding in Fig. 3q, i.e., some trajectories 
appear to be merged by the PHATE. On the other hand, the SASNE shows more distinct 
developmental trajectories in the LD embedding indicated by Fig. 5a, c, while simulta-
neously achieving slightly higher preservation of distance ranks as seen by comparing 
Fig. 5e and g.

MNIST handwritten digit data set

We now apply the methods to the MNIST data set consisting of gray scale images of 
handwritten digits [30]. Each image is represented by a 784 ( 28× 28 ) dimensional vec-
tor whose entries correspond to the pixels of the image. The images are labelled based 
on which digit, from 0 to 9, it corresponds to. This enables us to evaluate how well the 
images are grouped according to their labels in the LD embedding without the need for 
extra clustering procedures.

The MNIST data set has known hierarchical structures. For example, digits 4 and 9 
look more alike to each other compared to digits 4 and 1. This is confirmed by examin-
ing the overlaps between the digits (see Additional file 2: Fig. S3). Moreover, all digits 
overlap with the other digits to some extent, with only digits 0, 1 and 6 showing rela-
tively clear separations from the other digits. The continuous overlapping between 
images from different digits should be reflected in the LD embedding. Moreover, some 

Fig. 5  Results of applying SASNE, t-SNE, PHATE and UMAP to the single-cell data set. a–d Resulting LD 
projections by SASNE, t-SNE, PHATE and UMAP, respectively. Each data point is colored according to the 
clustering results of Harris et al. [17]. e-h RRPs for each of the LD embeddings
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digit clusters are non-spherically shaped (see Additional file  2: Fig. S4) indicating the 
advantage of using shape-aware distance measures.

By examining the silhouette plots of different distance measures in the original HD 
space (see Additional file 2: Fig. S5), one sees a low silhouette coefficient for all distance 
measures, again indicating significant overlap between the digits. In particular, the sil-
houette plots for BHD indicate that digits 0, 1, and 6 have relatively large (digit-wise) 
silhouette values, consistent with the overlapping analysis in Additional file  2: Fig. S3 
showing that these digits are the most distinct. The remaining digits do not show clear 
separation according to the silhouette plot, consistent again with the overlapping analy-
sis (Additional file 2: Fig. S3). On the other hand, the ED gives a silhouette coefficient 
close to 0, indicating that the digits do not form discrete clusters according to the ED. 
The PD has a comparable silhouette coefficient to the BHD (Additional file 2: Fig. S5) 
that confirms the advantage of using graph distances when handling clusters with arbi-
trary shapes. Nevertheless, the silhouette plots of PD indicate that all digits separate 
roughly equally in the HD space. For example, digit 1 and 2 have similar silhouette val-
ues, inconsistent with the overlapping analysis (Additional file 2: Fig. S3).

The resulting 2D SASNE with an appropriate perplexity chosen to be 90% of the num-
ber of data points (see Additional file  2: Fig. S7) is shown in Fig.  6a. The embedding 
shows that digits 0, 1 and 6 form relatively distinct clusters, whereas, e.g., digit 2 over-
laps with digits 1, 3, 7 and 9, which is consistent with the overlapping analysis (Addi-
tional file 2: Fig. S3). Indeed, the RRPs in Fig. 6e–h show the significant improvement 

Fig. 6  Results of LD embeddings by SASNE, t-SNE, PHATE and UMAP. a–d 2D projections of the MNIST 
data set using SASNE, t-SNE, PHATE and UMAP respectively. Each point is colored according to what digit 
it represents. e–h RRPs for the LD embeddings by SASNE, t-SNE, PHATE and UMAP respectively. i Barplot 
showing the silhouette coefficient evaluated on the LD embedding on the MNIST data set for each method



Page 16 of 19Wängberg et al. BMC Bioinformatics          (2022) 23:477 

by SASNE in preservation of the relative placement of the clusters in the LD embedding 
by SASNE compared to the other methods. On the other hand, although the UMAP 
embedding shows clearly separated clusters (Fig.  6d), it fails to capture the overlaps 
between digits. This can be seen by both the UMAP and t-SNE embedding (Fig. 6b, d) of 
the digit 2 that is incorrectly separated from the digit 7. The PHATE captures the overlap 
between digits more accurately compared to UMAP and t-SNE. Nevertheless, digits that 
are relatively well separated are not reflected in the PHATE embedding. For example 
in Fig. 6c, digit 0 and 6 are merged, and digit 1 is not separated from digit 2 and digit 7, 
which are inconsistent with the overlapping analysis (Additional file 2: Fig. S3).

In terms of the clustering quality, all methods result in a relative low overall silhou-
ette coefficient compared to the test case (see Fig. 6i). This is expected due to the small 
separations, bi , in the point-wise silhouette value in Eq. 1. The slightly higher silhouette 
coefficients of the UMAP and t-SNE indicate that discrete structures are more profound 
in the embedding (Fig.  6b, d). However, the profound discrete structures appeared in 
these embedding are likely to be spurious that do not reflect the true data structures 
revealed by the overlapping analysis (Additional file 2: Fig. S3) and the grouping of the 
digits in the original HD space (Additional file 2: Fig. S5). The PHATE has the lowest 
cluster separation and does not clearly reveal the distinct separation of digits 0, 1 and 6. 
In contrast, for digits 0, 1 and 6 the digit-wise silhouette scores are higher in the SASNE 
than in all other methods (see Additional file 2: Fig. S6). These all together demonstrate 
the ability of the SASNE to amplify true discrete structures in the data and preserve the 
relative organisations among these discrete patterns.

To sum up the analyses of the MNIST data set, the SASNE performs well simultane-
ously in clustering quality and preservation of distance ranks and hierarchical structure. 
Although UMAP and t-SNE show discrete structures, this is often not an accurate rep-
resentation of the HD data, where overlaps and hierarchical structure may be lost in the 
LD embedding. The PHATE shows better preservation of distance ranks compared to 
t-SNE and UMAP, but is relatively weak in revealing discrete structures in the data.

Discussion and conclusions
By incorporating the concept of shape-aware distances we have in this study proposed 
the SASNE. We have shown how it can mitigate some of the shortcomings of the t-SNE, 
UMAP and PHATE methods. This is done in a data-driven way that can consistently 
fix the hyper-parameter, perplexity, of the method. In terms of quantitative validation 
methods in both clustering and dimensionality reduction, the advantages of SASNE 
were exemplified with synthetic imbalanced, nonlinear, hierarchically structured data, 
and developmental trajectories where the ground-truth is known. The methods were 
then applied to two real HD data sets; the single-cell gene expression data and the 
MNIST handwritten digits data set. In both the synthetic and real data sets, the SASNE 
demonstrates superior performance compared with the current state-of-the-art meth-
ods t-SNE, UMAP and PHATE in capturing discrete and hierarchical structures hidden 
in the HD feature spaces.

It has been claimed in certain cases that the UMAP can outperform t-SNE in 
computational speed and preservation of global structures [14, 15]. Neverthe-
less, it was found [4] that the performance of the two methods depends highly on 
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the hyper-parameter settings, and their results could be similar for certain choices 
of hyper-parameters. Moreover, distortion of large distance ranks by both t-SNE and 
UMAP is expected, as both methods do not attempt to preserve global distances. The 
PHATE method is similar to SASNE in that it aims at preserving the graph distance, 
PD, that can correctly estimate long range distances. As our experiments show, how-
ever, the PHATE embedding does not accurately reveal the discrete structures to the 
same extent as the SASNE. We identify two potential reasons for this. First, the PD 
is defined as the logarithmic transformed diffusion distance that introduces a hyper-
parameter t controlling the time-scale of the diffusion. A single time-scale t often 
cannot capture both local and global scales and therefore multiple values of t should 
be examined to get a complete picture [12, 21]. Second, PHATE relies on the metric 
multidimensional scaling (MDS) to embed the PD into the LD space. However, the 
MDS aiming to preserve all distances as much as possible has been shown to perform 
poorly compared to t-SNE due to its inability to handle the crowding problem in the 
LD embedding [1].

Some other related studies making use of graph-based methods to improve the 
performance of t-SNE also exist. In particular, Parviainen et al. proposed the Graph-
SNE (GSNE) [31] that considers the probability for a random walker to reach data 
point i from point j and vice versa in a fixed time τ . This probability was then used 
as the HD distribution pij in the t-SNE procedures. GSNE has the advantage that it 
speeds up the evaluation of pij without the need to perform matrix diagonalisation 
as in the SASNE. Similar to the PHATE, there is no good strategy in choosing the 
hyper-parameter τ that is crucial in determining the ‘scale’ of the regions explored by 
the random walker in the graph. Therefore, it was suggested [31] to examine a wide 
range of diffusion times τ when using GSNE to capture hierarchical structures in the 
data, which in turn requires several runs of the t-SNE optimisations with increasing 
computational cost. Another variant of t-SNE is the Hierarchical-SNE (HSNE) [32]. 
The method speeds up the computations by a landmarking strategy where transition 
probabilities pij are approximated by Monte Carlo estimation of simulated random 
walks on the graph representation of the data. Although there are computational ben-
efits to the approach, there are a multitude of hyper-parameters that need to be deter-
mined for the graph construction and estimation of pij.

We finally note that the computational cost of SASNE may become demand-
ing when the data size n becomes large, which is an important direction for future 
improvement. The main computational bottlenecks of SASNE are (i) computation of 
the BHD matrix and (ii) the gradient based optimisation method used in the origi-
nal t-SNE implementation which creates the LD embedding from the BHD matrix. 
Both (i) and (ii) are in the order of O(n2) . As for (i), one approach to reduce the time 
complexity is to coarse grain the weighted graph [33]. Regarding (ii), numerical 
approximations have already been proposed to speed up the t-SNE optimisation in 
which the computational time can be reduced to O(n log n) by tree-based methods [2], 
and even to O(n) by fast Fourier transform and polynomial interpolation [34]. These 
approximations do, however, rely on the use of low perplexity values that would sac-
rifice preservation of global structure. Instead we suggest using a stochastic gradient 
descent method such as Adam [35] to speed up the optimisation.
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